stability of some string-beam systems · 2017-05-19 · introduction feedback stabilization...

104
Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult´ e des Sciences de Monastir ContrOpt 2017 15-19 Mai 2017, Monastir, Tunisie Farhat Shel Stability of some string-beam systems

Upload: others

Post on 13-Mar-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Stability of some string-beam systems

Farhat Shel

Faculte des Sciences de Monastir

ContrOpt 2017

15-19 Mai 2017, Monastir, Tunisie

Farhat Shel Stability of some string-beam systems

Page 2: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Farhat Shel Stability of some string-beam systems

Page 3: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Outline

1 Introduction

2 Feedback stabilizationAbstract settingAsymptotic behavior

3 Thermoelastic caseAbstract settingAsymptotic behavior

Farhat Shel Stability of some string-beam systems

Page 4: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Outline

1 Introduction

2 Feedback stabilizationAbstract settingAsymptotic behavior

3 Thermoelastic caseAbstract settingAsymptotic behavior

Farhat Shel Stability of some string-beam systems

Page 5: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Outline

1 Introduction

2 Feedback stabilizationAbstract settingAsymptotic behavior

3 Thermoelastic caseAbstract settingAsymptotic behavior

Farhat Shel Stability of some string-beam systems

Page 6: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Models

E. String E. Beamℓ2ℓ1 0

u1,tt − u1,xx = 0 , u2,tt − u2,xxxx = 0

Transmission conditions

u1(0, t) = u2(0, t), u2,x(0, t) = 0,

u2,xxx(0, t)− u1,x(0, t) = 0.

Boundary conditions

u1(`1, t) = 0,

u2(`2, t) = 0, u2,xx(`2, t) = 0.

Farhat Shel Stability of some string-beam systems

Page 7: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Models

Energy

E (t) =

∫ `1

0|u1,t |2 dx+

∫ `1

0|u1,x |2 dx+

∫ `2

0|u2,t |2 dx+

∫ `2

0|u2,xx |2 dx

d

dtE (t) = 0.

The system is conservative.

Farhat Shel Stability of some string-beam systems

Page 8: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Models

E. String E. Beamℓ2ℓ1 0

u1,tt − u1,xx

+ βθx

= 0

θt + βvtx − κθxx = 0

, u2,tt + u2,xxxx

+ βθx

= 0

θt + βvtx − κθxx = 0

Transmission conditions

u1(0, t) = u2(0, t), u2,x(0, t) = 0,

u2,xxx(0, t)− u1,x(0, t) = 0.

Boundary conditions

u1(`1, t) = 0,

u2(`2, t) = 0, u2,xx(`2, t) = 0.

The system is

Farhat Shel Stability of some string-beam systems

Page 9: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Models

E. String E. Beamℓ2ℓ1 0

u1,tt − u1,xx

+ βθx

= 0

θt + βvtx − κθxx = 0

, u2,tt + u2,xxxx

+ βθx

= 0

θt + βvtx − κθxx = 0

Transmission conditions

u1(0, t) = u2(0, t), u2,x(0, t) = 0,

u2,xxx(0, t)− u1,x(0, t) = 0.

Boundary conditions

u1(`1, t) = 0,

u2(`2, t) = 0, u2,xx(`2, t) = 0.

The system is

Farhat Shel Stability of some string-beam systems

Page 10: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Models

E. String E. Beamℓ2ℓ1 0

u1,tt − u1,xx

+ βθx

= 0

θt + βvtx − κθxx = 0

, u2,tt + u2,xxxx

+ βθx

= 0

θt + βvtx − κθxx = 0

Transmission conditions

u1(0, t) = u2(0, t), u2,x(0, t) = 0,

u2,xxx(0, t)− u1,x(0, t) = 0.

Boundary conditions

u1,x(`1, t) = −u1,t(`1, t),

u2(`2, t) = 0, u2,xx(`2, t) = 0.

The system is

Farhat Shel Stability of some string-beam systems

Page 11: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Models

E. String E. Beamℓ2ℓ1 0

u1,tt − u1,xx

+ βθx

= 0

θt + βvtx − κθxx = 0

, u2,tt + u2,xxxx

+ βθx

= 0

θt + βvtx − κθxx = 0

Transmission conditions

u1(0, t) = u2(0, t), u2,x(0, t) = 0,

u2,xxx(0, t)− u1,x(0, t) = 0.

Boundary conditions

u1,x(`1, t) = −u1,t(`1, t),

u2(`2, t) = 0, u2,xx(`2, t) = 0.

The system is exponentially stable.Farhat Shel Stability of some string-beam systems

Page 12: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Models

E. String E. Beamℓ2ℓ1 0

u1,tt − u1,xx

+ βθx

= 0

θt + βvtx − κθxx = 0

, u2,tt + u2,xxxx

+ βθx

= 0

θt + βvtx − κθxx = 0

Transmission conditions

u1(0, t) = u2(0, t), u2,x(0, t) = 0,

u2,xxx(0, t)− u1,x(0, t) = 0.

Boundary conditions

u1(`1, t) = 0,

u2(`2, t) = 0, u2,xx(`2, t) = 0.

The system is

Farhat Shel Stability of some string-beam systems

Page 13: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Models

E. String E. Beamℓ2ℓ1 0

u1,tt − u1,xx

+ βθx

= 0

θt + βvtx − κθxx = 0

, u2,tt + u2,xxxx

+ βθx

= 0

θt + βvtx − κθxx = 0

Transmission conditions

u1(0, t) = u2(0, t), u2,x(0, t) = 0,

u2,xxx(0, t)− u1,x(0, t) = 0.

Boundary conditions

u1(`1, t) = 0,

u2,x(`2, t) = 0, u2,xxx(`2, t) = u2,t(`2, t).

The system is

Farhat Shel Stability of some string-beam systems

Page 14: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Models

E. String E. Beamℓ2ℓ1 0

u1,tt − u1,xx

+ βθx

= 0

θt + βvtx − κθxx = 0

, u2,tt + u2,xxxx

+ βθx

= 0

θt + βvtx − κθxx = 0

Transmission conditions

u1(0, t) = u2(0, t), u2,x(0, t) = 0,

u2,xxx(0, t)− u1,x(0, t) = 0.

Boundary conditions

u1(`1, t) = 0,

u2,x(`2, t) = 0, u2,xxx(`2, t) = u2,t(`2, t).

The system is polynomially stable.Farhat Shel Stability of some string-beam systems

Page 15: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Models

E. String E. Beamℓ2ℓ1 0

u1,tt − u1,xx

+ βθx

= 0

θt + βutx − κθxx = 0

, u2,tt + u2,xxxx

+ βθx

= 0

θt + βutxx − κθxx = 0

Transmission conditions

u1(0, t) = u2(0, t), u2,x(0, t) = 0,

θ(0, t) = 0,

u2,xxx(0, t)− u1,x(0, t) = 0.

θx(0, t)

.

Boundary conditions

u1(`1, t) = 0,

u2(`2, t) = 0, u2,xx(`2, t) = 0.

The system is

Farhat Shel Stability of some string-beam systems

Page 16: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Models

TE. String E. Beamℓ2ℓ1 0

u1,tt − u1,xx + βθx = 0θt + βutx − κθxx = 0

, u2,tt + u2,xxxx

+ βθx

= 0

θt + βutxx − κθxx = 0

Transmission conditions

u1(0, t) = u2(0, t), u2,x(0, t) = 0,

θ(0, t) = 0,

u2,xxx(0, t)− u1,x(0, t) = 0.

θx(0, t)

.

Boundary conditions

u1(`1, t) = 0,

u2(`2, t) = 0, u2,xx(`2, t) = 0.

The system is

Farhat Shel Stability of some string-beam systems

Page 17: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Models

TE. String E. Beamℓ2ℓ1 0

u1,tt − u1,xx + βθx = 0θt + βutx − κθxx = 0

, u2,tt + u2,xxxx

+ βθx

= 0

θt + βutxx − κθxx = 0

Transmission conditions

u1(0, t) = u2(0, t), u2,x(0, t) = 0, θ(0, t) = 0,

u2,xxx(0, t)− u1,x(0, t) = 0.

θx(0, t)

.

Boundary conditions

u1(`1, t) = 0, θ(`1, t) = 0,

u2(`2, t) = 0, u2,xx(`2, t) = 0.

