steady-state power analysis learning goals instantaneous power for the special case of steady state...

44
STEADY-STATE POWER ANALYSIS LEARNING GOALS Instantaneous Power For the special case of steady state sinusoidal signals Average Power Power absorbed or supplied during one cycle Maximum Average Power Transfer When the circuit is in sinusoidal steady state Effective or RMS Values For the case of sinusoidal signals Power Factor A measure of the angle between current and voltage phasors Complex Power Measure of power using phasors Power Factor Correction How to improve power transfer to a load by “aligning” phasors Single Phase Three-Wire Circuits Typical distribution method for households and small loads

Upload: clyde-doyle

Post on 27-Dec-2015

223 views

Category:

Documents


3 download

TRANSCRIPT

STEADY-STATE POWER ANALYSISLEARNING GOALS

Instantaneous Power For the special case of steady state sinusoidal signals

Average Power Power absorbed or supplied during one cycle

Maximum Average Power Transfer When the circuit is in sinusoidal steady state

Effective or RMS Values For the case of sinusoidal signals

Power Factor A measure of the angle between current and voltage phasors

Complex Power Measure of power using phasors

Power Factor Correction How to improve power transfer to a load by “aligning” phasors

Single Phase Three-Wire Circuits Typical distribution method for households and small loads

INSTANTANEOUS POWER

)cos()(

)cos()(

iM

vM

tIti

tVtv

Statesteady In

)()()( titvtp Impedance to

SuppliedPower

ousInstantane

)cos()cos()( ivMM ttIVtp

)cos()cos(2

1coscos 212121

)2cos()cos(2

)( ivivMM t

IVtp

LEARNING EXAMPLE

)(),(

302

),60cos(4)(

tpti

Z

ttv

:Find

:Assume

)(302302

604A

Z

VI

))(30cos(2)( Atti

30,2

60,4

iM

vM

I

V

)902cos(430cos4)( ttp

constant Twice thefrequency

AVERAGE POWER

For sinusoidal (and other periodic signals)we compute averages over one period

2

T

)2cos()cos(2

)( ivivMM t

IVtp

)cos(2 iv

MM IVP

If voltage and current are in phase

MMiv IVP2

1

If voltage and current are in quadrature090 Piv

Purelyresistive

Purely inductive orcapacitive

It does not matterwho leads

LEARNING EXAMPLE Find the averagepower absorbedby impedance

)(1553.34522

6010

22

6010A

jI

15,60,53.3,10 ivMM IV

WP 5.12)45cos(3.35

Tt

t

dttpT

P0

0

)(1

RV

)(1506.7601022

2V

jVR

WP 53.306.72

1

Since inductor does not absorb powerone can use voltages and currents acrossthe resistive part

LEARNING EXAMPLEDetermine the average power absorbed by each resistor, the total average power absorbed and the average powersupplied by the source

)(4534

45121 AI

WP 183122

14

If voltage and current are in phase

MMiv IVP2

1 2

12

1MRI

R

VM2

2

1

)(57.7136.537.265

4512

12

45122 A

jI

)(36.522

1 22 WP W7.28

Inductors and capacitors do not absorbpower in the average

WPtotal 7.2818

absorbedsupplied PP WP 7.46supplied

Verification

57.7136.545321 III)(10.6215.8 AI

)cos(2 iv

MM IVP

)10.6245cos(15.8122

1 suppliedP

LEARNING EXTENSION Find average power absorbed by each resistor

I

iZI

6012

iZ )4||4(2 j

4524

6.713.25

44

1688

44

)4(42

j

jj

j

jZ i

6.2647.4iZ

)(6.8668.26.2647.4

6012AI

WRIP M 20.768.222

1

2

1 222

2I

6.8668.24524

904

44

42 I

j

jI

6.4190.12I

)(90.142

1 24 WP

LEARNING EXTENSIONFind the AVERAGE power absorbed by each PASSIVE component and the total power supplied by the source

