stellar evolution and nucleasysthesis(depending on the initial mass and composition of the star)...

33
16.05.07 Markus Wadepuhl Stellar evolution and Stellar evolution and nucleosynthesis nucleosynthesis

Upload: others

Post on 03-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • 16.05.07 Markus Wadepuhl

    Stellar evolution and Stellar evolution and

    nucleosynthesisnucleosynthesis

  • 16.05.07 Markus Wadepuhl

    OutlineOutline� The sun: models and nuclear reactions

    – pp-chain

    – CNO-cycle

    � Steps in nucleosynthesis

    – He-burning

    – C-burning

    – O-burning

    � Uncertainties

    � The share of stellar nucleosynthesis in galactical abundance

  • 16.05.07 Markus Wadepuhl

    The stellar modelThe stellar model� Needs to follow the basic equations of

    stellar evolution

    ρπ 24

    1

    rm

    r=

    ∂2

    2

    244

    1

    4 t

    r

    rr

    Gm

    m

    P

    ∂−−=

    ππ t

    P

    t

    Tc

    m

    lpn

    ∂+

    ∂−−=

    ρ

    δεε υ

    ∇−=∂

    Pr

    GmT

    m

    T44π

    −=

    ∂∑∑

    k

    ik

    j

    jiii rr

    m

    t

    X

    ρ

    � Inserting the known values for the sun yields

  • 16.05.07 Markus Wadepuhl

    The solar modelThe solar model

  • 16.05.07 Markus Wadepuhl

    The The pppp--chain (Tchain (T66 < 15)< 15)

    � first step very unusual due to the β+ decay at

    the time of the closest approach

    � pp II and pp III gain in importance with

    increasing temperature

  • 16.05.07 Markus Wadepuhl

    The CNOThe CNO--cycle (Tcycle (T66 < 50)< 50)

    � C, N and O act similar to catalysts

    � Maincycle dominates (≈ 1000 times)

    �14N acts as a „bottleneck“

    – Nearly all initially present C, N and O nuclei

    will be found as 14N

  • 16.05.07 Markus Wadepuhl

    The CNOThe CNO--cyclecycle

    � With increasing

    temperature the CNO-

    cycle gains in

    importance

    � Other situation for

    population III stars

    (no CNO cycle)

  • 16.05.07 Markus Wadepuhl

    Solar NeutrinosSolar Neutrinos

    � pp-chain as well as the CNO-cycle produce

    a characteristic neutrino spectrum

    � neutrinos can easily escape and carry away

    their energy

    � good test for solar models

  • 16.05.07 Markus Wadepuhl

    Steps in nucleosynthesisSteps in nucleosynthesis

    � after Hydrogen is exhausted, there are

    several burning stages that can be ignited at

    higher and higher temperatures

    (depending on the initial mass and

    composition of the star)

    � different burning stages can occur parallel

    in different regions of the star

    (shell burning, onion skin structure)

  • 16.05.07 Markus Wadepuhl

    Steps in nucleosynthesisSteps in nucleosynthesis� during carbon burning and the later stages

    many neutrinos are produced

    – high energy loss by neutrino emission

    Woosley et. al., 2002, RvMP, 74, 1016

  • 16.05.07 Markus Wadepuhl

    Helium Burning (THelium Burning (T88 > 1)> 1)

    BeHeHe844 ⇔+ � Decays after ≈ 10-16 s

    γ+→+ CHeBe 1248

    γ+→+ OHeC 16412

    γ+→+ NeHeO 20416

    � Following processes possible but in typical

    stellar-environment very rare

    ( ) ( ) ( ) ( ) MgnNeOeFN 2522181814 ,,, αγαυγα +

    � Produces free n that can form heavy

    Elements (A ≥ 60)

  • 16.05.07 Markus Wadepuhl

    Carbon Burning (TCarbon Burning (T88 = 5..10)= 5..10)

    pNaCC +→+ 231212

    α+→+ NeCC 201212

    ( ) NepNa 2023 ,α

    � p and α find themselfes at extremely high

    temperatures (too high for H and He burning)

    � New reactions with other particles in the mixture

    ( ) ( ) ( ) OnCeNpC 16131312 ,, αυγ +

  • 16.05.07 Markus Wadepuhl

    PhotodisintegrationPhotodisintegration

    (Neon Burning)(Neon Burning)� For T9 > 1 photodisintegration occurs

    ( ) ONe 1620 ,αγ

    � Several following reactions are possible

    γγ ++→+ MgONe 2416202

    ( ) ( ) ( ) SiMgNeO 28242016 ,,, γαγαγα

    ( ) SinMg 2825 ,α ( ) SinMg 2926 ,α ( ) AlnpMg 2626 ,

    ( ) SiMg 3026 ,γα ( ) SipAl 3027 ,α ( ) PpSi 3130 ,γ

    � Main energy production via

    ( ) AlpMg 2625 ,γ

  • 16.05.07 Markus Wadepuhl

    Oxygen Burning (TOxygen Burning (T99 > 1)> 1)

    pPOO +→+ 311616 α+→+ SiOO 281616

    � same problem with p and α as during the carbon

    burning

    � Produces many nuclei e. g.28Si, 32,33,34S, 35,37Cl, 36,38Ar, 39,41K, 40,42Ca

  • 16.05.07 Markus Wadepuhl

    PhotodisintegrationPhotodisintegration

    (Silicon Burning)(Silicon Burning)

