staircase codes - ieeesites.ieee.org/benelux-comvt/files/2013/04/kschischangi.pdf · staircase...

71
Staircase Codes Error-correction for High-Speed Fiber-Optic Channels Frank R. Kschischang Dept. of Electrical & Computer Engineering University of Toronto Talk at Delft University of Technology, Delft, The Netherlands April 23rd, 2013 1

Upload: dangdung

Post on 30-Apr-2018

252 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Staircase CodesError-correction for High-Speed Fiber-Optic Channels

Frank R. KschischangDept. of Electrical & Computer Engineering

University of Toronto

Talk at Delft University of Technology, Delft,The NetherlandsApril 23rd, 2013

1

Page 2: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Acknowledgements

Joint work with:

Benjamin P. SmithUniversity of TorontoAndrew Hunt and John LodgeCommunications Research Centre, OttawaArash FarhoodCortina Systems Inc., Sunnyvale/Ottawa

Thank you to Drs. Nader Alagha and Fernando Kuipers for theinvitation!

2

Page 3: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Fiber-Optic Communication Systems

Physics: Enabling Technologies

1 Low-loss optical fiber (∼54 THz bandwidth)

2 Optical amplifiers

3 Laser transmitters and Mach-Zehnder modulators

3

Page 4: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Fiber-Optic Communication Systems: Challenges

Reliability

Pe < 10−15

Speed

100 Gb/s per-channel data rates

Non-Linearity

The fiber-optic channel is non-linear in the input power

4

Page 5: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Fiber-Optic Communication Systems: Challenges

Reliability

Pe < 10−15

Speed

100 Gb/s per-channel data rates

Non-Linearity

The fiber-optic channel is non-linear in the input power

4

Page 6: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Fiber-Optic Communication Systems: Challenges

Reliability

Pe < 10−15

Speed

100 Gb/s per-channel data rates

Non-Linearity

The fiber-optic channel is non-linear in the input power

4

Page 7: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Outline of Talk

Part IBinary Error-Correcting Codes for High-SpeedCommunications

Syndrome-based interative decoding

Performance optimization for product-like codes

Staircase codes

FPGA-based simulation results

Analytical error-floor predictions

Part IISpectrally-Efficient Fiber-Optic Communications

Memoryless capacity estimates, with and without digitalbackpropagation

Pragmatic coded modulation via staircase codes

5

Page 8: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Part IBinary Error-Correcting Codes for High-SpeedCommunications

most reliable least reliable

Π Π Π

6

Page 9: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Outline

This part is about . . .

FEC for the binary symmetric channel (BSC)

After optical (and/or) electrical compensation, suitable asforward-error-correction (FEC) for 100Gb/s PD-QPSKsystems without soft information

Outline

1 Existing solutions (G.975, G.975.1)

2 Implementation considerations

3 Staircase codes

4 Generalizations and conclusions

7

Page 10: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Outline

This part is about . . .

FEC for the binary symmetric channel (BSC)

After optical (and/or) electrical compensation, suitable asforward-error-correction (FEC) for 100Gb/s PD-QPSKsystems without soft information

Outline

1 Existing solutions (G.975, G.975.1)

2 Implementation considerations

3 Staircase codes

4 Generalizations and conclusions

7

Page 11: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Existing Solutions

8

Page 12: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Performance Measure

Net Coding Gain

Given a particular BER, we can obtain the corresponding Q via

Q =√

2erfc−1 (2 · BER) .

The coding gain (CG) of an error-correcting code is defined as

CG (in dB) = 20 log10(Qout/Qin),

and the Net Coding Gain (NCG) is

NCG (in dB) = CG + 10 log10(R),

where R is the rate of the code.

