stanford microfluidics lab

48
50 µm 1 3 2 Stanford Stanford Microfluidics Microfluidics Lab Lab Activities: Activities: Miniature Bioanalytical Systems Capillary zone electrophoresis Capillary isoelectric focusing CE Binding Assays Research Examples: Research Examples: Juan G. Santiago Stanford Microfluidics Lab Stanford University microfluidics.stanford.edu Microflow Devices Micromixers Electroosmotic pumps Sample preconcentration On-chip 2D assays Applications Drug discovery Genetic studies Proteomics BW detection Electronics cooling Optimized Geometries: Micromixers: Diagnostics On On - - chip 2D Assay: chip 2D Assay: CIEF and CZE CIEF and CZE simulation experiment simulation experiment Optimized Injections: 1 µm

Upload: others

Post on 15-Oct-2021

15 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Stanford Microfluidics Lab

50 µm

1

32

Stanford Stanford MicrofluidicsMicrofluidics LabLab

Activities:Activities:Miniature Bioanalytical Systems•Capillary zone electrophoresis•Capillary isoelectric focusing•CE Binding Assays

Research Examples:Research Examples:Juan G. Santiago Stanford Microfluidics LabStanford Universitymicrofluidics.stanford.edu

Microflow Devices•Micromixers•Electroosmotic pumps•Sample preconcentration•On-chip 2D assays

Applications•Drug discovery•Genetic studies•Proteomics•BW detection•Electronics cooling

Optimized Geometries:

Micromixers:

Diagnostics

OnOn--chip 2D Assay: chip 2D Assay: CIEF and CZECIEF and CZE

simulation experiment

simulation experiment

Optimized Injections:

1 µm

Page 2: Stanford Microfluidics Lab

10 µm10 µm

Electrokinetics Microfluidics at Extreme Scales

Juan G. Santiago Stanford Microfluidics Laboratory

Mechanical Engineering DepartmentStanford University

Page 3: Stanford Microfluidics Lab

Outline(time, concentration, length)

• Introduction MicrofluidicsElectrokinetic (EK) flows

• Electrokinetic instabilities (time)Mechanism and modelTransition to chaos

• ITP (concentration)Sensitivity and practiceExtreme concentration scales

• Nanochannel electrophoresis (length)Small ion separationsDNA sample separation Near-Future Work

Page 4: Stanford Microfluidics Lab

Microfluidics• Applications

Point-of-care medical diagnosticsBio-weapon detectionPharmaceuticals/drug discoveryEnvironmental monitoring

• Challenges and AdvantagesReduced reagent useSpecificity, robustnessPortability vs. sensitivityIntegration and automationPotential for parallel analyses

www.nanogen.com

Image courtesy www.calipertech.com

0.7 cm

Page 5: Stanford Microfluidics Lab

0driftu∇ >i,1 ,2drift driftu u≠

Processes in microfluidics

Separation Stacking Hybridization Reaction

Page 6: Stanford Microfluidics Lab

Separation inuFluidics

,1 ,2drift driftu u≠

• diffusivity

• mobility

• valence

• affinity

• polarizability

• size/steric force

On-chip CE

Nanochannel electrophoresis

H-filter

Page 7: Stanford Microfluidics Lab

Electroosmotic flow

External Electric Field

u(y)

y

x Wall

Wall

adsorbed ion

y

ψ

shear plane

λD

ζ

• Zeta vs. chemistry?• EDL overlap?• Condensation?

Page 8: Stanford Microfluidics Lab

Electrohydrodynamics and Electrokinetics History

Gilbert, ~1580s

Of the attraction exerted by amber

Reuss, F.F. 1809. Memoires de ls Societe Imperial des Naturalistes de Moscow. 2:327.