The system is

Farhat Shel Stability of some string-beam systems

Page 18: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Models

TE. String E. Beamℓ2ℓ1 0

u1,tt − u1,xx + βθx = 0θt + βutx − κθxx = 0

, u2,tt + u2,xxxx

+ βθx

= 0

θt + βutxx − κθxx = 0

Transmission conditions

u1(0, t) = u2(0, t), u2,x(0, t) = 0, θ(0, t) = 0,

u2,xxx(0, t)− u1,x(0, t) = 0.

θx(0, t)

.

Boundary conditions

u1(`1, t) = 0, θ(`1, t) = 0,

u2(`2, t) = 0, u2,xx(`2, t) = 0.

The system is exponentially stable.Farhat Shel Stability of some string-beam systems

Page 19: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Models

E. String TE. Beamℓ2ℓ1 0

u1,tt − u1,xx

+ βθx

= 0

θt + βutx − κθxx = 0

, u2,tt + u2,xxxx + βθx = 0θt + βutxx − κθxx = 0

Transmission conditions

u1(0, t) = u2(0, t), u2,x(0, t) = 0, θ(0, t) = 0,

u2,xxx(0, t)− u1,x(0, t) = θx(0, t).

Boundary conditions

u1(`1, t) = 0, θ(`2, t) = 0,

u2(`2, t) = 0, u2,xx(`2, t) = 0.

The system is

Farhat Shel Stability of some string-beam systems

Page 20: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Models

E. String TE. Beamℓ2ℓ1 0

u1,tt − u1,xx

+ βθx

= 0

θt + βutx − κθxx = 0

, u2,tt + u2,xxxx + βθx = 0θt + βutxx − κθxx = 0

Transmission conditions

u1(0, t) = u2(0, t), u2,x(0, t) = 0, θ(0, t) = 0,

u2,xxx(0, t)− u1,x(0, t) = θx(0, t).

Boundary conditions

u1(`1, t) = 0, θ(`2, t) = 0,

u2(`2, t) = 0, u2,xx(`2, t) = 0.

The system is polynomially stable.Farhat Shel Stability of some string-beam systems

Page 21: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

References

Coupled string-beam systemAmmari, Jellouli, Mehrenberger, 2009.

Chain of beams and stringsAmmari et al, 2012.

String beams networkAmmari, Mehrenberger 2012

Farhat Shel Stability of some string-beam systems

Page 22: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

References

Coupled string-beam systemAmmari, Jellouli, Mehrenberger, 2009.

Chain of beams and stringsAmmari et al, 2012.

String beams networkAmmari, Mehrenberger 2012

Farhat Shel Stability of some string-beam systems

Page 23: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

References

Coupled string-beam systemAmmari, Jellouli, Mehrenberger, 2009.

Chain of beams and stringsAmmari et al, 2012.

String beams networkAmmari, Mehrenberger 2012

Farhat Shel Stability of some string-beam systems

Page 24: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Energy space

E. String E. Beamℓ2ℓ1 0

L2(G) = L2(0, `1)× L2(0, `2).

V ={

f = (f1, f2) ∈ H1(0, `1)× H2(0, `2) | f satisfies (1)},

f2(`2) = 0,

δ ∈ {0, 1}

f1(0) = f2(0),∂x f2(0) = 0.

(1)

Energy space:H = V × L2(G),

〈y1, y2〉H :=⟨∂x f 1

1 , ∂x f 21

⟩+⟨∂2x f 1

2 , ∂2x f 2

2

⟩+⟨g 1

1 , g21

⟩+⟨g 1

2 , g22

⟩Hilbert space.

Farhat Shel Stability of some string-beam systems

Page 25: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Energy space

E. String E. Beamℓ2ℓ1 0

L2(G) = L2(0, `1)× L2(0, `2).

V ={

f = (f1, f2) ∈ H1(0, `1)× H2(0, `2) | f satisfies (1)},

f1(`1) = 0,

δ ∈ {0, 1}

f1(0) = f2(0),∂x f2(0) = 0.

(1)

Energy space:H = V × L2(G),

〈y1, y2〉H :=⟨∂x f 1

1 , ∂x f 21

⟩+⟨∂2x f 1

2 , ∂2x f 2

2

⟩+⟨g 1

1 , g21

⟩+⟨g 1

2 , g22

⟩Hilbert space.

Farhat Shel Stability of some string-beam systems

Page 26: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Energy space

E. String E. Beamℓ2ℓ1 0

L2(G) = L2(0, `1)× L2(0, `2).

V ={

f = (f1, f2) ∈ H1(0, `1)× H2(0, `2) | f satisfies (1)},

δf2(`2) = 0, (1− δ)f1(`1) = 0,

δ ∈ {0, 1}

f1(0) = f2(0),∂x f2(0) = 0.

(1)

Energy space:H = V × L2(G),

〈y1, y2〉H :=⟨∂x f 1

1 , ∂x f 21

⟩+⟨∂2x f 1

2 , ∂2x f 2

2

⟩+⟨g 1

1 , g21

⟩+⟨g 1

2 , g22

⟩Hilbert space.

Farhat Shel Stability of some string-beam systems

Page 27: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Energy space

E. String E. Beamℓ2ℓ1 0

L2(G) = L2(0, `1)× L2(0, `2).

V ={

f = (f1, f2) ∈ H1(0, `1)× H2(0, `2) | f satisfies (1)},

δf2(`2) = 0, (1− δ)f1(`1) = 0, δ ∈ {0, 1}f1(0) = f2(0),∂x f2(0) = 0.

(1)

Energy space:H = V × L2(G),

〈y1, y2〉H :=⟨∂x f 1

1 , ∂x f 21

⟩+⟨∂2x f 1

2 , ∂2x f 2

2

⟩+⟨g 1

1 , g21

⟩+⟨g 1

2 , g22

⟩Hilbert space.

Farhat Shel Stability of some string-beam systems

Page 28: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Energy space

E. String E. Beamℓ2ℓ1 0

L2(G) = L2(0, `1)× L2(0, `2).

V ={

f = (f1, f2) ∈ H1(0, `1)× H2(0, `2) | f satisfies (1)},

δf2(`2) = 0, (1− δ)f1(`1) = 0, δ ∈ {0, 1}f1(0) = f2(0),∂x f2(0) = 0.

(1)

Energy space:H = V × L2(G),

〈y1, y2〉H :=⟨∂x f 1

1 , ∂x f 21

⟩+⟨∂2x f 1

2 , ∂2x f 2

2

⟩+⟨g 1

1 , g21

⟩+⟨g 1

2 , g22

Hilbert space.

Farhat Shel Stability of some string-beam systems

Page 29: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Energy space

E. String E. Beamℓ2ℓ1 0

L2(G) = L2(0, `1)× L2(0, `2).

V ={

f = (f1, f2) ∈ H1(0, `1)× H2(0, `2) | f satisfies (1)},

δf2(`2) = 0, (1− δ)f1(`1) = 0, δ ∈ {0, 1}f1(0) = f2(0),∂x f2(0) = 0.

(1)

Energy space:H = V × L2(G),

〈y1, y2〉H :=⟨∂x f 1

1 , ∂x f 21

⟩+⟨∂2x f 1

2 , ∂2x f 2

2

⟩+⟨g 1

1 , g21

⟩+⟨g 1

2 , g22

⟩Hilbert space.

Farhat Shel Stability of some string-beam systems

Page 30: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Evolution equation

Then the system (S) may be rewritten as the first order evolutionequation on H,

{y ′(t) = Ay(t), t > 0,y(0) = y0

(2)

where y = (u, ut), y0 = (u0, u1).

A

u1

u2

v1

v2

=

v1

v2

∂2xu1

−∂4xu2

.

Farhat Shel Stability of some string-beam systems

Page 31: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Evolution equation

Then the system (S) may be rewritten as the first order evolutionequation on H,

{y ′(t) = Ay(t), t > 0,y(0) = y0

(2)

where y = (u, ut), y0 = (u0, u1).

A

u1

u2

v1

v2

=

v1

v2

∂2xu1

−∂4xu2

.

Farhat Shel Stability of some string-beam systems

Page 32: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Evolution equation

D(A) ={

y = (u, v) ∈ V 2 | u1 ∈ H2(0, `1),u2 ∈ H4(0, `2),y satisfies (3)}

(1− δ)∂xu1(`1) = −(1− δ)v1(`1),

(1− δ)∂2xu2(`2) = 0,

δ∂3xu2(`2) = δv2(`2), δ∂xu2(`2) = 0,

∂xu1(0)− ∂3xu2(0) = 0.

