status of procurement of module assembly machines a. di mauro (cern) 5th its, mft and o2 upgrade...

40
Status of procurement of Module Assembly Machines A. Di Mauro (CERN) 5th ITS, MFT and O2 upgrade Asian workshop, Wuhan , 08.06.2015

Upload: alice-reynolds

Post on 01-Jan-2016

217 views

Category:

Documents


0 download

TRANSCRIPT

Status of procurement of Module Assembly Machines

A. Di Mauro (CERN)5th ITS, MFT and O2 upgrade Asian workshop, Wuhan , 08.06.2015

MAM 2

Summary of financial aspects

Item Cost [Euro]

Development and set-up 226360

CERN prototype (baseline + probe card systems) 202208

Bari (baseline system) 161276

Liverpool (baseline system) 161276

Pusan (baseline + probe card system) 202208

Strasbourg (baseline system) 161276

Wuhan (baseline system) * 161276

Wuhan, 08/06/2015

Contract placed between CERN and IBS-PE (NL):1. Property of machines will remain to CERN for three years2. For EU countries: machines have to be first delivered to CERN for

custom formalities then to final sitesCost include transport, installation and commissioning, documentation and personnel training, 3 y warranty with preventive and corrective maintenance

* Machine for Wuhan ordered separately to simplify procedure (deadline: end of June)

MAM 3

Baseline MAM and purchase options

• The baseline machine will perform semi-automatic or fully automatic placement of chips with ± 5 mm accuracy wrt external markers and interconnection of FPC and chips via automatic soldering by laser of 200 mm Sn/Ag balls

• AOI based on hi-res camera with 1¨ sensor, 2048x2048 pixels, 10x objective, 1.1x1.1 mm field of view, focal depth 3.6 mm, image processing by Labview IMAQ package (expected sub-pixel resolution of 0.25 mm): chips dimensions, edge integrity, pads cleanness and Sn-Ag soldering ball presence in FPC vias

• Purchase options:– Probe card system for electrical chip testing (CERN and Pusan),

included in contract : 40932 Euro– Sn-Ag balls presence in solder ball transfer tool (SBTT): 9928 Euro;

not included for the moment but worth to be considered

Wuhan, 08/06/2015

MAM 4

The test performance specifications

Test ID

TPS-Design verification (1x)

Product verification (every series machine)

FAT-proto

SAT-proto

FAT-series

SAT-series

1 x x*

2 x x

3a x x

3b x

3d x

4a x x x x

4b x x x x

5 <-- 6 x x

6 x x**

FAT/SAT-a x x x x

FAT/SAT-b1 x x

FAT/SAT-b2 x x

FAT/SAT-c x x x x

Interface check x x

Wuhan, 08/06/2015

• #1: Gripper and pre-position chuck functionality

• #2: Robot repeatability • #3a: Vision system calibration• #3b: Accuracy and repeatability of

chips dimensions, AOI (detection of chips defects)

• #3d: Recognition of soldering grid holes, soldering balls and laser head alignment

• #4a: Vacuum system for chucks• #4b: Vacuum system for soldering

chamber• #5: Gripper and axis (± 5 mm 3s

accuracy)• #6: Probe card system• Factory Acceptance Test and

Site Acceptance Test: chip AOI, probe test (CERN and Pusan), HIC assembly, chip position, SW

MAM 5Wuhan, 08/06/2015

MAM preliminary layout

(tendering proposal picture, will be updated)

MAM 6

Machine concept

Wuhan, 08/06/2015

• Interface position for the chips tray• Intermediate position between the

tray and the HIC-assembly table: the “pre-position chuck”, where the chip is clamped by vacuum after take-over from the tray.On this chuck the positions of the markers are measured on a flat chip. The pre-position chuck is also used to clamp chips during electrical inspection with the probe card.

• The HIC-assembly table with the vacuum surface to clamp the chips. Reference markers on the HIC-assembly table (as close as possible to the chip markers)

• A chip handling system with a XY-guiding

• A position sensor (vision system) to acquire position data of the markers on chips/table and for chips AOI.

• A gripper for chip take-over by means of a vacuum pad, with actuation of the Z-direction and of the rotation up to 180o about the Z-axis (Rz).

• A laser system for soldering the FPC to the chips by means of soldering balls.