Page 9: Stanford Microfluidics Lab

Electrokinetic Microfluidics

Pressure-driven Electrokinetic

Devasenathipathy S. and J. Santiago, Micro-and nano-scale diagnostics, Springer-Verlag, 2003

EOF

++

+ +

++

+ +

+

+ +

λd

λd

++

+

+

λd

Electrophoresis +

++

---

-

++ + +++ ++ ++ + +++ ++

Glass or fused-silica microchannel wall

Chargedouble-layer

Deprotonated silanol groups

+ -

100 um

100 um

• Electric control (no moving parts)

• Switching, valving• Low dispersion• Integrated w/ separation

techniques

Page 10: Stanford Microfluidics Lab

ElectrokineticInstabilities

Page 11: Stanford Microfluidics Lab

Complex electrokinetics• Sample preconcentration methods

Thermal gradient focusingField amplified sample stackingIsotachophoresis

• On-chip two-dimensional assays

• On-chip CE with unknown or poorly controlled sample chemistry

• On-chip mixing and buffer exchange

CE

dim

ensi

on (m

m)

1

2

3

4

5

6

∆x = 4IEF dimension (mm)

1

3

2

0

1 Signal (au)

Herr, A.E. et al. Analytical Chemistry, Vol. 75, No. 5, pp. 1180-1187, 2003

CA

W

B

D IEF/EOF

Page 12: Stanford Microfluidics Lab

Major Challenge in HeterogenousEK Systems: Instabilities

Unstable, fluctuating concentrations in high-conductivity-gradient case

50 µm 1 mm

100 µm

Flows at Intersections:

Particle visualization

100 µm

Axial interface:

Page 13: Stanford Microfluidics Lab

σL σH σL σH σL σH

ΕH

σL

σH

ΕL

EK Instability MechanismΕL

ΕH

- - - +++σL σH

σL σHσL

σH

σL

σH

σL

σH

σL

σH

Page 14: Stanford Microfluidics Lab

Electrokinetic Flow Instabilities• Generated by net charge in bulk

Velocity scale:

Controlling parameter:

• scales as • EOF coupling produces convective instab.• Multiple ion mobilities have severe impact

/ ~E E Cρ ε σ σ≅ ⋅∇ ∆ΕL ΕH- - - +++

σL

σHµε HEEU aL

EV =

00Lin, H. et al., Vol. 16, No. 6 Physics of Fluids, p.1922-1935, 2004. Chen, C.-H. et al., J. of Fluid Mechanics, 524, pp. 263 – 303, 2005.

2 20

, max

1eve

U d E dRaD D

ε γ σµ γ

∗ ∗−≡ = ∇

δdepth d

0 ( 1) /E Fε γ γδ−0C∆

Posner and Santiago, J. of Fluid Mechanics, pp. 1-42, 2006.

5 6~ 10 10− −−

21 ( )jj j

j jj j

D c cDt Pe Pe

χσ φ= ∇ + ∇⋅ ∇∑ ∑

ElectromigrationDiffusion

Oddy and Santiago, in press, Physics of Fluids, 2005.

Page 15: Stanford Microfluidics Lab

Electrokinetic instabilities

ExperimentModel

t = 0.0 st = 0.5 s

t = 1.5 st = 2.0 st = 2.5 st = 3.0 st = 4.0 st = 5.0 s

t = 1.0 s

Storey, B.D. et al. Physics of Fluids, Vol. 16, No. 6, p.1922-1935, 2004.Lin et al., submitted to J. Fluid Mechanics, 2005.

Page 16: Stanford Microfluidics Lab

f [1/sec]

Rae = 675

Rae = 800

Rae = 2,000

Rae = 2,700

Power spectraEKI in a cross intersection: Experiments

50 um

Page 17: Stanford Microfluidics Lab

Temporal Power Spectrum

f [1/sec]

Rae

Page 18: Stanford Microfluidics Lab

C2 C2

C1

Correlation plots

C1

Rae=675 Rae=800

Rae=2000 Rae=2600

Page 19: Stanford Microfluidics Lab

Isotachophoresis

Page 20: Stanford Microfluidics Lab

ITP History

•Kohlrausch: KRF function in 1897.

•Tiselius: Moving boudnary electrophoresis, 1930

•Longsworth: Performed moving boundary electrophoresis in 1939.

•Martin AJP: Displacement electrophoresis (also called ITP) in 1942 for cation.

•Everaerts and Martin: First to perform ITP in thin capillaries (200 to 500 micron) in 1963. Used HEC to suppress EOF.