(3)

Farhat Shel Stability of some string-beam systems

Page 33: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Theorem

The operator A generates a C0-semigroup S(t) = eAt ofcontraction on H.

For an initial datum y0 ∈ H there exists a unique solution

y ∈ C ([0,+∞),H)

of the Cauchy problem (2).Moreover if y0 ∈ D(A), then

y ∈ C ([0,+∞),D(A)) ∩ C 1([0,+∞),H).

Proof (of the theorem).

A is a dissipative operator on H.

]0,+∞) ⊂ ρ(A): the resolvent set of A.Conclusion: by Lumer phillips theorem.

Farhat Shel Stability of some string-beam systems

Page 34: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Theorem

The operator A generates a C0-semigroup S(t) = eAt ofcontraction on H.

For an initial datum y0 ∈ H there exists a unique solution

y ∈ C ([0,+∞),H)

of the Cauchy problem (2).

Moreover if y0 ∈ D(A), then

y ∈ C ([0,+∞),D(A)) ∩ C 1([0,+∞),H).

Proof (of the theorem).

A is a dissipative operator on H.

]0,+∞) ⊂ ρ(A): the resolvent set of A.Conclusion: by Lumer phillips theorem.

Farhat Shel Stability of some string-beam systems

Page 35: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Theorem

The operator A generates a C0-semigroup S(t) = eAt ofcontraction on H.

For an initial datum y0 ∈ H there exists a unique solution

y ∈ C ([0,+∞),H)

of the Cauchy problem (2).Moreover if y0 ∈ D(A), then

y ∈ C ([0,+∞),D(A)) ∩ C 1([0,+∞),H).

Proof (of the theorem).

A is a dissipative operator on H.

]0,+∞) ⊂ ρ(A): the resolvent set of A.Conclusion: by Lumer phillips theorem.

Farhat Shel Stability of some string-beam systems

Page 36: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Theorem

The operator A generates a C0-semigroup S(t) = eAt ofcontraction on H.

For an initial datum y0 ∈ H there exists a unique solution

y ∈ C ([0,+∞),H)

of the Cauchy problem (2).Moreover if y0 ∈ D(A), then

y ∈ C ([0,+∞),D(A)) ∩ C 1([0,+∞),H).

Proof (of the theorem).

A is a dissipative operator on H.

]0,+∞) ⊂ ρ(A): the resolvent set of A.Conclusion: by Lumer phillips theorem.

Farhat Shel Stability of some string-beam systems

Page 37: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Theorem

The operator A generates a C0-semigroup S(t) = eAt ofcontraction on H.

For an initial datum y0 ∈ H there exists a unique solution

y ∈ C ([0,+∞),H)

of the Cauchy problem (2).Moreover if y0 ∈ D(A), then

y ∈ C ([0,+∞),D(A)) ∩ C 1([0,+∞),H).

Proof (of the theorem).

A is a dissipative operator on H.

]0,+∞) ⊂ ρ(A): the resolvent set of A.Conclusion: by Lumer phillips theorem.

Farhat Shel Stability of some string-beam systems

Page 38: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Theorem

The operator A generates a C0-semigroup S(t) = eAt ofcontraction on H.

For an initial datum y0 ∈ H there exists a unique solution

y ∈ C ([0,+∞),H)

of the Cauchy problem (2).Moreover if y0 ∈ D(A), then

y ∈ C ([0,+∞),D(A)) ∩ C 1([0,+∞),H).

Proof (of the theorem).

A is a dissipative operator on H.

]0,+∞) ⊂ ρ(A): the resolvent set of A.

Conclusion: by Lumer phillips theorem.

Farhat Shel Stability of some string-beam systems

Page 39: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Theorem

The operator A generates a C0-semigroup S(t) = eAt ofcontraction on H.

For an initial datum y0 ∈ H there exists a unique solution

y ∈ C ([0,+∞),H)

of the Cauchy problem (2).Moreover if y0 ∈ D(A), then

y ∈ C ([0,+∞),D(A)) ∩ C 1([0,+∞),H).

Proof (of the theorem).

A is a dissipative operator on H.

]0,+∞) ⊂ ρ(A): the resolvent set of A.Conclusion: by Lumer phillips theorem.

Farhat Shel Stability of some string-beam systems

Page 40: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

exponential stability ⇐⇒ S(t) = eAt is exponentially stable:

‖S(t)y0‖ ≤ Ce−wt ‖y0‖ ∀t > 0.

Lemma [Gearhard-Pruss-Huang]

A C0-semigroup of contraction etB is exponentially stable if, andonly if,

iR = {iβ | β ∈ R} ⊆ ρ(B) (4)

andlim sup|β|→∞

∥∥(iβ − B)−1∥∥ <∞. (5)

Farhat Shel Stability of some string-beam systems

Page 41: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

exponential stability ⇐⇒ S(t) = eAt is exponentially stable:

‖S(t)y0‖ ≤ Ce−wt ‖y0‖ ∀t > 0.

Lemma [Gearhard-Pruss-Huang]

A C0-semigroup of contraction etB is exponentially stable if, andonly if,

iR = {iβ | β ∈ R} ⊆ ρ(B) (4)

andlim sup|β|→∞

∥∥(iβ − B)−1∥∥ <∞. (5)

Farhat Shel Stability of some string-beam systems

Page 42: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

polynomial stability ⇐⇒ S(t) = eAt is polynomially stable:

‖S(t)y0‖ ≤C

tα‖y0‖D(A) ∀t > 0.

Lemma [Borichev-Tomilov]

A C0-semigroup of contraction etB on a Hilbert space H satisfies∥∥etBy0

∥∥ ≤ C

t1α

‖y0‖D(B)

for some constant C > 0 and for α > 0 if, and only if, (4) holdsand

lim|β|→∞

sup1

βα∥∥(iβ − B)−1

∥∥ <∞ (6)

Farhat Shel Stability of some string-beam systems

Page 43: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

polynomial stability ⇐⇒ S(t) = eAt is polynomially stable:

‖S(t)y0‖ ≤C

tα‖y0‖D(A) ∀t > 0.

Lemma [Borichev-Tomilov]

A C0-semigroup of contraction etB on a Hilbert space H satisfies∥∥etBy0

∥∥ ≤ C

t1α

‖y0‖D(B)

for some constant C > 0 and for α > 0 if, and only if, (4) holdsand

lim|β|→∞

sup1

βα∥∥(iβ − B)−1

∥∥ <∞ (6)

Farhat Shel Stability of some string-beam systems

Page 44: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Exponential stability

Theorem

If the feedback is applied at the exterior end of the string then, thesystem (S) is exponentially stable.

Farhat Shel Stability of some string-beam systems

Page 45: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Proof

The operator A satisfies condition (4). It suffices to prove that (5)holds. Suppose the conclusion is false. Then there exists asequense (βn) of real numbers, without loss of generality, withβn −→ +∞, and a sequence of vectors (yn) = (un, vn) in D(A)with ‖yn‖H = 1, such that

‖(iβnI −A)yn‖H −→ 0.

We prove that this condition yields the contradiction ‖yn‖H −→ 0as n −→ 0.

Farhat Shel Stability of some string-beam systems

Page 46: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Proof

The operator A satisfies condition (4). It suffices to prove that (5)holds. Suppose the conclusion is false. Then there exists asequense (βn) of real numbers, without loss of generality, withβn −→ +∞, and a sequence of vectors (yn) = (un, vn) in D(A)with ‖yn‖H = 1, such that

‖(iβnI −A)yn‖H −→ 0.

We prove that this condition yields the contradiction ‖yn‖H −→ 0as n −→ 0.

Farhat Shel Stability of some string-beam systems

Page 47: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Exponential stability

iβnu1,n − v1,n = f1,n −→ 0, in H1(0, `1),

iβnu2,n − v2,n = f2,n −→ 0, in H2(0, `2),

iβnv2,n − ∂2xu2,n = g2,n −→ 0, in L2(0, `1),

iβnv2,n + ∂4xu2,n = g2,n −→ 0, in L2(0, `2).

Then

−β2nu1,n − ∂2

xu1,n = g1,n + iβnf1,n, (7)

−β2nu2,n + ∂4

xu2,n = g2,n + iβnf2,n (8)

and‖vj ,n‖2 − β2

n ‖uj ,n‖2 −→ 0, j = 1, 2.