9

Page 13: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

ITU-T G.975 (1996)

Reed-Solomon (255,239) Code

Coding Symbols arebytes

Depth-16 interleavingcorrects (some) bursts upto 1024 bits

Coding Gain = 6.1 dB

Net Coding Gain = 5.8dB

10-15

10-12

10-9

10-6

10-3

0 5 10 15 20

P[e

]20 log10(Q) (dB)

BS

C L

imit

(C=

239/

255)

2-P

SK

Lim

it (C

=23

9/25

5)

Sha

nnon

Lim

it (C

=23

9/25

5)

6.1 dB

RS

(255,239)

uncoded 2-PS

K

Constraint: Rate and framing structure fixed for future generations

10

Page 14: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

ITU-T G.975.1 (2004)

Concatenated Codes

Product-like codes with algebraic component codes

C C

Π

Information Symbols

kana

kb

nb

Column Parity

Row Parity

Parity on Parity

11

Page 15: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

ITU-T G.975.1 (2004)

Code NCG NotesI.2 8.88 dB @ 10−15 Outer RS, Inner CSOCI.3 8.99 dB @ 10−15 Outer BCH (t = 3), Inner BCH (t = 10)I.4 8.67 dB @ 10−15 Outer RS, Inner BCH (t = 8)I.5 8.5 dB @ 10−15 Outer RS, Inner Product (t = 1)I.6 8.02 dB @ 10−15 LDPCI.7 8.09 dB @ 10−15 Outer BCH (t = 4), Inner BCH (t = 11)I.8 8.00 dB @ 10−15 RS(2720,2550)I.9 8.63 dB @ 7 · 10−14 ∼Product BCH (t = 3), Erasure Dec?

12

Page 16: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Objectives

Increased Net Coding Gain

NCG ⇒ Shannon Limit of BSC (9.97 dB at 10−15)

Error Floor

Error floor 10−15

Lower error floor ⇒ ‘Insurance’ in presence of correlated errors

Block Length

n ≈ 2 · 106 or less

Low Implementation Complexity

Dataflow considerations at 100Gb/s

13

Page 17: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Implementation Considerations

14

Page 18: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Hardware Considerations: Product vs. LDPC

Product Code

C C

ΠAlgebraic component codes

Syndrome-based decoding

LDPC Code

Π SPC component codes

Belief propagation decoding

15

Page 19: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Syndromes

The codewords of a linear (n, k) block code C are the solutions ofa homogeneous system of simultaneous linear equations, i.e.,

v ∈ C ⇔ vH> = 0.

Let v ∈ C be sent and let r be received. Define the error pattern eas e = r − v so that

r = v + e.

Then the syndrome corresponding to r is

s = rH> = (v + e)H> = vH>︸︷︷︸0

+eH> = eH>.

An error-correcting decoder must infer the most likely error patternfrom the syndrome.

16

Page 20: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Syndrome-based Decoding of Product Codes

Decoding an (n, k) component codeword

n received symbols ⇒ n − k symbol syndrome

R = 239/255, n ≈ 1000, n − k ≈ 32

For high-rate codes, syndromes provide compression

∼ 3 decodings/component

≤ 96 bits/decoding

∼ 21000 components/symbol

⇒ 0.768 bits/symbol

AlgebraicDecoderSyndrome

Error Locators UpdateSyndromes

Total Dataflow

At 100Gb/s, 76.8 Gb/s internal dataflow

17

Page 21: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

LDPC Belief Propagation Decoding

∼ 15 iterations

2 messages/iteration·edge

∼ 5 bits/message

∼ 3 edges/symbol

⇒ 450 bits/symbol

Π

Total Dataflow

At 100Gb/s, 45Tb/s internal dataflow!

18

Page 22: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Dataflow Comparison

76.8 Gb/s 45 Tb/s

2–3 orders of magnitude (huge implementation challenge for softmessage-passing LDPC decoders).

