steps in the exact kohn-sham potential of ensemble density ... · ensemble density functional...

27
Steps in the Exact Kohn-Sham Potential of Ensemble Density Functional Theory for Excited States and Their Relation to the Derivative Discontinuity Matt Hodgson 1 , Eli Kraisler 1 , Mike Entwistle 2 , Axel Schild 3 and E. K. U. Gross 1,4 1 Max-Planck-Institute für Mikrostrukturphysik, Halle (Saale), Germany, 2 Department of Physics, University of York, Heslington, York, UK, 3 Laboratorium für Physikalische Chemie, ETH Zürich, Zürich, Switzerland, 4 Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

Upload: others

Post on 24-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Steps in the Exact Kohn-Sham Potential of Ensemble Density ... · Ensemble Density Functional Theory for Excited States and Their Relation to the Derivative Discontinuity Matt Hodgson1,

Steps in the Exact Kohn-Sham Potential of Ensemble Density Functional Theory for Excited

States and Their Relation to the Derivative Discontinuity

Matt Hodgson1, Eli Kraisler1, Mike Entwistle2, Axel Schild3 and E. K. U. Gross1,4

1Max-Planck-Institute für Mikrostrukturphysik, Halle (Saale), Germany, 2Department of Physics, University of York, Heslington, York, UK,

3Laboratorium für Physikalische Chemie, ETH Zürich, Zürich, Switzerland,4Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem

91904, Israel

Page 2: Steps in the Exact Kohn-Sham Potential of Ensemble Density ... · Ensemble Density Functional Theory for Excited States and Their Relation to the Derivative Discontinuity Matt Hodgson1,

Ensemble Density Functional Theory

E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2809 (1988)E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2805 (1988) E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2821 (1988) 

Page 3: Steps in the Exact Kohn-Sham Potential of Ensemble Density ... · Ensemble Density Functional Theory for Excited States and Their Relation to the Derivative Discontinuity Matt Hodgson1,

The electron density of an excited system of N interacting electrons is modelled using an auxiliary system of non-interacting electrons:

Ensemble Density Functional Theory

E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2809 (1988)E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2805 (1988) E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2821 (1988) 

Page 4: Steps in the Exact Kohn-Sham Potential of Ensemble Density ... · Ensemble Density Functional Theory for Excited States and Their Relation to the Derivative Discontinuity Matt Hodgson1,

The electron density of an excited system of N interacting electrons is modelled using an auxiliary system of non-interacting electrons:

!

−1

2∇

2 + vs

"

φi(r) = εiφi(r)Kohn-Sham equations:

Ensemble Density Functional Theory

E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2809 (1988)E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2805 (1988) E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2821 (1988) 

Page 5: Steps in the Exact Kohn-Sham Potential of Ensemble Density ... · Ensemble Density Functional Theory for Excited States and Their Relation to the Derivative Discontinuity Matt Hodgson1,

The electron density of an excited system of N interacting electrons is modelled using an auxiliary system of non-interacting electrons:

!

−1

2∇

2 + vs

"

φi(r) = εiφi(r)Kohn-Sham equations:

Electron density:

Ensemble Density Functional Theory

n(r) = δ |φN+1(r)|2 + (1− δ) |φN(r)|

2 +N−1!

i=1

|φi(r)|2

E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2809 (1988)E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2805 (1988) E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2821 (1988) 

Page 6: Steps in the Exact Kohn-Sham Potential of Ensemble Density ... · Ensemble Density Functional Theory for Excited States and Their Relation to the Derivative Discontinuity Matt Hodgson1,

The electron density of an excited system of N interacting electrons is modelled using an auxiliary system of non-interacting electrons:

!

−1

2∇

2 + vs

"

φi(r) = εiφi(r)

The accuracy of the density relies on the approximation to the exchange-correlation part of vs.