Farhat Shel Stability of some string-beam systems

Page 48: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Exponential stability

iβnu1,n − v1,n = f1,n −→ 0, in H1(0, `1),

iβnu2,n − v2,n = f2,n −→ 0, in H2(0, `2),

iβnv2,n − ∂2xu2,n = g2,n −→ 0, in L2(0, `1),

iβnv2,n + ∂4xu2,n = g2,n −→ 0, in L2(0, `2).

Then

−β2nu1,n − ∂2

xu1,n = g1,n + iβnf1,n, (7)

−β2nu2,n + ∂4

xu2,n = g2,n + iβnf2,n (8)

and‖vj ,n‖2 − β2

n ‖uj ,n‖2 −→ 0, j = 1, 2.

Farhat Shel Stability of some string-beam systems

Page 49: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Exponential stability

I βnu1,n(`1) −→ 0, ∂xu1,n(`1) −→ 0.

I (7) ∗ q∂xu1,n : ‖∂xu1,n‖2 + β2n ‖u1,n‖2 −→ 0,

I βnu1,n(0), ∂xu1,n(0), Re (iβnf1,n(0)u1,n(0)) −→ 0,

I (8) ∗ q∂xu2,n :

−12

∣∣∂2xu2,n(`2)

∣∣2 + 12β

2n ‖u2,n‖2 + 3

2

∥∥∂2xu2,n

∥∥2 → 0,

I (8) ∗ 1

β1/2n

e−β1/2n x : ∂2

xu2,n(`2)→ 0,

I1

2β2n ‖u2,n‖2 +

3

2

∥∥∂2xu2,n

∥∥2 → 0.

In conclusion ‖yn‖ converge to 0, which contradict the hypothesisthat ‖yn‖ = 1.

Farhat Shel Stability of some string-beam systems

Page 50: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Exponential stability

I βnu1,n(`1) −→ 0, ∂xu1,n(`1) −→ 0.

I (7) ∗ q∂xu1,n : ‖∂xu1,n‖2 + β2n ‖u1,n‖2 −→ 0,

I βnu1,n(0), ∂xu1,n(0), Re (iβnf1,n(0)u1,n(0)) −→ 0,

I (8) ∗ q∂xu2,n :

−12

∣∣∂2xu2,n(`2)

∣∣2 + 12β

2n ‖u2,n‖2 + 3

2

∥∥∂2xu2,n

∥∥2 → 0,

I (8) ∗ 1

β1/2n

e−β1/2n x : ∂2

xu2,n(`2)→ 0,

I1

2β2n ‖u2,n‖2 +

3

2

∥∥∂2xu2,n

∥∥2 → 0.

In conclusion ‖yn‖ converge to 0, which contradict the hypothesisthat ‖yn‖ = 1.

Farhat Shel Stability of some string-beam systems

Page 51: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Exponential stability

I βnu1,n(`1) −→ 0, ∂xu1,n(`1) −→ 0.

I (7) ∗ q∂xu1,n : ‖∂xu1,n‖2 + β2n ‖u1,n‖2 −→ 0,

I βnu1,n(0), ∂xu1,n(0), Re (iβnf1,n(0)u1,n(0)) −→ 0,

I (8) ∗ q∂xu2,n :

−12

∣∣∂2xu2,n(`2)

∣∣2 + 12β

2n ‖u2,n‖2 + 3

2

∥∥∂2xu2,n

∥∥2 → 0,

I (8) ∗ 1

β1/2n

e−β1/2n x : ∂2

xu2,n(`2)→ 0,

I1

2β2n ‖u2,n‖2 +

3

2

∥∥∂2xu2,n

∥∥2 → 0.

In conclusion ‖yn‖ converge to 0, which contradict the hypothesisthat ‖yn‖ = 1.

Farhat Shel Stability of some string-beam systems

Page 52: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Exponential stability

I βnu1,n(`1) −→ 0, ∂xu1,n(`1) −→ 0.

I (7) ∗ q∂xu1,n : ‖∂xu1,n‖2 + β2n ‖u1,n‖2 −→ 0,

I βnu1,n(0), ∂xu1,n(0), Re (iβnf1,n(0)u1,n(0)) −→ 0,

I (8) ∗ q∂xu2,n :

−12

∣∣∂2xu2,n(`2)

∣∣2 + 12β

2n ‖u2,n‖2 + 3

2

∥∥∂2xu2,n

∥∥2 → 0,

I (8) ∗ 1

β1/2n

e−β1/2n x : ∂2

xu2,n(`2)→ 0,

I1

2β2n ‖u2,n‖2 +

3

2

∥∥∂2xu2,n

∥∥2 → 0.

In conclusion ‖yn‖ converge to 0, which contradict the hypothesisthat ‖yn‖ = 1.

Farhat Shel Stability of some string-beam systems

Page 53: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Exponential stability

I βnu1,n(`1) −→ 0, ∂xu1,n(`1) −→ 0.

I (7) ∗ q∂xu1,n : ‖∂xu1,n‖2 + β2n ‖u1,n‖2 −→ 0,

I βnu1,n(0), ∂xu1,n(0), Re (iβnf1,n(0)u1,n(0)) −→ 0,

I (8) ∗ q∂xu2,n :

−12

∣∣∂2xu2,n(`2)

∣∣2 + 12β

2n ‖u2,n‖2 + 3

2

∥∥∂2xu2,n

∥∥2 → 0,

I (8) ∗ 1

β1/2n

e−β1/2n x : ∂2

xu2,n(`2)→ 0,

I1

2β2n ‖u2,n‖2 +

3

2

∥∥∂2xu2,n

∥∥2 → 0.

In conclusion ‖yn‖ converge to 0, which contradict the hypothesisthat ‖yn‖ = 1.

Farhat Shel Stability of some string-beam systems

Page 54: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Exponential stability

I βnu1,n(`1) −→ 0, ∂xu1,n(`1) −→ 0.

I (7) ∗ q∂xu1,n : ‖∂xu1,n‖2 + β2n ‖u1,n‖2 −→ 0,

I βnu1,n(0), ∂xu1,n(0), Re (iβnf1,n(0)u1,n(0)) −→ 0,

I (8) ∗ q∂xu2,n :

−12

∣∣∂2xu2,n(`2)

∣∣2 + 12β

2n ‖u2,n‖2 + 3

2

∥∥∂2xu2,n

∥∥2 → 0,

I (8) ∗ 1

β1/2n

e−β1/2n x : ∂2

xu2,n(`2)→ 0,

I1

2β2n ‖u2,n‖2 +

3

2

∥∥∂2xu2,n

∥∥2 → 0.

In conclusion ‖yn‖ converge to 0, which contradict the hypothesisthat ‖yn‖ = 1.

Farhat Shel Stability of some string-beam systems

Page 55: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Polynomial stability

Theorem

If no control is applied on the string then, the C0-semigroup ispolynomially stable. More precisely, there is C > 0 such that∥∥etAy0

∥∥ ≤ C

t‖y0‖D(A)

for every y0 ∈ D(A).

ProofIt suffices to prove that (6) holds for α = 1. Suppose theconclusion is false. There exists a sequence (βn) of real numbers,without loss of generality, with βn −→ +∞, and a sequence ofvectors (yn) = (un, vn) in D(A) with ‖yn‖H = 1, such that

‖βαn (iβnI −A)yn‖H −→ 0

Farhat Shel Stability of some string-beam systems

Page 56: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Polynomial stability

Lemma [Gagliardo-Nirenberg]

(1) There are two positive constants C1 and C2 such that for anyw in H1(0, `j),

‖w‖∞ ≤ C1 ‖∂xw‖1/2 ‖w‖1/2 + C2 ‖w‖ . (9)

(2) There are two positive constants C3 and C4 such that for anyw in H2(0, `j),

‖∂xw‖ ≤ C3

∥∥∂2xw∥∥1/2 ‖w‖1/2 + C4 ‖w‖ . (10)

Farhat Shel Stability of some string-beam systems

Page 57: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Non exponential stability

u1,tt − u1,xx = 0 in (0, π)× (0,∞),u2,tt + u2,xxxx = 0 in (0, π)× (0,∞),

u1(0, t) = u2(0, t), u2,x(0, t) = 0, u2,xxx(0, t) = u1,x(0, t),u1(π, t) = 0, u2,xxx(π, t) = u2,t(π, t), u2,x(π, t) = 0,

uj(x , 0) = u0j (x), uj ,t(x , 0) = u1

j (x), j = 1, 2.

The system is not exponentially stable.