1I2I

3010243

241 j

jI

)(62.4014.6301095.1528.7

57.2647.41 AI

)(14.632

1

2

1 223 WRIP M

62.4014.630102I

)(05.1412.4

95.1528.7

30303010

243

32

A

jI

)(12.442

1 24 WP

)(02 WPj

Power supplied by source

Method 1. absorbedsupplied PP

WPPP 50.9043 supplied

Method 2: )cos(2

1ivMM IVP

sV

62.4042.183 1IVs

)3062.40cos(1042.182

1 P

LEARNING EXAMPLEDetermine average power absorbed or supplied by each element

)(3062

30122 AI

)(36622

1

2

1 222 WRIP M

01 jP

To determine power absorbed/suppliedby sources we need the currents I1, I2

)(19.3643.7

39.466639.10

1

0630123

A

jj

j

jI

07.728.11

)(39.12.1139.46320.5321 AjjjIII

)(54

)07.730cos(28.11122

13012

W

P

)1836(

)cos(2

1ivMM IVP

Power Average

WP 18)19.360cos(43.762

106

Passive sign convention

R

VRIP M

M

22

2

1

2

1

resistorsFor

LEARNING EXTENSIONDetermine average power absorbed/supplied by eachelement

1I

2I

)012(42304

012

22

1

IIj

I

Equations Loop

57.2647.4

48246.3

24

0483042

j

jI

)(20497.957.2647.4

43.17758.442 AI

)(5.5492.19))(055.4108.912(4

))(20497.912(4)(4 214

VVj

VIIV

WR

VP M 6.49

4

92.19

2

1

2

1 22

4

)(02 WP j

)(4.69)05.54cos(1292.192

1012 WP

4V

)(8.19)20430cos()97.9(42

1304 WP

Check: Power supplied =power absorbed

j

VI

j

VV

2

304

02

304

4012

42

44

Equations Node

Alternative Procedure

)cos(2

1ivMM IVP

Power Average

R

VRIP M

M

22

2

1

2

1

resistorsFor

LEARNING EXTENSIONDetermine average power absorbed/supplied by eachelement

V

042

012

2

024

V

j

VV

Equation Node

4j

0)12(2)24(2 jVVVj

)(85.177.14

)(125.788.14

13

24192

32

32

32

4824

4824)32(

Vj

V

j

j

j

j

jV

jVj

1I

925.062.42

85.177.1424

2

0241 j

jVI

)(32.1171.41 AI

2Ij

j

j

j

j

VI

2

85.177.1412

2

0122

)(73.12367.1)(385.1925.02

77.285.12 AAj

jI

)(18.2271.422

1 22 WP

)(67.274

88.14

2

1 2

4 WP

)(565.5)73.1230cos(67.1122

1012 WP

)(42.55)32.110cos(71.4242

1024 WP

)(42.55

)(565.567.2718.22

WP

WP

supplied

absorbed

:Check

)cos(2

1ivMM IVP

Power Average

R

VRIP M

M

22

2

1

2

1

resistorsFor

MAXIMUM AVERAGE POWER TRANSFER

)cos(||||2

1

)cos(2

1

LL

LL

IVLL

IVLMLML

IV

IVP

THTHTH jXRZ

LLL jXRZ

L

LL

OCTHL

LL

Z

VI

VZZ

ZV

|||| OC

THL

LL V

ZZ

ZV

LIV

LLL

Z

ZVI

LL

LLL jXRZ

22)cos(

)tan(

LL

LIV

L

LL

XR

R

R

XZ

LL

2tan1

1cos

||

||||

L

LL Z

VI

222

2

||

||||

2

1

LL

L

THL

OCLL

XR

R

ZZ

VZP

22

2

)()(

||

2

1

THLTHL

LOCL

XXRR

RVP

THL

THL

L

L

L

L

RR

XX

R

PX

P

0

0

*TH

optL ZZ

TH

OCL R

VP

4

||

2

1 2max

222 )()(||

)()(

THLTHLTHL

THLTHLTHL

XXRRZZ

XXjRRZZ

LEARNING EXAMPLEload the to suppliedpower average maximum the Compute

transfer.power average maximumfor Find LZ

Remove the load and determine the Thevenin equivalent of remaining circuit

1I

64.926.5

64.908.6

03204

142

24

jVOC

93.1647.164.908.6

57.2694.8

16

48

37

1652

37

)16)(48(

16

48)12(||4

j

j

jjj

j

jjZTH

43.041.193.1647.1* jZL

TH

OCL R

VP

4

||

2

1 2max*

THoptL ZZ

)(45.241.14

26.5

2

1 2max WPL

We are asked for the value of thepower. We need the Thevenin voltage

LEARNING EXAMPLEload the to suppliedpower average maximum the Compute

transfer.power average maximumfor Find LZ

TH

OCL R

VP

4

||

2

1 2max*

THoptL ZZ

Circuit with dependent sources!