19

Page 23: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Our Solution

20

Page 24: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Coding with Algebraic Component Codes

C1 C2 C3 Cl

Π

Graph Optimization

Degrees of Freedom

Mixture of component codes (e.g., Hamming, BCH)

Multi-edge-type structures

21

Page 25: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Staircase Codes: Construction

Consider a sequence of m-by-m matrices Bi

B−1 B0 B1 B2

m

m

and a linear, systematic, (n = 2m, k = 2m − r) component code C

2m− r r

ParityInformation

Encoding Rule

∀i ≥ 0, all rows of[BTi−1Bi

]are codewords in C

22

Page 26: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Staircase Codes: Construction

B−1

BT0 B1

BT2 B3

23

Page 27: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Staircase Codes: Construction

B−1

BT0 B1

BT2 B3

23

Page 28: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Staircase Codes: Construction

B−1

BT0 B1

BT2 B3

23

Page 29: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Staircase Codes: Construction

B−1

BT0 B1

BT2 B3

23

Page 30: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Staircase Codes: Construction

B−1

BT0 B1

BT2 B3

23

Page 31: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Staircase Codes: Construction

B−1

BT0

BT2 B3

B1

23

Page 32: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Staircase Codes: Construction

B−1

BT0

BT2 B3

B1

23

Page 33: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Staircase Codes: Properties

Hybridization of recursive convolution coding and blockcoding

Recurrent Codes of Wyner-Ash (1963)

Bi

AlgebraicEncoder

Delay

Bi−1

Infoi

Rate : R = 1− r/m

Variable-latency (sliding-window) decoder

Bi Bi+1 Bi+2 Bi+3Bi−1 Bi+4

24

Page 34: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Staircase Codes: Properties

BTi Bi+1

BTi+2 Bi+3

The multiplicity of (minimal) stalls of size (t + 1)× (t + 1) is

K =

(m

t + 1

)·t+1∑j=1

(m

j

)(m

t + 1− j

),

and the corresponding contribution to the error floor, fortransmission over a binary symmetric channel with crossoverprobability p, is

BERfloor = K · (t + 1)2

m2· p(t+1)2 .

25

Page 35: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

General Stall Patterns

BTi Bi+1

BTi+2 Bi+3

(5,5)-stall

K L Contribution

4 4 3.55× 10−21

4 5 7.81× 10−28

5 5 2.54× 10−22

5 6 2.21× 10−28

6 6 1.40× 10−23

6 7 1.49× 10−29

7 7 8.53× 10−25

7 8 1.83× 10−32

Contribution of (K , L)-stalls,p = 4.8× 10−3.

26

Page 36: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Multi-Edge-Type Representation

ΠB

mm

ΠB ΠB

most reliable least reliable

Bi−1 Bi Bi+1 Bi+2 Bi+3

C C

Π

27

Page 37: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Movie Time

Bi Bi+1 Bi+2 Bi+3Bi−1 Bi+4

28

Page 38: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Braided Block Codes: Construction

P

P

I

Felstrom, Truhachev, Lentmaier, Zigangirov, “Braided BlockCodes,” IEEE Trans. on Info. Theory, 2009.

29

Page 39: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Braided Block Codes: Construction

I P

P

P

I

P

Felstrom, Truhachev, Lentmaier, Zigangirov, “Braided BlockCodes,” IEEE Trans. on Info. Theory, 2009.

29

Page 40: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Braided Block Codes: Construction

I P

P

P

I

P I

P

P

Felstrom, Truhachev, Lentmaier, Zigangirov, “Braided BlockCodes,” IEEE Trans. on Info. Theory, 2009.

29

Page 41: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Braided Block Codes: Performance

Our experiments show:

For high-rate (239/255), braided block codes yieldapproximately the same performance as the correspondingproduct code

“Multi-edge gain” diminished, since fewer bits (previous parityonly) serve as “clean”

But:

Spatially-coupled generalized LDPC ensembles with iterativehard-decision decoding can approach capacity at high rates:Y.-Y. Jian, H. Pfister, K. Narayanan, “Approaching Capacityat High Rates with Iterative Hard-decision Decoding,” Proc.IEEE Int. Symp. Inform. Theory, July, 2012.