Kohn-Sham equations:

Electron density:

Ensemble Density Functional Theory

n(r) = δ |φN+1(r)|2 + (1− δ) |φN(r)|

2 +N−1!

i=1

|φi(r)|2

E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2809 (1988)E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2805 (1988) E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2821 (1988) 

Page 7: Steps in the Exact Kohn-Sham Potential of Ensemble Density ... · Ensemble Density Functional Theory for Excited States and Their Relation to the Derivative Discontinuity Matt Hodgson1,

The iDEA code

Page 8: Steps in the Exact Kohn-Sham Potential of Ensemble Density ... · Ensemble Density Functional Theory for Excited States and Their Relation to the Derivative Discontinuity Matt Hodgson1,

ee

Model simple 1D systems consisting of a few electrons

Choose any external potential we like

The iDEA code

Page 9: Steps in the Exact Kohn-Sham Potential of Ensemble Density ... · Ensemble Density Functional Theory for Excited States and Their Relation to the Derivative Discontinuity Matt Hodgson1,

1. Calculate the exact ground-state and first excited-state electron density

2. The electron density is a linear combination of these two densities:

3. Next reverse-engineer the exact Kohn-Sham potential

n(r) = (1− δ) · n0(r) + δ · n1(r)

Model simple 1D systems consisting of a few electrons

Choose any external potential we like

ee

The iDEA code

Page 10: Steps in the Exact Kohn-Sham Potential of Ensemble Density ... · Ensemble Density Functional Theory for Excited States and Their Relation to the Derivative Discontinuity Matt Hodgson1,

ee e

vs

N = 3

Derivative discontinuity of an atom

Page 11: Steps in the Exact Kohn-Sham Potential of Ensemble Density ... · Ensemble Density Functional Theory for Excited States and Their Relation to the Derivative Discontinuity Matt Hodgson1,

ee e

δ∆

vs

∆ = I − A+ εho

− εlu

N = 3+δ 0 < δ << 1

Derivative discontinuity of an atom

Page 12: Steps in the Exact Kohn-Sham Potential of Ensemble Density ... · Ensemble Density Functional Theory for Excited States and Their Relation to the Derivative Discontinuity Matt Hodgson1,

Charge transfer excitation in a 1D molecule

vext

n0(x)

Page 13: Steps in the Exact Kohn-Sham Potential of Ensemble Density ... · Ensemble Density Functional Theory for Excited States and Their Relation to the Derivative Discontinuity Matt Hodgson1,

Charge transfer excitation in a 1D molecule

vext

n1(x)

Page 14: Steps in the Exact Kohn-Sham Potential of Ensemble Density ... · Ensemble Density Functional Theory for Excited States and Their Relation to the Derivative Discontinuity Matt Hodgson1,

Charge transfer excitation in a 1D molecule

δ

vext

n(x) = (1− δ)n0(x) + δn1(x)

0 < δ << 1

n(x)

Page 15: Steps in the Exact Kohn-Sham Potential of Ensemble Density ... · Ensemble Density Functional Theory for Excited States and Their Relation to the Derivative Discontinuity Matt Hodgson1,

Ground-state 1D molecule

Page 16: Steps in the Exact Kohn-Sham Potential of Ensemble Density ... · Ensemble Density Functional Theory for Excited States and Their Relation to the Derivative Discontinuity Matt Hodgson1,

Ground-state 1D molecule

S = IR − IL + ηhoR − ηhoL

Page 17: Steps in the Exact Kohn-Sham Potential of Ensemble Density ... · Ensemble Density Functional Theory for Excited States and Their Relation to the Derivative Discontinuity Matt Hodgson1,

Ground-state 1D molecule

S = IR − IL + ηhoR − ηhoL

Ionisation energy

Page 18: Steps in the Exact Kohn-Sham Potential of Ensemble Density ... · Ensemble Density Functional Theory for Excited States and Their Relation to the Derivative Discontinuity Matt Hodgson1,

Ground-state 1D molecule

S = IR − IL + ηhoR − ηhoL

Kohn-Sham molecular energies

Bonded case: ηho

R = ηho

L

⇒ S = IR − IL

Almbladh, C. O.; von Barth, U. In Density Functional Methods inPhysics; Dreizler, R. M., da Providência, J., Eds.; NATO ASI Series;Plenum Press, 1985; Vol. 123, pp 209−231.