Last added feature: bar code reader• Trays and HICs (TBC) will have a 2D bar code identifier

(coded info TBD)• Chips from half wafer are stored in 24 slot trays,

position in tray (0-23) depends on position in wafer.• Chips will be identified by the tray S/N + position in

tray. The value is hard-coded upon first electrical test by burning fuses of chips.

MAM 7

TABLE OF CONTENTS

1 INTRODUCTION ..................................................................................................................... 4 1.1 REFERENCE DOCUMENTS ............................................................................................................................. 4 1.2 OPEN ISSUE LIST ............................................................................................................................................ 5 1.3 FUNCTIONAL ADDITIONS (CHANGE REQUESTS) ........................................................................................ 6

2 ACCURACY REQUIREMENTS ............................................................................................... 7 2.1 CHIP POSITIONING ACCURACY ..................................................................................................................... 7 2.2 CALIBRATION ACCURACY OF MARKERS ON HIC ASSEMBLY TABLE ..................................................... 7 2.3 CHIP DIMENSION MEASUREMENTS .............................................................................................................. 8 2.4 CHIP DEFECT DETECTION .............................................................................................................................. 8 2.5 LASER HEAD POSITIONING ACCURACY ...................................................................................................... 8 2.6 VACUUM ........................................................................................................................................................... 9 2.7 N2 PURGING ..................................................................................................................................................... 9

3 INTERFACE DEFINITIONS ................................................................................................... 10 3.1 ENVIRONMENTAL CONDITIONS, INPUTS/OUTPUTS ................................................................................. 10 3.2 NETWORK ACCESS ....................................................................................................................................... 11 3.3 SUPPLIES ....................................................................................................................................................... 11

3.3.1 Nitrogen supply ............................................................................................................................................ 11 3.3.1.1 Nitrogen plant supply .......................................................................................................................................... 11 3.3.1.2 Requirements of Nitrogen supply to HIC-assembly table and SBTT .................................................................. 12

3.3.2 Electrical supply ........................................................................................................................................... 12 3.3.3 Pressurized air supply .................................................................................................................................. 13 3.3.4 Exhaust ........................................................................................................................................................ 13

3.4 MATERIALS .................................................................................................................................................... 13 3.4.1 Chip characteristics ...................................................................................................................................... 13

3.4.1.1 Chip orientation ................................................................................................................................................... 14 3.4.1.2 Chips reference markers ...................................................................................................................................... 15 3.4.1.3 Chips serial number used during assembly sequence .......................................................................................... 16

3.4.2 HIC-assembly table ...................................................................................................................................... 16 3.4.2.1 General: geometrical features .............................................................................................................................. 16 3.4.2.2 External reference markers .................................................................................................................................. 17 3.4.2.3 Vacuum ............................................................................................................................................................... 18 3.4.2.4 Z-level reference marker surface ......................................................................................................................... 21 3.4.2.5 Z-level of top of vacuum lid ................................................................................................................................ 21 3.4.2.6 HIC assembly table support ................................................................................................................................. 21 3.4.2.7 Mechanical interfacing and area claim HIC-assembly table and vacuum lid ...................................................... 22 3.4.2.8 Volume conflicts ................................................................................................................................................. 23

3.4.3 FPC .............................................................................................................................................................. 24 3.4.4 Tray .............................................................................................................................................................. 24 3.4.5 Solder Ball Transfer Tool ............................................................................................................................. 26 3.4.6 Probe card handler ...................................................................................................................................... 27 3.4.7 Probe card control station ............................................................................................................................ 27

3.5 HUMAN-MACHINE INTERFACES .................................................................................................................. 27

4 UPDATED MACHINE CONCEPT .......................................................................................... 28 4.1 CHIP HANDLING ACCURACY ANALYSIS .................................................................................................... 29

Wuhan, 08/06/2015

Summary of main interfaces specification

Environmental conditions, network, supplies

Assembly table

Overview of specifications and interfaces

Author:

Project number:

Last update:

IBSPE222282015-05-26

Ergonomics issues

MAM 8

MAM preliminary footprint

Wuhan, 08/06/2015

Machine

1600

1100

Elec

cab

inet

600

800

Work table: HMI Machine

Probe card station

1000

800

100

1900

2700

Vacu

um p

ump

300100100

CHAIR

800

Preliminary weight: ~1400 kg

MAM 9

Lab requirementsNR Description Value Uni

tComment

1 Temperature range 20 ± 2 C2 Relative humidity 30-60 % Non-condensing3 Floor vibration level compliant with vibration criterion

C -

4 Heat in (to machine)

Machine should not be placed in vicinity of radiating heat sources

-  

Wuhan, 08/06/2015

[1] Colin G. Gordon, Generic criteria for vibration-sensitive equipment. http://www.colingordon.co/library-generic-vibration-criteria-for-vibration-sensitive-equipment

Laboratory features have to be measured and compared to suggested Vibration Criteria.If necessary decoupling platform will have to be installed.

