stable spatial gradients of cytoskeleton assembly regulators

34
Stable spatial gradients of cytoskeleton assembly regulators David Odde University of Minnesota

Upload: benny

Post on 14-Jan-2016

38 views

Category:

Documents


3 download

DESCRIPTION

Stable spatial gradients of cytoskeleton assembly regulators. David Odde University of Minnesota. Microtubule Structure. “Catastrophe”. Length (µm). “Rescue”. Time (minutes). Microtubule “Dynamic Instability” (DI). k c. V g. V s. k r. see VanBuren et al., PNAS USA (2002). - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Stable spatial gradients of cytoskeleton assembly regulators

Stable spatial gradients of cytoskeleton assembly regulators

David Odde

University of Minnesota

Page 2: Stable spatial gradients of cytoskeleton assembly regulators

Microtubule Structure

Page 3: Stable spatial gradients of cytoskeleton assembly regulators

Leng

th (

µm

)

Time (minutes)

“Catastrophe”

“Rescue”

Microtubule “Dynamic Instability” (DI)

Vg

Vs

kc

kr

see VanBuren et al., PNAS USA (2002)

Page 4: Stable spatial gradients of cytoskeleton assembly regulators

Microtubules in Mitosis

Page 5: Stable spatial gradients of cytoskeleton assembly regulators

Mitotic Spindle

spindle pole body

chromosome

kinetochore

kinetochoremicrotubule

spindle pole body

1.5 µmIn yeast:

~40 MTs10-20 µm

In animal cells:

~1000 MTs

Interpolarmicrotubule

Page 6: Stable spatial gradients of cytoskeleton assembly regulators

Hypothesis

Dynamic instability alone is sufficient to explain the observed MT length distribution in the yeast mitotic spindle

Page 7: Stable spatial gradients of cytoskeleton assembly regulators

Results: Cse4p-GFP Distribution

Experimentally Observed

Theoretically Predicted

?

2 µm

Page 8: Stable spatial gradients of cytoskeleton assembly regulators

Leng

th (

µm

)

Time (minutes)

“Catastrophe”

“Rescue”

Microtubule “Dynamic Instability” (DI)

Vg

Vs

kc

kr

Page 9: Stable spatial gradients of cytoskeleton assembly regulators

Point Spread Function (PSF)

• A point source of light is spread via diffraction through a circular aperture

• Modeling needs to account for PSF

-0.4-0.20+0.2+0.4 μm

Page 10: Stable spatial gradients of cytoskeleton assembly regulators

Simulated Image Obtainedby Convolution of PSF and GWN

with Original Distribution

Original FluorophoreDistribution

Model-Convolution

Page 11: Stable spatial gradients of cytoskeleton assembly regulators

Spindle Geometry

Page 12: Stable spatial gradients of cytoskeleton assembly regulators

Results: Distribution of Cse4-GFP fluorescence

Experimentally Observed

Theoretically Predicted

Page 13: Stable spatial gradients of cytoskeleton assembly regulators

Results: Distribution of Cse4-GFP fluorescence

x=0 x=L

QS QSSE

Page 14: Stable spatial gradients of cytoskeleton assembly regulators

Results: DI Only Model

1000 nm

Page 15: Stable spatial gradients of cytoskeleton assembly regulators

Results: DI Only Model

Page 16: Stable spatial gradients of cytoskeleton assembly regulators

Alternative Models

Page 17: Stable spatial gradients of cytoskeleton assembly regulators

Microtubule Chemotaxis

ImmobileKinase

MobilePhosphatase

Microtubule

A: Phosphorylated Protein Stabilizes MTsB: Unphosphorylated Protein Destabilizes MTs