30

Page 42: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

FPGA-based Simulation Results

Code Parameters

m = 510, r = 32, triple-error-correcting BCH component code

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-4

10-3

10-2

BERout

BERin

20 log10(Q) (dB)7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0

BS

C L

imit (C

=2

39

/25

5)

RS(255,239)

Sta

ircase

I.3 I.4 I.5

I.9G.975.1 codes

31

Page 43: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Part IISpectrally-Efficient Fiber-OpticCommunications

most reliable least reliable

Π Π Π

32

Page 44: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

The Kerr Effect

Kerr electro-optic effect (DC Kerreffect)

An effect discovered by John Kerr in1875

It produces a change of refractive indexin the direction parallel to theexternally applied electric field

The change of index is proportional tothe square of the magnitude of theexternal field

33

Page 45: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

The Kerr Effect in Optical Fibers

Optical Kerr Effect (or AC Kerr effect)

No externally applied electric field is necessary

The signal light itself produces the electric field that changesthe index of refraction of the material (fused silica)

The change in index in turn changes the signal field

The change in index of refraction is proportional to the squareof the field magnitude

P

f

Optical

Fiber

WDM channel Channel of interest

Changes index

of refraction

Generates

distortion

A signal in a certain frequency band can distort the signal in adifferent frequency band without spectral overlap

34

Page 46: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Nonlinear Effects in Fibers

inter-channel

signal-noise signal-signal

WDM nonlinearities

XPM FWM

NL phase noise

XPM-induced

NL phase noise

intra-channel

signal-noise signal-signal

NL phase noise parametric

amplification

SPM-induced

NL phase noise

SPM

isolated pulse

SPMIXPM IFWM

MI

NL=nonlinear; SPM=self-phase modulation; MI=modulation instability; XPM=cross-phase modulation; IXPM=intrachannel XPM

FWM=four-wave mixing; IFWM=intrachannel FWM; WDM=wavelength division multiplexing

35

Page 47: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

System Model

coherent fiber-optic communication system

standard-single-mode fiber

ideal distributed Raman amplification

But, could also consider

systems with inline dispersion-compensating fiber

lumped amplificationN spans

A(0, t) A(L, t)

SSMFTX RXAMP

36

Page 48: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Generalized Nonlinear Schrodinger Equation

A(z , t) is the complex baseband representation of the signal(the full field, representing co-propagating DWDM signalsTransmitter sends A(0, t)Receiver gets A(L, t), where L is the total system length

Evolution of A(z , t)

The generalized non-linear Schrodinger (GNLS) equation expressesthe evolution of A(z , t):

∂A

∂z+

jβ22

∂2A

∂t2− jγ|A|2A = n(z , t).

No loss term (since ideal distributed Raman amplification isassumed).

n(z , t) is a circularly symmetric complex Gaussian noise processwith autocorrelation

E[n(z , t)n?(z ′, t ′)

]= αhνsKT δ(z − z ′, t − t ′),

where h is Planck’s constant, νs is the optical frequency, and KT isthe phonon occupancy factor.

37

Page 49: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

System Parameters

Second-order dispersion β2 -21.668 ps2/kmLoss α 4.605× 10−5 m−1

Nonlinear coefficient γ 1.27 W−1km−1

Center carrier frequency νs 193.41 THzPhonon occupancy factor KT 1.13

38

Page 50: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Solving the GNLS Equation

Throughout propagation over an optical fiber, stochastic effects(noise), linear effects (dispersion) and nonlinear effects (Kerrnonlinearity) interact.

Noise Nonlinearity

Dispersion

Even in the absence of noise, solving the GNLS equation requiresnumerical techniques.

39

Page 51: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Split-Step Fourier Method

divide fiber length into short segments

consider each segment as the concatenation of (separable)nonlinear and linear transforms

for distributed amplification, an additive noise is added afterthe linear step.

A(z0, t) −→ A(z0 + h, t) step size h

40

Page 52: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Nonlinear Step

In the absence of linear effects, the GNLS equation has the form

∂A

∂z= jγ|A|2A,

with solution

A(z0 + h, t) = A(z0, t) exp(jγ|A(z0, t)|2h).