Page 21: Stanford Microfluidics Lab

1998Highest ITP stackingRun-time: 6-10 minL = 53.5 cm

5500LE: 10 mM NaOH titrated with H3PO4, TE: 6.13 mMTHeACl titrated with H3PO4

NXX-066CapillaryUVITP

2000Run-time: 10-13 minL = 64 cm

20050 mM phosphoric acid with 20 % acetonitrile, DI water

1-naphthylamine, laudanosine

CapillaryUVFASI

1999Run-time: 15-17 minL = 25 cm

100075 mM phosphate, DI waterBromide, nitrate, bromate

CapillaryUVFASI

1999Run-time: 5-10 minL = 61 cm

3001 mM phosphoric acid, 40 mM potassium dihydrogenphosphate

Maleic, fumaricacids, bromide, nitrate

CapillaryUVLVSS

1996Run-time: 4-6 minL = 24.6 cm

100045 mM NaH2PO4 and 15 mM Na2HPO4, 60% v/v1-propanol

Dese, AminoCapillaryUVFASS

1992First LVSSRun-time: 6-10 minL d) = 65 cm

-100 mM MES and 100 mMhistidine, DI water

PTH-aspartic acid, PTH-glutamine acid

CapillaryUVLVSS

2005Run-time: 2 min500LE: 250 mM NaCl, TE: 95 mM TAPS, 73 mM TEA

FluoresceinMicrochipFluore-scence

ITP

2002Run-time: 1-2 min530LE: 25 mM imidazole, 20 mM HCl, TE: 160 mMimidazole, 40 mM HEPES

eTagsMicrochipFluore-scence

ITP

2003Narrow sample channelRun-time: 2 min

80175 mM Phosphate, DI water

Fluoresceindisodium salt

MicrochipFluore-scence

FASS

2003Five-channel geometry.Run-time: 1 min.

100HEPES (0.1 mM and 100 mM), NaCl (0.2 mM and 200 mM)

Fluorescein sodium salt

MicrochipFluore-scence

FASS

2001Six-channel geometryRun-time: 2 min

65Carbonate (200 μM and 32 mM)

FITC-arginineMicrochipFluore-scence

FASS

1995First on-chip FASS Run-time: 20 sec

13.8Sodium tetraborate (0.5 mM and 500 mM)

didansyl-lysineMicrochipFluore-scence

FASS

Ref.CommentsSEElectrolyteSampleMicrochip/ capillary

Detection ModeMethod

Page 22: Stanford Microfluidics Lab

Sensitivity in Capillary Electrophoresis (no stacking)

1.E-14

1.E-12

1.E-10

1.E-08

1.E-06

1.E-04

1.E-02

1E-23 1E-21 1E-19 1E-17 1E-15 1E-13 1E-11molar sensitivity (mol)

conc

entra

tion

(mol

/l)

electrochemical detection

fluorescence detection

UV absorbance detection

UV absorbance

mass spectrometricdetection

UV absorbance withZ-shaped flow cells

radiochemical detection

conductivity detectionwith ITP stacking

conductivity detection

amperometricdetection

indirect fluorescencedetectionend-column

electrochemical detection

thermoopticalabsorbance

Chen et al. (1996)

Belder et al. (2002)

Ocvirk et al. (1998)

Page 23: Stanford Microfluidics Lab

Leading Ion (LE)

Sample Ion

Trailing Ion (TE)

Counterion not shown

Order of mobility ν > ν > ν

Single Interface Isotachophoresis

• CharacteristicsSample zone grows with time.Stable concentration boundariesFinal Sample Concentration depends on Leading ion concentration

EE

Page 24: Stanford Microfluidics Lab

ITP(S-) Alexa fluor (1 µM)HEPES (5mM)(TE)

HEPES (5mM)NaCl (large excess) (LE)

• Concentration enhancement greater than γ

• Buffer selections allow for both ITP and FASS

• ITP-type stacking with CE separation

50 µmγ = 393

Page 25: Stanford Microfluidics Lab

50 µm

Stability under large disturbances

Stable over 1000+ diameters

Stable across flow geometries

5 mm

50 µm

Page 26: Stanford Microfluidics Lab

ITP Optimization• Surface Chemistry: Suppressed EOF to minimize

advective dispersions.• High gradients: High LE concentration and very low

initial sample concentration (100 fM vs. 1 M or 1015

ratio)• Flow control: Injection protocol has

High TE concentration (maximizes local electric Peclet number)Requires no manual buffer exchange step (fast ITP to CZE transition w/ minimal dispersion)Large effective sample widthLE introduced within TE region, not end of capillary (this reduces time to overtake ITP zone)

• Achieved 1E6 stacking in < 2 minutesJung, B., Bharadwaj, R., Santiago, J.G., in press, Analytical Chemistry, 2005.