Concentration

Position

MT Attractant

MT Repellant

X=0 X=L

k*Surface reaction B-->A

kHomogeneous reaction A-->B

Page 18: Stable spatial gradients of cytoskeleton assembly regulators

Microtubule Chemotaxis:Op18

ImmobilePlx1

MobilePP2A

Microtubule

A: Op18-hi-PB: Op18-low-P Destabilizes MTs

Concentration

Position

Op18-hi-P

Op18-low-P

Chromatin

Page 19: Stable spatial gradients of cytoskeleton assembly regulators

Microtubule Chemotaxis: RanGTP

ImmobileRCC1

MobileRanGAP

Microtubule

A: RanGTP Stabilizes MTsB: RanGDP

Concentration

Position

RanGTP

RanGDP

Chromatin

Page 20: Stable spatial gradients of cytoskeleton assembly regulators

Model for Chemotactic Gradients of Phosphoprotein State

cAt

D 2cAx2

kcA Fick’s Second Law with First-Order HomogeneousReaction (A->B)

DcAx x0

k *cB 0 B.C. 1: Surface reaction at x=0 (B->A)

DcAx xL

0 B.C. 2: No net flux at x=L

cA cB cT Conservation of phosphoprotein

Page 21: Stable spatial gradients of cytoskeleton assembly regulators

Predicted Concentration Profile

where

Y cA cT

X x L

kL2

D

A*e2

e2 1 * 1 e2 B*

e2 1 * 1 e2 * k

*LD

Y Ae X BeX

If k= 1 s-1, D=10-11 m2/s, and L=10 µm, then =3

Page 22: Stable spatial gradients of cytoskeleton assembly regulators

Model Predictions: Effect of Homogeneous Reaction Rate

1.0

0.8

0.6

0.4

0.2

0.0

Con

cen

trati

on

, Y

1.00.80.60.40.20.0

Position, X

Page 23: Stable spatial gradients of cytoskeleton assembly regulators

Model Predictions: Effect of Surface Reaction Rate

1.0

0.8

0.6

0.4

0.2

0.0

Con

cen

trati

on

, Y

1.00.80.60.40.20.0

Position, X

Page 24: Stable spatial gradients of cytoskeleton assembly regulators

Microtubule Chemotaxis: RanGTP

ImmobileRCC1

MobileRanGAP

Microtubule

A: RanGTP Stabilizes MTsB: RanGDP

Concentration

Position

RanGTP

RanGDP

Chromatin

Page 25: Stable spatial gradients of cytoskeleton assembly regulators
Page 26: Stable spatial gradients of cytoskeleton assembly regulators
Page 27: Stable spatial gradients of cytoskeleton assembly regulators

Results: Chemical Gradient and Polar Ejection Force Models

1000 nm

Page 28: Stable spatial gradients of cytoskeleton assembly regulators

Cse4 Bleach @ end of simulation, mutant “Tension” model

LeftHalfSpindle

RightHalfSpindle

Figure 2

Page 29: Stable spatial gradients of cytoskeleton assembly regulators

Cse4 Bleach @ End of Simulation, wild-type, “Gradient-Only” Model

RightHalfSpindle

LeftHalfSpindle

Figure 4

Page 30: Stable spatial gradients of cytoskeleton assembly regulators

Mitotic Spindle

Conclusion: Spatial gradients in MT DI parameter(s)may play a role in mediating budding yeast mitotis

F FF F

Page 31: Stable spatial gradients of cytoskeleton assembly regulators

X

X

X

Y

Z

Y

Simulated Actin FilamentDendritic Branching

Simulated Image of Actin FilamentDendritic Branching

Model-Convolution: Application to Dendritic Actin Filament Branching

Page 32: Stable spatial gradients of cytoskeleton assembly regulators

Simulated Image Obtainedby Model-Convolution of

Original Distribution

Original FluorophoreDistribution

Image Obtained by Deconvolution

of Simulated Image

Potential Pitfalls of Deconvolution

Page 33: Stable spatial gradients of cytoskeleton assembly regulators

Acknowledgements

• Whitaker Foundation

• National Science Foundation

Page 34: Stable spatial gradients of cytoskeleton assembly regulators

Comparing Models to Microscopy

Molecular Theory Molecular Reality

Microscopic Observations

Model Predictions ???

Fluorescence Microscope

Computer Simulation