MAM 10

Lab requirements

Wuhan, 08/06/2015

• Network accessRemote access to the HIC assembly machine is required for first line diagnosis. Furthermore data generated during HIC-assembly process must be stored on a server connected to the plant network

• PC OSInstallation of PC (OS, virus scanner, firewall) supplied by IBS done by institute? Issues with respect to remote access, update of OS (not automatic) and virus scanner, no automatic updates of machine software to be verified.

MAM 11

Lab requirements

Wuhan, 08/06/2015

• N2 supply

N2 is used for flushing soldering chamber and releasing soldering balls. In addition it could be used to keep clean FPC under gas prior to assembly. Pollution (dust, water, grease) will have a direct impact on soldering efficiency.Nitrogen-60 + silicon/grease-free SS pipes + 0.5 mm filter (e.g. Swagelok SS-6F-MM-05)

• Internal requirement: clean room of at least 100000 class

NR Description Value Unit Comment1 Pressure 2 bara2 Flow >1 l/min Non-condensing3 Quality TBD  4 Connection Pipe diam.: 10 mm -  both female and male connector

are delivered by the customer (being CERN/institutes)

MAM 12

Lab requirements

Wuhan, 08/06/2015

• Pressurised air supply

Filters for particles, oil and water to be installed

• ExhaustConnections: DN 16 ISO KF

NR Description Value Unit Comment1 Pressure 6 barg 7 bar, 80 nl/min

2 Flow > 10 l/min  3 Quality class 3.3.3 - Purity class 3.3.3 (A,B,C acc. ISO 8573.1)

Solid particles per m3:

1…5 micron: 500.5…1 micron: 10.000 Oil, including vapor: < 1 mg/m3

 Water content @ 7 bar:pressure dew point: < -20 ºC 

4 Connection Pipe diam.: 10 mm

-  both female and male connector are delivered by the customer (being CERN/institutes)

MAM 13

Lab requirements

Wuhan, 08/06/2015

• Electrical power

Filters for particles, oil and water to be installed

NR Description Value Unit Comment 1 Electrical

power3P+N+G - 3 phases +neutral + ground

2 Voltage 400 V tolerance ±10%3 Frequency 50 Hz ±0,1 Hz; TBD2 Current 16 AC  3 Mean power

consumption HIC assembly machine

TBD W Mean power consumption of machine to be confirmed by IBS

4 Peak power HIC assembly machine

TBD W

5 Connector male - 5 pins acc. to IEC 60309; HIC assembly machine side

MAM 14

Assembly table interfacing

• 3 different tables for IB, OB and MFT (module size: 1x9 chips, 2x7 chips 1x1-5 chips, respectively)

• 3 different approaches for FPC mounting and alignment

Wuhan, 08/06/2015

MAM 15

Assembly table interfacing

Wuhan, 08/06/2015

IB: Flex-frame with dowels to mount and align FPC

Cover with quartz window

Stave gluing vacuum chuck

Flex-frame

FPCChips (1x9)

Chips vacuum chuck

Base plate

MAM 16

Assembly table interfacing

Wuhan, 08/06/2015

IB

MAM 17

Assembly table interfacing

Wuhan, 08/06/2015

IB

MAM 18

Assembly table interfacing

Wuhan, 08/06/2015

IB

MAM 19

Assembly table interfacing

Wuhan, 08/06/2015

IB

Soldering grid

MAM 20

Assembly table interfacing

Wuhan, 08/06/2015

IB

MAM 21

Assembly table interfacing

Wuhan, 08/06/2015

IB

MAM 22

Assembly table interfacing

Wuhan, 08/06/2015

OB: mount and align FPC using dowels and ruby balls on vacuum chuck (removable frame to avoid interference with gripper while placing chips) – see V. Manzari’s talk

MAM 23

Assembly table interfacing

Wuhan, 08/06/2015

MFT: mount and align FPC using removable dowels on vacuum chuck (to avoid interference with gripper while placing chips) – see G. Martinez’s talk