Page 19: Steps in the Exact Kohn-Sham Potential of Ensemble Density ... · Ensemble Density Functional Theory for Excited States and Their Relation to the Derivative Discontinuity Matt Hodgson1,

Charge transfer excitation in a 1D moleculeδ

Page 20: Steps in the Exact Kohn-Sham Potential of Ensemble Density ... · Ensemble Density Functional Theory for Excited States and Their Relation to the Derivative Discontinuity Matt Hodgson1,

Charge transfer excitation in a 1D molecule

∆CT

L→R = IL − AR + ηhoL − ηluR

∆R = IR − AR + εho

R − εlu

R

Derivative discontinuity of Atom R:δ

Page 21: Steps in the Exact Kohn-Sham Potential of Ensemble Density ... · Ensemble Density Functional Theory for Excited States and Their Relation to the Derivative Discontinuity Matt Hodgson1,

Charge transfer excitation in a 1D molecule

∆CT

L→R = IL − AR + ηhoL − ηluR

∆R = IR − AR + εho

R − εlu

R

Derivative discontinuity of Atom R:

What’s this?

δ

Page 22: Steps in the Exact Kohn-Sham Potential of Ensemble Density ... · Ensemble Density Functional Theory for Excited States and Their Relation to the Derivative Discontinuity Matt Hodgson1,

Charge-transfer derivative discontinuity

∆CT

L→R = IL − AR + ηhoL − ηluR

Page 23: Steps in the Exact Kohn-Sham Potential of Ensemble Density ... · Ensemble Density Functional Theory for Excited States and Their Relation to the Derivative Discontinuity Matt Hodgson1,

Charge-transfer derivative discontinuity

∆CT

L→R = IL − AR + ηhoL − ηluR

∆R = IR − AR + εhoR − εluR = IR − AR + ηhoR − ηluR

Derivative discontinuity of Atom R:

Page 24: Steps in the Exact Kohn-Sham Potential of Ensemble Density ... · Ensemble Density Functional Theory for Excited States and Their Relation to the Derivative Discontinuity Matt Hodgson1,

Charge-transfer derivative discontinuity

∆CT

L→R = IL − AR + ηhoL − ηluR

S = S1 + S2 = ∆R −∆CT

L→R = IR − IL + ηhoR − ηhoL

∆R = IR − AR + εhoR − εluR = IR − AR + ηhoR − ηluR

Derivative discontinuity of Atom R:

Page 25: Steps in the Exact Kohn-Sham Potential of Ensemble Density ... · Ensemble Density Functional Theory for Excited States and Their Relation to the Derivative Discontinuity Matt Hodgson1,

Charge-transfer derivative discontinuity

S = S1 + S2 = ∆R −∆CT

L→R = IR − IL + ηhoR − ηhoL

Page 26: Steps in the Exact Kohn-Sham Potential of Ensemble Density ... · Ensemble Density Functional Theory for Excited States and Their Relation to the Derivative Discontinuity Matt Hodgson1,

Conclusions1. Ensemble density functional theory can be used to model charge transfer

2. Upon charge transfer two plateaus form around the atoms of a diatomic molecule – one corresponds to the derivative discontinuity of the acceptor and the other corresponds to the ‘charge-transfer derivative discontinuity’

3. The steps which correspond to the two derivative discontinuities add together to make the interatomic step which determines the distribution of charge in the molecule

Page 27: Steps in the Exact Kohn-Sham Potential of Ensemble Density ... · Ensemble Density Functional Theory for Excited States and Their Relation to the Derivative Discontinuity Matt Hodgson1,

Conclusions1. Ensemble density functional theory can be used to model charge transfer

2. Upon charge transfer two plateaus form around the atoms of a diatomic molecule – one corresponds to the derivative discontinuity of the acceptor and the other corresponds to the ‘charge-transfer derivative discontinuity’

3. The steps which correspond to the two derivative discontinuities add together to make the interatomic step which determines the distribution of charge in the molecule

Thanks for listening!

Publication: M. J. P. Hodgson et al., J. Phys. Chem. Lett., 2017, 8 (24), pp 5974–5980Email: [email protected] Website: http://www-users.york.ac.uk/~mjph501/index.html