SC

OCTH I

VZ

1'

1'

2

)42(04

IV

IjV

X

x

KVL

)(45707.04524

04

)4524()44(04

1

11

AI

IIj

KVL

5.1611013411042 1 jjIVOC

Next: the short circuit current ...

LEARNING EXAMPLE (continued)...

Original circuit

02)(204

04)(24"

SCSC

SCx

IjII

IIIjV

CURRENT CIRCUIT

SHORT FOR EQUATIONS LOOP

)(2" IIV SCx

VARIABLEGCONTROLLIN

4)22(2

44)44(

SC

SC

IjI

IIj

Substitute and rearrange

2)11( SCIjI

442)1()1(4 SCSC IIjj

57.1165)(21 AjISC

57.1611013411042 1 jjIVOC

11452 jZTH 11 jZ optL

TH

OCL R

VP

4

||

2

1 2max*

THoptL ZZ

)(25.14

)10(

2

1 2max WPL

LEARNING EXTENSION

load the to suppliedpower average maximum the Compute

transfer.power average maximumfor Find LZ

OCV

I

4573.12)1(98

)22(36

)22(036

jj

I

Ij

186

)1(9212

2012

j

jj

IjVOC

)(57.71974.18 VVOC

22

42)2||2(2

j

jjjjZTH

)(18

88

22

4

jj

jZTH

)(1 jZ optL

)(454

360

2

1max WPL

TH

OCL R

VP

4

||

2

1 2max*

THoptL ZZ

360186|| 222 OCV

LEARNING EXTENSION

load the to suppliedpower average maximum the Compute

transfer.power average maximumfor Find LZ

TH

OCL R

VP

4

||

2

1 2max*

THoptL ZZ

OCV

2jV

024222

22 jj

jV j 9024

KVL

)(24129024012 VjVOC

7202412|| 222 OCV

THZ

222

)22(2)22(||2

jj

jjjjZTH

)(22 jZTH

)(22 jZ optL

)(4524

720

2

1max WPL

EFFECTIVE OR RMS VALUES

)(ti

R

Rtitp )()( 2

power ousInstantane

Tt

t

Tt

tav dtti

TRdttp

TP

T

0

0

0

0

)(1

)(1 2

period with periodic iscurrent If

2

)(

dcdc

dc

RIP

Iti

then )( DC iscurrent If dcaveff PPI :

Tt

teff dtti

TI

0

0

)(1 22

Tt

teff dtti

TI

0

0

)(1 2

The effective value is the equivalent DCvalue that supplies the same average power

Definition is valid for ANY periodicsignal with period T

2

)cos()(

Meff

M

XX

tXtx

is valueeffective the

signal sinusoidal aFor

If the current is sinusoidal the averagepower is known to be RIP Mav

2

2

1

22

2

1Meff II

)cos(2

1ivMMav IVP case sinusoidalFor

)cos( iveffeffav IVP

square) mean(root rmseffective

LEARNING EXAMPLECompute the rms value of the voltage waveform

One period

32)2(4

210

104

)(

tt

t

tt

tv

3T

3

2

21

0

2

0

2 ))2(4()4()( dttdttdttvT

The two integrals have the same value

3

32

3

162)(

1

0

33

0

2

tdttv

)(89.13

32

3

1VVrms

Tt

trms dttx

TX

0

0

)(1 2

)(ti

R

LEARNING EXAMPLECompute the rms value of the voltage waveform and use it todetermine the average power supplied to the resistor