41

Page 53: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Linear Step

We now use the previous solution as the input to the the linearstep, i.e., let

A(z0, t) = A(z0, t) exp(jγ|A(z0, t)|2h)

be the input to the linear step. The linear form of the GNLSequation is

∂A

∂z= −α

2A− jβ2

2

∂2A

∂t2,

which can be efficiently solved in the frequency domain. Defining

A(z , t) =1

∫ ∞−∞

A(z , ω) exp(jωt)dω,

it can be shown that

A(z0 + h, ω) = A(z0, ω) exp

((jβ22ω2 − α

2

)h

).

42

Page 54: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Split-Step Propagator

Putting this together, we have

A(z0 + h, t) = F−1FA(z0, t)

exp

((jβ22ω2 − α

2

)h

),

where F is the Fourier transform operator, and where

A(z0, t) = A(z0, t) exp(jγ|A(z0, t)|2h)

43

Page 55: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Digital Backpropagation

Digital backpropagation = split-step Fourier method, using anegative step-size h, performed at the receiver

Full compensation (involving multiple WDM channels)generally impossible, even in absence of noise (due towavelength routing)

Noise is neglected (cf. zero-forcing equalizer)

Single-channel backpropagation typically performed, afterextraction of desired channel using a filter

44

Page 56: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Capacity Estimation

See: R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, B.Goebel, “Capacity limits of optical fiber networks,” J. Lightw.Technol., vol. 28, pp. 662–701, Sept./Oct. 2010.

System Model

DSP1

2Ts− 1

2Ts

ChannelTX

A(L, t)t = kTs φk,0

LPF

A(0, t)

45

Page 57: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Transmitted Signal

Channel l signal:

Xl(t) =∞∑

k=−∞

φk,l√Ts

sinc

(t − kTs

Ts

),

where sinc(θ) = sinπθπθ .

φk,l are elements of a discrete-amplitude continuous-phase inputconstellation M, i.e, for N rings, θ ∈ [0, 2π), and r ≥ 0,

M = m · r exp (jθ) |m ∈ 1, 2, . . . ,N .

Each ring is assumed equiprobable, and for a given ring, the phasedistribution is uniform.

46

Page 58: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Multi-channel systems

In the general case of a multi-channel system having 2B + 1channels with a channel spacing 1/Ts Hz, the input to the fiberhas the form

A(z = 0, t) =∞∑

k=−∞

B∑l=−B

φk,l√Ts

sinc

(t − kTs

Ts

)e j2πlt/Ts .

47

Page 59: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Towards a Probability Model

Back-rotation:

φk,l = φk,l exp (−j(ΦXPM + ∠φk,l)) ,

where ΦXPM is a constant (input-independent) phase rotationcontributed by cross-phase modulation (XPM).

−8 −6 −4 −2 0 2 4 6 8

x 10−3

−8

−6

−4

−2

0

2

4

6

8x 10

−3

Imag

(m

W1/

2 )

Real (mW1/2)

−8 −6 −4 −2 0 2 4 6 8

x 10−3

−8

−6

−4

−2

0

2

4

6

8x 10

−3

Imag

(m

W1/

2 )

Real (mW1/2)

48

Page 60: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Gaussian fitting

For each i and a fixed l (the channel of interest), we calculate themean µi and covariance matrix Ωi (of the real and imaginarycomponents) of those φk,l corresponding to the i-th ring, andmodel the distribution of those φk,l by N (µi ,Ωi ).

From the rotational invariance of the channel, the channel ismodeled as

f (y |x = r · i exp (jφ)) ∼ N (µi exp (jφ) ,Ωi ),

where the (constant) phase rotation due to ΦXPM is ignored, sinceit can be canceled in the receiver.

49

Page 61: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Capacity Estimation

The mutual information of the (assumed) memoryless channel is

I (X ;Y ) =

∫ ∫f (x , y) log2

f (y |x)

f (y)dx dy ,

where f (x) represents the input distribution on M withequiprobable rings and a uniform phase distribution, which providesan estimate of the capacity of an optically-routed fiber-opticcommunication system.