Page 27: Stanford Microfluidics Lab

ITP and CE

50 µm0 1 2 3 4 5

x 10-4

0

200

400

600

800

1000

x (m)

Nor

mal

ized

Inte

nsity

γ = 393

(S-) Alexa fluor (1 µM)HEPES (5mM)(TE)

HEPES (5mM)NaCl (large excess) (LE)

Demonstrated >1e6-fold stacking on chipStacking achieved in less than 120 sec and < 1 cm

Page 28: Stanford Microfluidics Lab

CE Sensitivity revisited

10-26 10-24 10-22 10-20 10-18 10-16 10-14 10-12 10-10

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

molar sensitivity [mol]

conc

entra

tion

[mol

/l]

UV absorbancethermoopticalabsorbance

indirect fluorescence detection

end-column electrochemical detection

conductivity detection

amperometric detectionmass spectrometric detection

UV absorbance detection

electrochemical detection

fluorescence detection

radiochemical detection

conductivity detection with ITP stacking

On-chip fluorescence detection

On-chip electrochemical detection

ITP stacking + High sensitivity detection system

ITP stacking + Low sensitivity detection system

High sensitivity detection system

Page 29: Stanford Microfluidics Lab

72 73 74 75 76 77 78-5

0

5

10

15

20

25

30

time (sec)

CS (p

M)

ITP/CE: LIF high sensitivity detection• ITP stacking + High sensitivity CE detection system

Optimized LIF w/ 60x objective (NA = 0.9) objective and PMTBrief ITP stacking (~40s) followed by CE mode

• Sample: 100 aM alexa fluor 488 and bodipy

alexa fluor 488

bodipy1.6×1052.1×105CI15.9 pM21.4 pMCS,final

100 aM100 aMCS,initial

bodipyalexa fluor

103

Page 30: Stanford Microfluidics Lab

ITP SimulationsE = 500 V/cm

Buffer Counter-ion

Trailing

LeadingCollaboration with

Bijan Mohammadhi,Montpellier University, France

Lin, Storey, Santiago, submitted to Journal of Fluid Mechanics, 2006.Baldessari et al., under preparation, 2006

Page 31: Stanford Microfluidics Lab

ITP Simulations, cont.Modeling by H. Najm, B. Debussere of Sandia Natl. Labs

Page 32: Stanford Microfluidics Lab

Nanochannelelectrophoresis

Page 33: Stanford Microfluidics Lab

Prior Work

Separation of DNA Petersen/Alarie/Jacobson/ Ramsey

Molecular dynamics simulationsQiao/Aluru

Ion depletion Pu/Yun/Datta/Gangopadhyay/ Temkin/Liu

Transport and dispersion of neutral species Griffiths/Nilson, Dutta/Kotamurthi

Conductance measurements Stein/Kruithof/Dekker

Analytical studies of flow Burgeen/Nakache, Rice/Whitehead

ExperimentalTheoretical

No work on charged species transport

No work separations or ion dispersion dynamics

Page 34: Stanford Microfluidics Lab

• Nanofluidics Thick EDLEnables new functionality Method to determine both valence and mobility

Nanoscale Electrokinetics for small ions

Micro Nano

U(y)U(y)