2R

)(4 sT

40;16)(2 tti

Tt

trms dttx

TX

0

0

)(1 2

)(4 AIrms

)(322 WRIP rmsav

LEARNING EXTENSIONCompute rms value of the voltage waveform

tv 2

4T

Tt

trms dttx

TX

0

0

)(1 2

dttVrms 2

0

2)2(4

1VVt 633.1)(

3

8

3

12

0

3

)(ti

R

LEARNING EXTENSION

4R

Compute the rms value for the current waveforms and usethem to determine average power supplied to the resistor

6T

Tt

trms dttx

TX

0

0

)(1 2

RIP rmsav2

4

2

6

4

2

0

2 41646

1dtdtdtIrms 8

6

8328

)(3248 WP

8T

816168

1 6

4

2

0

2

dtdtIrms )(32 WP

THE POWER FACTOR

LZiMI

vMV

iv

VI

izv

IZVZIV

z

)cos()cos(2

1ivrmsrmsivMM IVIVP rmsrms IVP apparent

zivP

Ppf cos)cos(

apparent

inductive pure

inductiveor lagging

resistive

capacitiveor leading

capacitive pure

90

900

0

10

01

09010

900

z

z

z

pf

pf

pf

V

e)(capacitiv

leadscurrent 090 z

)(inductive

lagscurrent 900 z

pfIVP rmsrms

LEARNING EXAMPLEFind the power supplied by the power company.Determine how it changes if the power factor is changed to 0.9

Power company

pfIVP rmsrms

rmsAW

Irms )(3.259707.0480

)(1088 3

rmsV )(480

rmsA)(453.259

45707.0cos zz

Current lags the voltage

480453.25908.0

08.0

LrmsS VIVrms

)(7.14957.147.494

480)4.1834.183(08.0

Vj

jVrmsS

)(378.93)(000,88

378.508.03.259 32

kWWPP

kWRIP

lossesS

rmslosses

If pf=0.9

If pf=0.9

8.257.203rmsI

82.049448009.747.14 jVS

kWRIP

rmsAI

rmslosses

rms

32.3

)(7.2039.0480

000,88

2

Losses can be reduced by 2kW!

Examine also the generated voltage

LEARNING EXTENSION

1.0

707.0,)(480,100

line

LL

R

pfrmsVVkWP

Determine the power savings if the power factor can be increased to 0.94

pfIVP rmsrms

22

22 1

pfV

RPRIP

pfV

PI

rms

linelinermslosses

rmsrms

kW

WpfPlosses

34.42

)(707.0

1

480

1.010)707.0( 22

10

kW

WpfPlosses

34.413.1

)(94.0

1

480

1.010)94.0( 22

10

kWkWPsaved 77.334.487.0

COMPLEX POWER*rmsrms IVS

PowerComplex of Definition

ivrmsrms

irmsvrms

IVS

IVS

*

)sin()cos( ivrmsrmsivrmsrms IVjIVS

The units of apparent and reactive power are Volt-Ampere

2* ||)( rmsrmsrmsrmsrms IZIZISZIV Another useful form

2

2

||

||

rms

rms

IXQ

IRPjXRZ

PActive Power

Q

Reactive Power

inductive

capacitive

LEARNING EXAMPLE

HzfjZrmsVlaggingpfkWP LLL 60,3.009.0,0220,8.0,20 :Given

Determine the voltage and power factor at the input to the line

}Re{SP pfSS iv ||)cos(||

inductive

capacitive

inductive

kVAQPSQ L 15222 87.3625)(1520 kVAjSL

*LLL IVS

)(86.3664.1130220

87.36000,25**

AV

SI

L

LL

)(220)18.6891.90)(3.009.0(

0220)3.009.0(

VjjV

IjV

S

LS

)(18.6891.90220

000,15000,20*

Ajj

IL

86.453.24914.2163.248 jVS

86.4

86.36

SV

LI

746.0)72.41cos( sourcepf

lagging

kVApf

PSL 25||

LEARNING EXAMPLECompute the average power flow between networksDetermine which is the source

1

012030120

jZ

VVI BA

rmsVVA )(30120 rmsVVB )(0120

1j

rmsAjj

jI )(08.1660

120)6092.103(

rmsAI )(1512.62

rmsBB VAIVS 15454,71512.620120)( *

)(200,7)165cos(454,7 WPA

)(200,7)15cos(454,7 WPB

A supplies 7.2kW average power to B

rmsAA VAIVS 165454,719512.6230120)( * Passive sign convention.Power received by A

LEARNING EXTENSION

laggingpf

kW

84.0

40

1.0 25.0j

Determine real and reactive power losses andreal and reactive power supplied

inductive

capacitive}Re{SP pfSS iv ||)cos(||

kVApf

PSL 62.47

84.