50

Page 62: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Signaling Parameters

Baud rate 1/Ts 100 GHzChannel bandwidth W 101 GHzNumber of rings N 64Number of channels 2B + 1 = 5

51

Page 63: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Achievable Rates from Memoryless CapacityEstimate

10 15 20 25 30 35 400

1

2

3

4

5

6

7

8

9

10

SNR (dB)

Spectral Efficiency (bits/s/Hz)

L=2000 km, Eq. only L=2000 km, BPL=1000 km, Eq. onlyL=1000 km, BPL=500 km, Eq. onlyL=500 km, BPShannon Limit (AWGN)

(BP adds 0.55 to 0.75 bits/s/Hz relative to EQ) 52

Page 64: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Pragmatic Coded Modulation via Staircase Codes

Approach: BICM + shaping, modulation 2K+2-QAM,hard-decisions

K bits/sym

Modulator

Channel

Dem

odulator

Viterbi

Decoder

Binary FEC

Decoder

Binary FEC

Encoder

HTU

2 bits/sym

X Y

K · Rbits/sym

1bit/sym

[H−1U ]T

1bit/sym

K · Rbits/sym

Syndrome-former matrix

HTU = [1 + D + D2, 1 + D2]T .

53

Page 65: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Achievable Rates

Pin IPFiber System K pavg (dBm) (bits/s/Hz)

L = 500 km, EQ 8 1.61× 10−2 −6 8.05L = 500 km, BP 8 3.52× 10−3 −4 8.73L = 1000 km, EQ 6 3.88× 10−3 −6 6.78L = 1000 km, BP 8 2.22× 10−2 −4 7.77L = 2000 km, EQ 6 2.52× 10−2 −6 5.98L = 2000 km, BP 6 5.16× 10−3 −4 6.72

(These achieve within 0.4 to 0.6 bits/s/Hz of estimated channelcapacity.)

54

Page 66: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Staircase code design

First, design a collection of staircase codes of various (appropriate)rates:

10−3 10−2 10−110−14

10−12

10−10

10−8

10−6

10−4

10−2

BERin

BERout

R=77/95R=239/255R=3/4R=11/15R=146/157

55

Page 67: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Coded Modulation Performance

Then, simulate their performance on the actual channel:

10 15 20 25 30 35 400

1

2

3

4

5

6

7

8

9

10

SNR (dB)

Spectral Efficiency (bits/s/Hz)

L=2000 km, Eq. only L=2000 km, BPL=1000 km, Eq. onlyL=1000 km, BPL=500 km, Eq. onlyL=500 km, BPShannon Limit (AWGN)

Performance to within 0.62 bits of estimated capacity is achieved!(Much of the gap is due to quantization, i.e., hard-decisions).

56

Page 68: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Code Parameters

Spec. Eff.Fiber System m t R (bits/s/Hz)

L = 500 km, EQ 190 4 77/95 7.48L = 500 km, BP 255 3 239/255 8.50L = 1000 km, EQ 255 3 239/255 6.62L = 1000 km, BP 144 4 3/4 7.00L = 2000 km, EQ 120 4 11/15 5.40L = 2000 km, BP 628 4 146/157 6.58

57

Page 69: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Conclusions

At rate 239/255, staircase codes provide best-in-class 9.41 dBNCG

For high-spectral efficiency modulation, a pragmatic codingapproach using staircase codes yields performance with 0.6bits/s/Hz (at L = 2000 km) with practical decodingcomplexity

58

Page 70: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Future Directions

Can these capacity estimates be improved?

Can soft-decisions be incorporated while retaining lowcomplexity?

Are there (well-principled) alternatives to digitalbackpropagation?

Thank you for your attention!

59

Page 71: Staircase Codes - IEEEsites.ieee.org/benelux-comvt/files/2013/04/KschischangI.pdf · Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent

Future Directions

Can these capacity estimates be improved?

Can soft-decisions be incorporated while retaining lowcomplexity?

Are there (well-principled) alternatives to digitalbackpropagation?

Thank you for your attention!

59