    � at even higher temperatures (T9 > 3) 28Si can also

    be decomposed

    � n, p and α react with 28Si and build gradually

    heavier nuclei until 56Fe is reached

    ( ) ( ) ( ) ( ) ( )ααγαγαγαγαγ 2,,,,, 1216202428 CONeMgSi

    ( ) ( ) ( ) ( ) ( ) SinSinSipPpSSi 282930313228 ,,,,, γγγγγα

  • 16.05.07 Markus Wadepuhl

    Chronological DevelopmentChronological Development

    Woosley et. al., 2002, RvMP, 74, 1016

  • 16.05.07 Markus Wadepuhl

    Chronological DevelopmentChronological Development

    Woosley et. al., 2002, RvMP, 74, 1016

  • 16.05.07 Markus Wadepuhl

    Chronological DevelopmentChronological Development

    � onion skin structure

  • 16.05.07 Markus Wadepuhl

    UncertaintiesUncertainties

    � Convection

    – Diffusion coefficient is modeled with a typical

    mixing length

    – Nuclear burning is carried out first

    – Afterwards mixing is applied

    � Nuclear reaction rates( ) OC 1612 ,γα ( ) MgnNe 2522 ,α

  • 16.05.07 Markus Wadepuhl

    ConvectionConvection

    Woosley et. al., 2002, RvMP, 74, 1016

  • 16.05.07 Markus Wadepuhl

    ConvectionConvection

    Woosley et. al., 2002, RvMP, 74, 1016

  • 16.05.07 Markus Wadepuhl

    ConvectionConvection

    Woosley et. al., 2002, RvMP, 74, 1016

  • 16.05.07 Markus Wadepuhl

    ConvectionConvection

    Woosley et. al., 2002, RvMP, 74, 1016

  • 16.05.07 Markus Wadepuhl

    UncertaintiesUncertainties� rotation

    – centrifugal effects

    – transfer of angular momentum may cause wind

    � magnetic fields

    – cause magnetic torques between differencially

    rotating shells

    � binaries

    – Mass transfer between the two components if Roche

    lobe is crossed

    � winds

    – depends crucially on the inital mass and metallicity

  • 16.05.07 Markus Wadepuhl

    Mass lossMass loss

    Woosley et. al., 2002, RvMP, 74, 1016

  • 16.05.07 Markus Wadepuhl

    Mass lossMass loss

    Woosley et. al., 2002, RvMP, 74, 1016

  • 16.05.07 Markus Wadepuhl

    The influence of metallicityThe influence of metallicity

    Heger et al., 2003, APJ, 591, 288

  • 16.05.07 Markus Wadepuhl

    Chemical compositionChemical composition

    Woosley et. al., 2002, RvMP, 74, 1016

  • 16.05.07 Markus Wadepuhl

    Chemical compositionChemical composition

    Woosley et. al., 2002, RvMP, 74, 1016

  • 16.05.07 Markus Wadepuhl

    The ISM yield The ISM yield

    � Winds

    – Not well understood

    � SNe

    – mass cut

    – explosion mechanism

    – consider fallback

    – very complicated explosive processes

    � Plot the production factor

    – Xi / Xi sol

  • 16.05.07 Markus Wadepuhl

    Chemical compositionChemical composition

    Woosley et. al., 2002, RvMP, 74, 1016

  • 16.05.07 Markus Wadepuhl

    Special issuesSpecial issues

    � especially metal-poor population III stars

    possibly were very massiv

    – maybe different SNe mechanism

    � unknown mass cut

    � rather simple explosion modeling

    – Piston model

    � only very few detailed SN observations

  • 16.05.07 Markus Wadepuhl

    ReferencesReferences

    � A. Unsöld & B. Baschek. Der neue Kosmos. Springer, Berlin, 2005

    � R. Kippenhahn & A. Weigert, Stellar Structur and Evolution, Springer, Berlin, 1990

    � D. Arnett, Supernovae and Nucleosynthesis, Princeton University Press, Princeton, 1996

    � G. Wallerstein et al. Synthesis of the elements in stars: forty years of progress. RvMP 69: 995 – 1084, 1997

    � S. E. Woosley et al. The evolution and explosion of massive stars. RvMP 74: 1015 – 1064, 2002

    � A. Heger et al. The nucleosynthetic signature of population III. ApJ 567: 532 – 543, 2002

    � K. Nomoto et al. Hypernovae and their Nucleosynthesis. Astro-ph/0209064

    � A. Heger et al. How massive single stars end their life. ApJ 591: 288 – 300, 2003

    � T. Rauscher et al. Nucleosynthesis in massive stars with improved nuclear and stellar physics. Astro-ph/0112478v2