MAM 24

Assembly table interfacing

Wuhan, 08/06/2015

Bottom interface plate common to all tables (IB, OB, MFT) to implement connections with vacuum/gas systems

MAM 25

Assembly table interfacing

Wuhan, 08/06/2015

MAM 26

Reference markers

• Chips are placed on vacuum chuck using external markers implemented on assembly table

• Request from IBS: to align to nominal position of pALPIDE3 chips markers, increase distance from 300 mm to 450.6 mm

Wuhan, 08/06/2015 100175,32

76,8

0

Ø200

300

150

50

200

300

1100

1100

300

50

HIC ASSEMBLY TABLE

LOCAL REFERENCE MARKER

CHIP MARKER

CHIP CLAMPING SURFACE

DIMENSIONS IN µm

FIELD OF VIEW 1,1x1,1 MM2

pALPIDE3 layout

MAM 27

Reference markers

Wuhan, 08/06/2015

• Test by mechanical drilling of 36 holes (0.25 mm diameter, 0.4 mm deep)

• Diameter: 261.9 ± 1.2 mm

• Position deviation from nominal: -1.8 ± 1.2 mm

• Accuracy OK for MAM, issue with light reflection from hole bottom, fill with black ink to enhance contrast

MAM 28

Ergonomics issues

Wuhan, 08/06/2015

• All manual tasks in standing position• Distance from assembly table crucial for delicate intervention like

placement of single balls or correction of ball placement faults

MAM 29

Ergonomics issues

Wuhan, 08/06/2015

• To ensure required accuracy the assembly table has to be as close as possible to linear actuator and drive

• Distance to assembly table ~ 305 mm (3x8 chips tray layout) seems reasonable

• Develop specific tool(s) for such interventions

MAM 30

Preliminary GUI: initialization

Wuhan, 08/06/2015

MAM 31

Preliminary GUI: select chips

Wuhan, 08/06/2015

MAM 32

Preliminary GUI: chip AOI

Wuhan, 08/06/2015

MAM 33

Preliminary GUI: select HIC position

Wuhan, 08/06/2015

MAM 34

Preliminary GUI: chip position check

Wuhan, 08/06/2015

MAM 35

Preliminary GUI: pad inspection

Wuhan, 08/06/2015

MAM 36

Preliminary GUI: ball placement inspection

Wuhan, 08/06/2015

MAM 37

Preliminary GUI: final position check

Wuhan, 08/06/2015

MAM 38

Integration of probe card system

• Finalization of specifications ~ completed (J-F Grosse-Oetringhous, Y. Kwon)

• Main features: – 2D (Y,Z dedicated axes) displacement– mechanical alignment along X– Budget for needle placement: pad position on pre-pos

chuck 6 mm + needles probe card position 28 mm + sliding of needles during overdrive 40 mm = 74 mm → no issues (even assuming contact pads diameter of 260 mm)

Wuhan, 08/06/2015

MAM 39

Integration of probe card system

• Budget for z-overdrive for electrical contact

50 mm overdrive at the edge of estimated budget Wuhan, 08/06/2015

description

value (mm)

Needle plane flatness

10

Card deflection

10

Card alignment ZRxRy

10

Z step 5

Chip thickness variation

2

Chuck flatness

5

Budget to contact all needles

42

MAM 40

Key milestones and deliverables

Wuhan, 08/06/2015

Schedule has been revised according to changes in chips (pALPIDE2 and 3), assembly table and probe-card availability

TASK Previous deadline New deadline

Delivery chips (pALPIDE2: 10 pad, 100 real) and trays proto for testing

Wk24 Wk25: 10 pad + 20 pALPIDE2; Wk35: 80 pALPIDE2

MS1.2: Design presentation and approval Wk25 (19/06/2015) 26/06/2015 (TBC)

Delivery probe card, PC and SW Wk25 Wk32 * (Wk40 pALPIDE3)

Delivery HIC assembly tables Wk32 (07/08/3015) ~ok for IB, MFT, TBC for OB

Delivery chips in tray (pALPIDE3 + final trays)

Wk32 Wk38

MS1.4 prototype FAT and approval Wk42 (16/10/2015) TBC by IBS

MS1.5 prototype SAT and approval Wk44 (30/10/2015) TBC by IBS

All other machines will be delivered in the various sites starting 29 weeks after prototype SAT, every 2 weeks (presumably between June and September 2016)