Farhat Shel Stability of some string-beam systems

Page 58: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Non exponential stability

u1,tt − u1,xx = 0 in (0, π)× (0,∞),u2,tt + u2,xxxx = 0 in (0, π)× (0,∞),

u1(0, t) = u2(0, t), u2,x(0, t) = 0, u2,xxx(0, t) = u1,x(0, t),u1(π, t) = 0, u2,xxx(π, t) = u2,t(π, t), u2,x(π, t) = 0,

uj(x , 0) = u0j (x), uj ,t(x , 0) = u1

j (x), j = 1, 2.

The system is not exponentially stable.

Farhat Shel Stability of some string-beam systems

Page 59: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Proof

We prove that the corresponding semigroup etA is notexponentially stable. Let

I βn = n2 + 2√

n + 1n , βn → +∞

I fn = (0, 0,− sinβnx , 0), fn is in H and is bounded.

I yn = (u1,n, u2,n, v1,n, v2,n) ∈ D(A) such that (A− iβn)yn = fn.We will prove that yn → +∞.

Iu1,n = c1 sin(βnx) + (− x

2βn+ c2) cos(βnx),

u2,n = d1 sin(√βnx) + d2 cos(

√βnx)

+d3 sinh(√βnx) + d4 cosh(

√βnx).

Farhat Shel Stability of some string-beam systems

Page 60: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Proof

We prove that the corresponding semigroup etA is notexponentially stable. Let

I βn = n2 + 2√

n + 1n , βn → +∞

I fn = (0, 0,− sinβnx , 0), fn is in H and is bounded.

I yn = (u1,n, u2,n, v1,n, v2,n) ∈ D(A) such that (A− iβn)yn = fn.We will prove that yn → +∞.

Iu1,n = c1 sin(βnx) + (− x

2βn+ c2) cos(βnx),

u2,n = d1 sin(√βnx) + d2 cos(

√βnx)

+d3 sinh(√βnx) + d4 cosh(

√βnx).

Farhat Shel Stability of some string-beam systems

Page 61: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Proof

We prove that the corresponding semigroup etA is notexponentially stable. Let

I βn = n2 + 2√

n + 1n , βn → +∞

I fn = (0, 0,− sinβnx , 0), fn is in H and is bounded.

I yn = (u1,n, u2,n, v1,n, v2,n) ∈ D(A) such that (A− iβn)yn = fn.We will prove that yn → +∞.

Iu1,n = c1 sin(βnx) + (− x

2βn+ c2) cos(βnx),

u2,n = d1 sin(√βnx) + d2 cos(

√βnx)

+d3 sinh(√βnx) + d4 cosh(

√βnx).

Farhat Shel Stability of some string-beam systems

Page 62: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Proof

I

2β3/2n d1 ∼+∞

π2

2

√n.

I

−π2

∣∣∣∣− 1

2βn+ βnc1

∣∣∣∣2 − π

2|βnc2|2

= −1

2(β2

n

∥∥u1n

∥∥2+∥∥∂xu1

n

∥∥2) + Re(

∫ π

0sin(βnx)(π − x)∂xu1

ndx).

β2n

∥∥u1n

∥∥2+∥∥∂xu1

n

∥∥2must be not bounded. In conclusion yn is

not bounded.

Farhat Shel Stability of some string-beam systems

Page 63: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Proof

I

2β3/2n d1 ∼+∞

π2

2

√n.

I

−π2

∣∣∣∣− 1

2βn+ βnc1

∣∣∣∣2 − π

2|βnc2|2

= −1

2(β2

n

∥∥u1n

∥∥2+∥∥∂xu1

n

∥∥2) + Re(

∫ π

0sin(βnx)(π − x)∂xu1

ndx).

β2n

∥∥u1n

∥∥2+∥∥∂xu1

n

∥∥2must be not bounded. In conclusion yn is

not bounded.

Farhat Shel Stability of some string-beam systems

Page 64: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Proof

I

2β3/2n d1 ∼+∞

π2

2

√n.

I

−π2

∣∣∣∣− 1

2βn+ βnc1

∣∣∣∣2 − π

2|βnc2|2

= −1

2(β2

n

∥∥u1n

∥∥2+∥∥∂xu1

n

∥∥2) + Re(

∫ π

0sin(βnx)(π − x)∂xu1

ndx).

β2n

∥∥u1n

∥∥2+∥∥∂xu1

n

∥∥2must be not bounded. In conclusion yn is

not bounded.

Farhat Shel Stability of some string-beam systems

Page 65: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Remarks

Let ε > 0. By taking βn = n2 + 2n1−α + 1n2α with 0 < α < ε

and such that n1−α is integer and even and yn is such that

fn = (β12−ε

n (A− iβn))yn, then we can prove that yn is notbounded and then the polynomial stability of (S) can’t bebutter than 1

t2 .

If we replace the boundary conditions by the followings

δu1(`1, t) = 0, (1− δ)u1xx(`1, t) = 0,

(1− δ)u1,x(`1, t) = −(1− δ)u1,t(`1, t),

δu2,xx(`2, t) = −δu2,tx(`2, t), u2(`2, t) = 0.

then we obtain the same results.

Farhat Shel Stability of some string-beam systems

Page 66: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Remarks

Let ε > 0. By taking βn = n2 + 2n1−α + 1n2α with 0 < α < ε

and such that n1−α is integer and even and yn is such that

fn = (β12−ε

n (A− iβn))yn, then we can prove that yn is notbounded and then the polynomial stability of (S) can’t bebutter than 1

t2 .

If we replace the boundary conditions by the followings

δu1(`1, t) = 0, (1− δ)u1xx(`1, t) = 0,

(1− δ)u1,x(`1, t) = −(1− δ)u1,t(`1, t),

δu2,xx(`2, t) = −δu2,tx(`2, t), u2(`2, t) = 0.

then we obtain the same results.

Farhat Shel Stability of some string-beam systems

Page 67: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Remarks

Let ε > 0. By taking βn = n2 + 2n1−α + 1n2α with 0 < α < ε

and such that n1−α is integer and even and yn is such that

fn = (β12−ε

n (A− iβn))yn, then we can prove that yn is notbounded and then the polynomial stability of (S) can’t bebutter than 1

t2 .

If we replace the boundary conditions by the followings

δu1(`1, t) = 0, (1− δ)u1xx(`1, t) = 0,

(1− δ)u1,x(`1, t) = −(1− δ)u1,t(`1, t),

δu2,xx(`2, t) = −δu2,tx(`2, t), u2(`2, t) = 0.

then we obtain the same results.

Farhat Shel Stability of some string-beam systems

Page 68: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

System

E. String E. Beamℓ2ℓ1 0

u1,tt − α1u1,xx

+ β1θ1,x

= 0

θ1,t + β1u1,tx − κ1θ1,xx = 0

, u2,tt + α2u2,xxxx

+ β2θ2,x

= 0

θ2,t + β2u2,txx − κ2θ2,xx = 0

Transmission conditions

u1(0, t) = u2(0, t), u2,x(0, t) = 0,

θ1(0, t) = θ2(0, t),

α2u2,xxx(0, t)

− β2θ2,x(0, t)

= α1u1,x(0, t)

− β1θ1(0, t)

,

κ1κ2(κ1θ1,x(0, t) + κ2θ2,x(0, t)) = 0

.

Boundary conditions

u1(`1, t) = 0,

u2(`2, t) = 0, u2,xx(`2, t) = 0.

Farhat Shel Stability of some string-beam systems

Page 69: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

System

TE. String TE. Beamℓ2ℓ1 0

u1,tt − α1u1,xx

+ β1θ1,x

= 0

θ1,t + β1u1,tx − κ1θ1,xx = 0

, u2,tt + α2u2,xxxx

+ β2θ2,x

= 0

θ2,t + β2u2,txx − κ2θ2,xx = 0

Transmission conditions

u1(0, t) = u2(0, t), u2,x(0, t) = 0,

θ1(0, t) = θ2(0, t),

α2u2,xxx(0, t)

− β2θ2,x(0, t)

= α1u1,x(0, t)

− β1θ1(0, t)

,

κ1κ2(κ1θ1,x(0, t) + κ2θ2,x(0, t)) = 0

.

Boundary conditions

u1(`1, t) = 0,

u2(`2, t) = 0, u2,xx(`2, t) = 0.