Slower moving +2 ion Faster moving

+1 ion

h~10 µm

λd~20 nm h~100 nm

λd~20 nm

Ions moving at same speed

Eapplied

EEDL

+

− −+−

+

−+++

++

Page 35: Stanford Microfluidics Lab

Concentration Profiles

NEUTRAL

NEGATIVE

POSITIVE

50 nm

50 nm

Species is in quasi-steady transverse equilibrium

Valence = +2 Valence = +1 Valence = 0

( ( ) ) ( ) exp 1x S ccharged S S x

E z e y yu z FEG kT

ε ζ ψ ψ ψνµ ζ

⎛ ⎞− −⎛ ⎞= − −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

Page 36: Stanford Microfluidics Lab

Nanochannel Fabrication

3um

• Techniques:• E-beam Lith < 500 nm• Photolith > 500 nm• Dry Plasma Etching• Fusion Bonding

detectionarea

7mm

nanochannel

tick marks

Page 37: Stanford Microfluidics Lab

Species Transport

Page 38: Stanford Microfluidics Lab

Experimental Results

Pennathur and Santiago. “Electrokinetic transport in nanochannels: 1. Theory,” Vol. 77, No. 21, Analytical Chemistry, pp. 6772-6781, 2005. Pennathur and Santiago “Electrokinetic transport in nanochannels: 2. Experiments,” Vol. 77, No. 21, Analytical Chemistry, pp. 6782-6789, 2005.

Page 39: Stanford Microfluidics Lab

Oligonucleotide Separation• Length scales on same order

Nanochannel heightEDL thicknessDNA length

3 Length Scales:

λM

λD

L

Page 40: Stanford Microfluidics Lab

Microchannel DNA Separation

Fluorescein

DNA (1bp, 10bp, 25bp,

50bp, 100bp)

Conditions:• 10 mM Borate

Buffer• 1 nm EDL

thickness• DNA lengths: 1

- 34 nm• 25 mm separation

length

Page 41: Stanford Microfluidics Lab

Nanochannel DNA Separation

Fluorescein

DNAFluorescein DNAConditions:• 10 mM Borate

Buffer• 1 nm EDL

thickness• DNA lengths: 1

- 34 nm• 25 mm separation

length

Page 42: Stanford Microfluidics Lab

Nanochannel DNA Separation(10 mM λD= 3 nm in 100 nm channel)

Experiments:• 5 buffer

concentrations• 6 bp lengths • 3+ realizations

per exp.• ~135 exp.

Page 43: Stanford Microfluidics Lab

Nanochannel DNA Separation(1 mM λD= 10 nm in 100 nm channel)

Conditions:• 1 mM Borate

Buffer• 10 nm EDL

thickness• DNA lengths: 1

- 34 nm• 25 mm separation

length

Page 44: Stanford Microfluidics Lab

DNA separation in nanochannels

Small ion theory

Page 45: Stanford Microfluidics Lab

Oligonucleotide Separation• Length scales on same order

Nanochannel heightEDL thicknessDNA length

3 Length Scales:

λM

λD

L

• Interaction betweenTransverse electromigrationNon-uniform velocity field/diffusion couplingSteric interactions with wallPolarization @105V/cm

Page 46: Stanford Microfluidics Lab

• 3D electrokinetic instability modeling• ITP modeling

Analytical models for shock width and concentration increaseNumerical models including

• N species• Reaction kinetics of buffer• pH gradients

• DNA separation in nanochannelsSingle bp resolution DNA separation in nanochannels

• Roughly 1/3rd of human genome costs was reagents• Ultra high sensitivity

Molecular dynamics modeling (w/ Eric Shaqfeh)• Combine ITP and nanochannel electrophoresis

Near-Future Work

Page 47: Stanford Microfluidics Lab

AcknowledgementsMicrofluidics Lab Members:• EK instabilities and micromixing

Dr. Michael Oddy*Dr. Chuan-Hua Chen *

Dr. Hao Lin *Dr. Jonathan Posner *David Hertzog *

• Sample pre-concentrationRajiv Bharadwaj *Byoungsok JungDavid HuberAlexandre Persat

• Particle tracking & controlKlint Rose(Shankar Devasenathipathy) *

• On-chip CE and nanochannel workTarun KhuranaDr. Fabio BaldessariSumita Pennathur *Alexandre PersatJulien Sellier

Funding Sources:• NSF PECASE/CAREER Award• NIH/NIHLB Proteomics Grant

Page 48: Stanford Microfluidics Lab