40||

rmsL

LL A

V

SIVIS )(45.216

||

||||*

86.32)cos( ivivpf

)(839,25|||| 22 VAPSQ LL

rmsL AI )(86.3245.216

2* ||)( LlineLLline IZIIZS losses

VAj 713,11685,4

Balance of power

kVAjjj

SSS

552.37685.44839.2540713.11685.4

loadlossessupplied

2)45.216)(25.01.0( jS losses

laggingpf

kW

85.0

60

12.0 18.0j

LEARNING EXTENSIONDetermine line voltage and power factor at the supply end

pfIVS LLiv ||||)cos(||

rmsL

L ApfV

PI )(86.320

||||

}Re{SP *LLL IVS

)(cos 1 pfiv 79.31iv rmsL AI )(79.3186.320 rmsAj )(03.16972.272

LLS VIZV line 220)03.16972.272)(18.012.0( jj

rmsS VjV )(81.2815.283 rmsV )(81.561.284

792.0)6.37cos( sourcepf

lagging

81.5

79.31

SV

LILVThe phasor diagram helps in visualizing

the relationship between voltage and current

Low power factors increase losses and are penalized by energy companies

Typical industrial loadsare inductive

Simple approach to power factor correction

)cos(

||

oldold

oldoldoldoldold

:capacitorWithout

pf

SjQPS

)cos(

||

newnew

newnew

capacitoroldold

capacitoroldnew

capacitor With

pf

S

jQjQP

SS S CV

IVQ

L

L

2||

||||

capacitorcapacitor

capacitorICj

VL 1

old

capacitoroldnew P

QQ tan

2tan1

1cos

POWER FACTOR CORRECTION

LEARNING EXAMPLE

laggingpf

VkW rmsL

8.0

0220,50

Roto-molding

process

lagging 0.95 to

factorpower the increase to requiredcapacitor the Determine

.60Hzf

}Re{SP pfSS iv ||)cos(||

kVApf

PSold 5.62

80.

50|| ).(5.37|||| 22 kVAPSQ oldold

329.01

tan95.0cos2

new

newnewnew pf

pf kVAPQ

P

Qnew

new 43.16329.0

kVAQQQ newoldcapacitor 07.2143.165.37

CV

IVQ

L

L

2||

||||

capacitorcapacitorFF

V

QC

L

capacitor

1156)(001156.0)602()220(

1007.21

|| 2

3

2

LEARNING EXTENSION

HzfR

pfrmsVVkWP

line

LL

60,1.0

707.0,)(480,100

Determine the capacitor necessary to increase the power factor to 0.94

}Re{SP pfSS iv ||)cos(||

kVApf

PSold 44.141

707.

100|| ).(02.100|||| 22 kVAPSQ oldold

363.01

tan94.0cos2

new

newnewnew pf

pf kVAPQ

P

Qnew

new 3.36363.0

kVAQQQ newoldcapacitor 72.633.3602.100

CV

IVQ

L

L

2||

||||

capacitorcapacitorFF

V

QC

L

capacitor

733)(000733.0)602()480(

1072.63

|| 2

3

2

Power circuit normallyused for residencial supply

Line-to-line usedto supply majorappliances (AC, dryer). Line-to-neutral for lightsand small appliances

Basic circuit.