Farhat Shel Stability of some string-beam systems

Page 70: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

System

TE. String TE. Beamℓ2ℓ1 0

u1,tt − α1u1,xx + β1θ1,x = 0θ1,t + β1u1,tx − κ1θ1,xx = 0

, u2,tt + α2u2,xxxx + β2θ2,x = 0θ2,t + β2u2,txx − κ2θ2,xx = 0

Transmission conditions

u1(0, t) = u2(0, t), u2,x(0, t) = 0,

θ1(0, t) = θ2(0, t),

α2u2,xxx(0, t)

− β2θ2,x(0, t)

= α1u1,x(0, t)

− β1θ1(0, t)

,

κ1κ2(κ1θ1,x(0, t) + κ2θ2,x(0, t)) = 0

.

Boundary conditions

u1(`1, t) = 0,

u2(`2, t) = 0, u2,xx(`2, t) = 0.

Farhat Shel Stability of some string-beam systems

Page 71: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

System

TE. String TE. Beamℓ2ℓ1 0

u1,tt − α1u1,xx + β1θ1,x = 0θ1,t + β1u1,tx − κ1θ1,xx = 0

, u2,tt + α2u2,xxxx + β2θ2,x = 0θ2,t + β2u2,txx − κ2θ2,xx = 0

Transmission conditions

u1(0, t) = u2(0, t), u2,x(0, t) = 0, θ1(0, t) = θ2(0, t),α2u2,xxx(0, t)− β2θ2,x(0, t) = α1u1,x(0, t)− β1θ1(0, t),

κ1κ2(

κ1θ1,x(0, t) + κ2θ2,x(0, t)

)

= 0.

Boundary conditions

u1(`1, t) = 0, θ(`1, t) = 0, θ(`2, t) = 0,

u2(`2, t) = 0, u2,xx(`2, t) = 0.

Farhat Shel Stability of some string-beam systems

Page 72: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

System

TE. String TE. Beamℓ2ℓ1 0

u1,tt − α1u1,xx + β1θ1,x = 0θ1,t + β1u1,tx − κ1θ1,xx = 0

, u2,tt + α2u2,xxxx + β2θ2,x = 0θ2,t + β2u2,txx − κ2θ2,xx = 0

Transmission conditions

u1(0, t) = u2(0, t), u2,x(0, t) = 0, θ1(0, t) = θ2(0, t),α2u2,xxx(0, t)− β2θ2,x(0, t) = α1u1,x(0, t)− β1θ1(0, t),κ1κ2(κ1θ1,x(0, t) + κ2θ2,x(0, t)) = 0.

Boundary conditions

u1(`1, t) = 0, θ(`1, t) = 0, θ(`2, t) = 0,

u2(`2, t) = 0, u2,xx(`2, t) = 0.

Farhat Shel Stability of some string-beam systems

Page 73: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

System

For a solution (u, v , θ) of (S) the energy is defined as

E (t) =1

2

∫ `1

0

(|u1,t |2 + α1 |u1,x |2 + |θ1|2

)dx

+1

2

∫ `2

0

(|u2,t |2 + α2 |u2,xx |2 + |θ2|2

)dx .

Differentiate formally the energy function with respect to time t,weget

d

dtE (t) = −κ1 ‖∂xθ1‖2 − κ2 ‖∂xθ2‖2

and the system is dissipative.

Farhat Shel Stability of some string-beam systems

Page 74: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Let us consider

V ={

f = (f1, f2) ∈ H1(0, `1)× H2(0, `2) | f satisfies (11)}

where

f1(`1) = 0, f2(`2) = 0, f1(0) = f2(0) and ∂x f2(0) = 0. (11)

Define the Hilbert space H

H = V ×(L2(0, `1)× L2(0, `2)

)×W

with W = L2(0, `1)× L2(0, `2) if e1 and e2 are thermoelastic,W = L2(0, `1)× {0} if only e1 is thermoelastic andW = {0} × L2(0, `2) if only e1 is purely elastic, and norm given by

‖z‖H := α1 ‖∂x f1‖2 + α2

∥∥∂2x f2

∥∥2+

2∑j=1

(‖gj‖2 + ‖hj‖2

)where z = (f = (f1, f2), g = (g1, g2), h = (h1, h2)) .

Farhat Shel Stability of some string-beam systems

Page 75: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

D(A) =

{y = (u, v , θ) ∈ V ∩ (H2(0, `1)× H4(0, `2))× V ×W2 |

and y satisfies (12)

}with W2 = H2(0, `1)× H2(0, `2) if e1 and e2 are T.... and where

∂2xu2(`2) = 0, θ1(`1) = θ2(`2) = 0,θ1(0) = θ2(0),α2∂

3xu2(0)− β2∂xθ2(0) = α1∂xu1(0)− β1θ1(0),

κ1κ2 (κ1∂xθ1(0) + κ2∂xθ2(0)) = 0.

(12)

with βj = 0 and κj = 0 if ej is purely elastic, and

A

u1

u2

v1

v2

θ1

θ2

=

v1

v2

α1∂2xu1 − β1∂xθ1

−α2∂4xu2 + β2∂

2xθ2

−β1∂xv1 + κ1∂2xθ1

−β2∂xxv2 + κ2∂2xθ2

.

Farhat Shel Stability of some string-beam systems

Page 76: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

D(A) =

{y = (u, v , θ) ∈ V ∩ (H2(0, `1)× H4(0, `2))× V ×W2 |

and y satisfies (12)

}with W2 = H2(0, `1)× H2(0, `2) if e1 and e2 are T.... and where

∂2xu2(`2) = 0, θ1(`1) = θ2(`2) = 0,θ1(0) = θ2(0),α2∂

3xu2(0)− β2∂xθ2(0) = α1∂xu1(0)− β1θ1(0),

κ1κ2 (κ1∂xθ1(0) + κ2∂xθ2(0)) = 0.

(12)

with βj = 0 and κj = 0 if ej is purely elastic,

and

A

u1

u2

v1

v2

θ1

θ2

=

v1

v2

α1∂2xu1 − β1∂xθ1

−α2∂4xu2 + β2∂

2xθ2

−β1∂xv1 + κ1∂2xθ1

−β2∂xxv2 + κ2∂2xθ2

.

Farhat Shel Stability of some string-beam systems

Page 77: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

D(A) =

{y = (u, v , θ) ∈ V ∩ (H2(0, `1)× H4(0, `2))× V ×W2 |

and y satisfies (12)

}with W2 = H2(0, `1)× H2(0, `2) if e1 and e2 are T.... and where

∂2xu2(`2) = 0, θ1(`1) = θ2(`2) = 0,θ1(0) = θ2(0),α2∂

3xu2(0)− β2∂xθ2(0) = α1∂xu1(0)− β1θ1(0),

κ1κ2 (κ1∂xθ1(0) + κ2∂xθ2(0)) = 0.

(12)

with βj = 0 and κj = 0 if ej is purely elastic, and

A

u1

u2

v1

v2

θ1

θ2

=

v1

v2

α1∂2xu1 − β1∂xθ1

−α2∂4xu2 + β2∂

2xθ2

−β1∂xv1 + κ1∂2xθ1

−β2∂xxv2 + κ2∂2xθ2

.

Farhat Shel Stability of some string-beam systems

Page 78: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Then, putting y = (u, ut , θ), we write the system (S) in the threecases, into the following first order evolution equation{

ddt y = Ayy(0) = y0

(13)

on the energy space H, where y0 = (u0, v 0, θ0).We have the following result,

Lemma

The operator A is the infinitesimal generator of a C0-semigroup ofcontraction S(t).

Farhat Shel Stability of some string-beam systems

Page 79: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Exponential stability

Lemma

The semigroup S(t), generated by the operator A is asymptoticallystable.

Theorem

If the string is thermoelastic, then the system (S) is exponentiallystable.

Farhat Shel Stability of some string-beam systems

Page 80: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Proof

It suffices to prove that (5) holds. Suppose the conclusion is false.Then there exists a sequence (wn) of real numbers, withwn −→ +∞ and a sequence of vectors (yn) = (un, vn, θn) in D(A)with ‖yn‖H = 1, such that

‖(iwnI −A)yn‖HF−→ 0

which is equivalent to

iwnu1,n − v1,n = f1,n −→ 0, in H1(0, `1),

iwnv1,n − α1∂2xu1,n + β1∂xθ1,n = g1,n −→ 0, in L2(0, `1),

iwnθ1,n + β1∂xv1,n − κ1∂2xθ1,n = h1,n −→ 0, in L2(0, `1),

and

iw2,nu2,n − v2,n = f2,n −→ 0, in H2(0, `2),

iwnv2,n + α2∂4xu2,n = g2,n −→ 0, in L2(0, `2),

Farhat Shel Stability of some string-beam systems

Page 81: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

We get

w 2nu1,n + α1∂

2xu1,n − β1∂xθ1,n = −g1,n − iwnf1,n, (14)

−w 2nu2,n + α2∂

4xu2,n = g2,n + iwnf2,n, (15)

and‖vj ,n‖2 − w 2

n ‖uj ,n‖2 −→ 0, j = 1, 2.