Generalbalancedcase

General case by sourcesuperposition

Neutral current is zero

Neutral currentis zero

An exercise insymmetry

SINGLE-PHASE THREE-WIRE CIRCUITS

LEARNING EXAMPLEDetermine energy use over a 24-hour period and the costif the rate is $0.08/kWh

rmsA1 Lights on

rmsA2.0

Stereo on

rmsA30

LSnN

RSbB

RLaA

III

III

III

KCL

Assume allresistive

rmsrms IVP

TimePdttpEnergy average)(

kWhHrkWHrkWElights 8.1712.0812.0

kWhHrkWErange 8.28)112(2.7

kWhHrkWEstereo 192.0)35(024.0

kWhEdaily 792.30 dayCost /46.2$ dtIVpE rmsrmssuppliedsupplied

Outline of verification

aAIA31

A1

SAFETY CONSIDERATIONS

Average effect of 60Hz current from hand tohand and passing the heart

Required voltage depends on contact, personand other factors

Typical residential circuit with ground andneutral

Ground conductor is not needed fornormal operation

Increased safety due to grounding

When switched on the tool case is energized

without the ground connector theuser can be exposed to the fullsupply voltage!

Conducting due to wet floor

If case is grounded then the supply is shorted and the fuse acts to openthe circuit

LEARNING EXAMPLE

More detailed numbers in a related case study

LEARNING EXAMPLE

Ground prong removed

R(dry skin) 15kOhmR(wet skin) 150OhmR(limb) 100OhmR(trunk) 200Ohm

Suggested resistancesfor human body

150150

Wet skin

400

Limbstrunk

1

mAIbody 171701

120

Can cause ventricular fibrillation

LEARNING EXAMPLE Ground Fault Interrupter (GFI)

In normal operating mode the two currents induce canceling magnetic fluxes

No voltage is induced in the sensing coil

coil sensing the in induced voltagea is there then

fault) a to due (e.g.,different become and If 21 ii

LEARNING EXAMPLE

xGroundfault

Vinyl lining (insulator)

Circuit formed when boy inwater touches boy holding grounded rail

A ground fault scenario

While boy is alone in the poolthere is no ground connection

LEARNING EXAMPLE Accidental groundingOnly return path in normaloperation

New path created by the grounding

Using suggested values of resistance thesecondary path causes a dangerous currentto flow through the body

mA150

LEARNING EXAMPLE A grounding accident

After the boom touches the live line the operator jumps down and starts walkingtowards the pole

7200 V

Ground is not a perfectconductor

10m

720V/m

One step applies 720 Volts to theoperator

LEARNING EXAMPLEA 7200V power line falls on the car and makes contact with it

Wet Road

Option 1.Driver opens door and steps down

Option 2: Driver stays inside the car

7200V

Car body is good conductor

Tires are insulators

R(dry skin) 15kOhmR(wet skin) 150OhmR(limb) 100OhmR(trunk) 200Ohm

Suggested resistancesfor human body

trunklimbskindry body RRR

I

2

72000bodyI

dangerous! Very mAI 460

LEARNING EXAMPLE Find the maximum cord length

CASE 1: 16-gauge wire ft

m4 CASE 2: 14-gauge wire

ft

m5.2

382.0

51.13

cord

cord

R

VAR

ftR

Lft

mcord 5.95

4

ftR

Lft

mcord 8.152

5.2

Minimum voltage for properoperation

Working with RMS values the problem is formally the same as a DC problem

LEARNING EXAMPLELight dimming when AC starts

Typical single-phase 3-wire installation

rmslight AI 5.0

Circuit at start of AC unit. Current demand is very high

A40

rmsAN VV 100

AC off

rmsAN VV 5.119120241

240

AC in normal operation

rmsAN VV 115

LEARNING BY DESIGNAnalysis of single phase 3-wire circuit installations

Option 1

Option 2

||120

5000|| HL II

67.412nI

9.3667.41mI 9.3667.41067.41067.41aI )(1.124.119 A

mb II

kVAjkVA

SA

3141.1238.14

1.124.1190120 *

kVAjkVA

SB

349.365

9.3667.410120 *

9.3667.41067.41aI )(4.1807.79 A

ab II

HL II 0nI

kVAjkVA

SS BA

394.185.9

4.1807.790120 *

kWIIIP

R

nbalosses

lines

147.1||||||05.0

05.0222

kWIIP

R

balosses

lines

625.0||||05.0

05.022

)/$08.0(@366/$

522.0

kWhyear

kWPsaved

Steady-statePower Analysis