First, since

Re(〈(iwn −A)yn, yn〉H) = −κ1 ‖∂xθ1‖2

we obtain that ∂xθ1,n converges to 0 in L2(0, `2).As in [?] one can get

‖wnu1,n‖ , ‖∂xu1,n‖ , ‖θ1,n‖ −→ 0.

Moreoverwnu1,n(0), ∂xu1,n(0), θ1,n(0) −→ 0. (16)

Farhat Shel Stability of some string-beam systems

Page 82: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Proof

Taking the inner product of (15) with p = (`2 − x)∂xu2,n(x),

−1

2α2

∣∣∂2xu2,n(0)

∣∣2 `2+1

2

∫ `2

0w 2n |u2,n|2 dx+

3

2α2

∫ `2

0

∣∣∂2xu2,n

∣∣2 dx → 0

Now the inner product of the first member of (15) by 1

w1/2n

e−aw1/2n x

gives, with a = 1

α1/42

,

α2

w1/2n

∂3xu2,n(0) + α2a∂2

xu2,n(0) = o(1)

then∂2xu2,n(0) = o(1)

Return back to(4),∫ `2

0w 2n |u2,n|2 dx ,

∫ `2

0

∣∣∂2xu2,n

∣∣2 dx , converge to zero

Farhat Shel Stability of some string-beam systems

Page 83: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Lack of exponential stability

In this part the string is purely elastic.

We take `1 = `2 = π, κ2 << α2.

Theorem

If the string is purely elastic then the system (S) is not exponentialstable in the energy space H.

Farhat Shel Stability of some string-beam systems

Page 84: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Lack of exponential stability

In this part the string is purely elastic.

We take `1 = `2 = π, κ2 << α2.

Theorem

If the string is purely elastic then the system (S) is not exponentialstable in the energy space H.

Farhat Shel Stability of some string-beam systems

Page 85: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Lack of exponential stability

In this part the string is purely elastic.

We take `1 = `2 = π, κ2 << α2.

Theorem

If the string is purely elastic then the system (S) is not exponentialstable in the energy space H.

Farhat Shel Stability of some string-beam systems

Page 86: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Proof

We prove that the corresponding semigroup (S(t))t≥0 is notexponentially stable.For n ∈ N, let fn = (0, 0,−α1 sinβnx , 0, 0), with βn → +∞ and fnis in H and is bounded. Let yn = (u1,n, u2,n, v1,n, v2,n, θ2,n) ∈ D(A)such that (A− idn)yn = fn. We will prove that yn → +∞.We have

w 2nu1,n + α1∂

2xu1,n = α1 sinβnx

with wn =√α1βn, and

iw2,nu2,n − v2,n = 0, in H2(0, π), (17)

−w 2nu2,n + α2∂

4xu2,n − β2∂

2xθ2,n = 0, in L2(0, π), (18)

iwnθ2,n + iwnβ2∂2xu2,n − κ2∂

2xθ2,n = 0, in L2(0, π). (19)

Notations: α2 = α, β2 = β, κ2 = κ.

Farhat Shel Stability of some string-beam systems

Page 87: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Proof

The function u1,n is of the form

u1,n = c1 sin(wnx) + (− x

2wn+ c2) cos(wnx),

Using (18) and (19) we obtain that

ακ∂6xu2,n − iwn(α + β2)∂4

xu2,n − κw 2n∂

2xu2,n + iw 3

nu2,n = 0, (20)

By taking A = 3ακ2 + (α + β2)2,B = 9ακ2(α + β2) + 2(α + β2)3 − 27α2κ2,

a1 = 121/3

(√B2 + 4A3 + B

)1/3, b1 = 1

21/3

(√B2 + 4A3 − B

)1/3

and r = α + β2, the squares of the solutions of (20) are

Farhat Shel Stability of some string-beam systems

Page 88: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Proof

The function u1,n is of the form

u1,n = c1 sin(wnx) + (− x

2wn+ c2) cos(wnx),

Using (18) and (19) we obtain that

ακ∂6xu2,n − iwn(α + β2)∂4

xu2,n − κw 2n∂

2xu2,n + iw 3

nu2,n = 0, (20)

By taking A = 3ακ2 + (α + β2)2,B = 9ακ2(α + β2) + 2(α + β2)3 − 27α2κ2,

a1 = 121/3

(√B2 + 4A3 + B

)1/3, b1 = 1

21/3

(√B2 + 4A3 − B

)1/3

and r = α + β2, the squares of the solutions of (20) are

Farhat Shel Stability of some string-beam systems

Page 89: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Proof

x1 =wn

3ακ

[√3

2(a1 − a2) + i

(r +

1

2(a1 − a2)

)]

x2 =wn

3ακ

[−√

3

2a1 + i

(r +

1

2a1 + a2

)],

x3 =wn

3ακ

[√3

2a2 + i

(r − a1 −

1

2a2

)]

Farhat Shel Stability of some string-beam systems

Page 90: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Proof

Let x2, x ′2 and x ′′2 the squares of the real parts of solutions of(20).

2x2 =

(3

4(a1 − a2)2 + (r +

1

2(a1 − a2))2

)1/2

+

√3

2(a1 − a2),

2x ′2 =

(3

4(a2

1 + (r +1

2a1 + a2)2

)1/2

−√

3

2a1,

2x ′′2 =

(3

4(a2

2 + (r − a1 −1

2a2)2

)1/2

+

√3

2a2.

2x2 > 2x ′′2 > 2x ′2.The equation (20) admits six simple solutions

±√

wnR1, ±√

wnR2, ±√

wnR3,

with0 < Re(R3) < Re(R2) < Re(R1).

Farhat Shel Stability of some string-beam systems

Page 91: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Proof

u2,n =3∑

k=1

(dke√wnRkx + bke−

√wnRkx).

Return back to (18),

β∂2xθ2,n = w 2

n

3∑k=1

(−1 + αR4k )(dke

√wnRkx + bke−

√wnRkx)

Then there exist two constants a′ and b′ such that

βθ2,n = wn

3∑k=1

(− 1

R2k

+αR2k )(dke

√wnRkx + bke−

√wnRkx) + a′x + b′.

Moreover, the equation (19) is verified if and only if a′ = b′ = 0.

Farhat Shel Stability of some string-beam systems

Page 92: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Proof

The transmission and boundary conditions are expressed as follow

3∑k=1

(dk + bk ) = c2,3∑

k=1

Rk (dk − bk ) = 0, (21)

w3/2n α

3∑k=1

1

Rk

(dk − bk ) = −1

2wn+ wnc1, (22)

3∑k=1

(−1

R2k

+ αR2k )(dk + bk ) = 0,

3∑k=1

(dk e√

wnRkπ + bk e−√wnRkπ) = 0, (23)

3∑k=1

R2k (dk e

√wnRkπ + bk e

−√wnRkπ) = 0,3∑

k=1

1

R2k

(dk e√

wnRkπ + bk e−√wnRkπ) = 0, (24)

c1 sin(βnπ) + (−π

2βn+ c2) cos(βnπ) = 0. (25)

Farhat Shel Stability of some string-beam systems

Page 93: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Proof

After some calculus

[2a4e√

wn(R1+2R2)π + ...]

(−1

2βn+ βnc1) = w3/2

n (π

2βn− c1 tan(βnπ))

[a3e√

wn(R1+2R2)π + ...].

and then

2a4(− 1

2βn+ βnc1) + a3w

3/2n c1 tan(βnπ) ∼ π

2

w3/2n

βn.

Hence, with βn = 2n + 1n , tan(βnπ) = π

n + ...

(− 1

2βn+ βnc1) ∼ π

4a4

w3/2n

βn=π√α1

4a4

√wn.

The real part of the inner product of (6) with (π − x)∂xu1,n gives

−π

2

∣∣∣∣− 1

2wn+ wnc1

∣∣∣∣2 − π

2|wnc2|

2 = −1

2(w2

n

∥∥u1,n∥∥2 +

∥∥∂xu1,n∥∥2) + Re(

∫ π0

sin(wnx)(π − x)∂xu1,ndx).

In conclusion yn is not bounded.Farhat Shel Stability of some string-beam systems

Page 94: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Polynomial stability

Theorem

If the string is purely elastic, then the system (S) is polynomiallystable. More precisely, (for every γ < 2) there exists c > 0 suchthat

‖S(t)y0‖ ≤1

tγ‖y0‖D(A) .

Farhat Shel Stability of some string-beam systems

Page 95: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Proof

Let 1 > α > 12 . It suffices to prove that (5) holds. Suppose the

conclusion is false. Then there exists a sequence (wn) of realnumbers, with wn −→ +∞ and a sequence of vectors(yn) = (un, vn, θn) in D(A) with ‖yn‖H = 1, such that

‖wαn (iwnI −A)yn‖H −→ 0

which is equivalent to

wαn (iwnu1,n − v1,n) = f1,n −→ 0, in H1, (26)

wαn

(iwnv1,n − α1∂

2xu1,n

)= g1,n −→ 0 in L2, (27)

and

wαn (iwnu2,n − v2,n) = f2,n −→ 0, in H2,(28)

wαn

(iwnv2,n + α2∂

4xu2,n − β2∂

2xθ2,n

)= g2,n −→ 0, in L2,(29)

wαn

(iwnθ2,n + β2∂

2xv2,n − κ2∂

2xθ2,n

)= h2,n −→ 0, in L2.(30)

Farhat Shel Stability of some string-beam systems

Page 96: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Substituting (26) into (27) and (28) into (30) respectively to get

wαn

(w 2nu1,n + α1∂

2xu1,n

)= −g1,n − iwnf1,n, (31)

wαn

(θ2,n −

1

iwnκ2∂

2xθ2,n + β2∂

2xu2,n

)=

1

iwn(h2,n + ∂2

x f2,n)(32)

First, wα/2n ∂xθ2,n converge to 0 in L2(0, `2). Then w

α/2n θ2,n

converge to 0 in L2(0, `2) since θ2,n(0) = 0.

Multiplying (32) by 1

wα/2n

∂2xu2,n

β2wα/2n

∥∥∂2xu2,n

∥∥2+ w

α/2n

⟨θ2,n, ∂

2xu2,n

⟩(33)

−iκ2wα/2−1∂xθ2,n(0)∂2xu2,n(0)− iκ2w

α/2−1n

⟨∂xθ2,n, ∂

3xu2,n

⟩= 0.

Then we prove that

β2wα/2n

∥∥∂2xu2,n

∥∥2 −→ 0.

Farhat Shel Stability of some string-beam systems

Page 97: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Substituting (26) into (27) and (28) into (30) respectively to get

wαn

(w 2nu1,n + α1∂

2xu1,n

)= −g1,n − iwnf1,n, (31)

wαn

(θ2,n −

1

iwnκ2∂

2xθ2,n + β2∂

2xu2,n

)=

1

iwn(h2,n + ∂2

x f2,n)(32)

First, wα/2n ∂xθ2,n converge to 0 in L2(0, `2). Then w

α/2n θ2,n

converge to 0 in L2(0, `2) since θ2,n(0) = 0.Multiplying (32) by 1

wα/2n

∂2xu2,n

β2wα/2n

∥∥∂2xu2,n

∥∥2+ w

α/2n

⟨θ2,n, ∂

2xu2,n

⟩(33)

−iκ2wα/2−1∂xθ2,n(0)∂2xu2,n(0)− iκ2w

α/2−1n

⟨∂xθ2,n, ∂

3xu2,n

⟩= 0.

Then we prove that

β2wα/2n

∥∥∂2xu2,n

∥∥2 −→ 0.

Farhat Shel Stability of some string-beam systems

Page 98: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Proof

Using (29) we prove that wα/8n ‖v2,n‖2 → 0.

We built two sequences of positive numbers rm and sm suchthat

wrm/2n

∥∥∂2xu2,n

∥∥→ 0, wrm/2n ‖θ2,n‖ → 0, w

sm/2n ‖v2,n‖ → 0

and rm and sm converge to 1 + α.

α2∂3xu2,n(0)− β2∂xθ(0)→ 0.

wn ‖u2,n(0)‖ → 0.∫ `2

0

(|∂xu1,n(x)|2 + w 2

n |u1,n(x)|2)

dx −→ 0.

In summary, we have ‖yn‖H −→ 0. This resul contradicts thehypothesis that yn has the unit norm.

Farhat Shel Stability of some string-beam systems

Page 99: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Proof

Using (29) we prove that wα/8n ‖v2,n‖2 → 0.

We built two sequences of positive numbers rm and sm suchthat

wrm/2n

∥∥∂2xu2,n

∥∥→ 0, wrm/2n ‖θ2,n‖ → 0, w

sm/2n ‖v2,n‖ → 0

and rm and sm converge to 1 + α.

α2∂3xu2,n(0)− β2∂xθ(0)→ 0.

wn ‖u2,n(0)‖ → 0.∫ `2

0

(|∂xu1,n(x)|2 + w 2

n |u1,n(x)|2)

dx −→ 0.

In summary, we have ‖yn‖H −→ 0. This resul contradicts thehypothesis that yn has the unit norm.

Farhat Shel Stability of some string-beam systems

Page 100: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Proof

Using (29) we prove that wα/8n ‖v2,n‖2 → 0.

We built two sequences of positive numbers rm and sm suchthat

wrm/2n

∥∥∂2xu2,n

∥∥→ 0, wrm/2n ‖θ2,n‖ → 0, w

sm/2n ‖v2,n‖ → 0

and rm and sm converge to 1 + α.

α2∂3xu2,n(0)− β2∂xθ(0)→ 0.

wn ‖u2,n(0)‖ → 0.∫ `2

0

(|∂xu1,n(x)|2 + w 2

n |u1,n(x)|2)

dx −→ 0.

In summary, we have ‖yn‖H −→ 0. This resul contradicts thehypothesis that yn has the unit norm.

Farhat Shel Stability of some string-beam systems

Page 101: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Proof

Using (29) we prove that wα/8n ‖v2,n‖2 → 0.

We built two sequences of positive numbers rm and sm suchthat

wrm/2n

∥∥∂2xu2,n

∥∥→ 0, wrm/2n ‖θ2,n‖ → 0, w

sm/2n ‖v2,n‖ → 0

and rm and sm converge to 1 + α.

α2∂3xu2,n(0)− β2∂xθ(0)→ 0.

wn ‖u2,n(0)‖ → 0.

∫ `2

0

(|∂xu1,n(x)|2 + w 2

n |u1,n(x)|2)

dx −→ 0.

In summary, we have ‖yn‖H −→ 0. This resul contradicts thehypothesis that yn has the unit norm.

Farhat Shel Stability of some string-beam systems

Page 102: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Proof

Using (29) we prove that wα/8n ‖v2,n‖2 → 0.

We built two sequences of positive numbers rm and sm suchthat

wrm/2n

∥∥∂2xu2,n

∥∥→ 0, wrm/2n ‖θ2,n‖ → 0, w

sm/2n ‖v2,n‖ → 0

and rm and sm converge to 1 + α.

α2∂3xu2,n(0)− β2∂xθ(0)→ 0.

wn ‖u2,n(0)‖ → 0.∫ `2

0

(|∂xu1,n(x)|2 + w 2

n |u1,n(x)|2)

dx −→ 0.

In summary, we have ‖yn‖H −→ 0. This resul contradicts thehypothesis that yn has the unit norm.

Farhat Shel Stability of some string-beam systems

Page 103: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Proof

Using (29) we prove that wα/8n ‖v2,n‖2 → 0.

We built two sequences of positive numbers rm and sm suchthat

wrm/2n

∥∥∂2xu2,n

∥∥→ 0, wrm/2n ‖θ2,n‖ → 0, w

sm/2n ‖v2,n‖ → 0

and rm and sm converge to 1 + α.

α2∂3xu2,n(0)− β2∂xθ(0)→ 0.

wn ‖u2,n(0)‖ → 0.∫ `2

0

(|∂xu1,n(x)|2 + w 2

n |u1,n(x)|2)

dx −→ 0.

In summary, we have ‖yn‖H −→ 0. This resul contradicts thehypothesis that yn has the unit norm.

Farhat Shel Stability of some string-beam systems

Page 104: Stability of some string-beam systems · 2017-05-19 · Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

THANKS!

Farhat Shel Stability of some string-beam systems