sports med powerpoint 2011

105
Ways To Classify Sports Injuries

Upload: natjkeen

Post on 07-May-2015

5.482 views

Category:

Education


8 download

TRANSCRIPT

Page 1: Sports med powerpoint 2011

Ways To Classify Sports Injuries

Page 2: Sports med powerpoint 2011

Injuries occur more frequently in contact sports such as football.

May be the result of overuse. Usually classified according to their cause;

direct, indirect, overuse or type of tissue injured;soft, hard

CLASSIFYING AND MANAGING SPORTS INJURIES

Page 3: Sports med powerpoint 2011

Caused by forces generated from outside the body.

Direct injuries result in fractures, dislocations, sprains and bruises.

Page 4: Sports med powerpoint 2011

Caused by a force within the body.

Occur as a result of;- inadequate warm-up- ballistic movements- excessive strain on muscles and tendons

Page 5: Sports med powerpoint 2011

Result from intense or unreasonable use of joints or body areas.

Provoked by repetitive, low-impact exercise such as jogging or stepping.

Cause pain and inflammation around the site of the injury.

Page 6: Sports med powerpoint 2011

Anterior shin splints;

irritation to the front portion of the shinbone.

Tendonitis; irritation of tendons e.g.in the Achilles tendon in the heel.

Page 7: Sports med powerpoint 2011

Include damage to; muscletendonsligaments

cartilageskinblood

vesselsorgans nerves.

Page 8: Sports med powerpoint 2011

Acute; occurring

suddenly Chronic; prolonged Chronic soft tissue

injuries necessitates a long rehabilitation due to their severity.

Two of the most common soft tissue injuries are tears and contusions.

Page 9: Sports med powerpoint 2011

Hard tissue injuries cause damage to bones and teeth.

Frequently more serious than soft tissue injuries.

Examples;dislodging a tooth

fracturing a boneMost common is a

fracture.

Page 10: Sports med powerpoint 2011

Due to it’s structural support role,

hard tissue that has been injured must be carefully

examined and cared for.

Page 11: Sports med powerpoint 2011

- tears, sprains, contusions- inflammatory responses- skin abrasion, lacerations, blisters, calluses

Page 12: Sports med powerpoint 2011

Soft tissue injuries include damage to muscle, tendons, ligaments, cartilage, skin, blood vessels, organs and nerves. There are many types of soft tissue injury. They may be acute (occurring suddenly, such as a fracture or sprain) or chronic (prolonged). Acute soft tissue injuries include sprains, strains, dislocation, torn cartilage, contusions and abrasions. Prolonged soft tissue injuries may include many of the same types of injury, but their severity necessitates a long rehabilitation. Two of the most common soft tissue injuries are tears and contusions.

Page 13: Sports med powerpoint 2011

A tear occurs when tissue is excessively stretched or severed. Two types of tear are

sprains and strains.

Page 14: Sports med powerpoint 2011

Ligaments are strong, rigid and relatively inelastic tissue. Their role is to connect bone to bone, thereby providing joint stability. Sprains occur when these ligaments are stretched or torn, resulting in pain, swelling and the inability to perform normal joint movements. Proper rehabilitation management techniques are recommended, as healing in the stretched position will cause permanent instability in the joint. Healing is a slow process because ligaments have a relatively poor blood supply. Sprains can be classified according to the severity of ligament damage.

Page 15: Sports med powerpoint 2011

Strains are different to tears in that they happen only to muscles and tendons. They cause considerable pain and bleeding may cause discolouration around the injury. Any movement in the form of stretching and any pressure on or around the injury will result in sharp pain. There are three levels of strains; these are First degree (relatively little damage), Second degree (moderate damage), Third degree (extensive damage).

Page 16: Sports med powerpoint 2011

Impact with a player or object sometimes causes a contusion. Contusions vary in intensity. Some are superficial, remaining close to the skin. However, others penetrate deeply, causing bone to bruise. Contusions interrupt blood flow to surrounding tissue. When this occurs, a haematoma (blood tumour) forms as the blood clots in the connective tissue membrane. Internal bleeding into the area may continue for a period of time.

Page 17: Sports med powerpoint 2011

Abrasions, lacerations, blisters and calluses are forms of skin trauma. They are caused by the application of force, such as scraping or friction to the outer layer of skin. They can cause concern and considerable discomfort.

Page 18: Sports med powerpoint 2011

Abrasions occur in games like rugby, where a player may execute a tackle on a dry, hard surface.

The injury causes pain and shallow bleeding as a result of the skin being scraped.

The skinned area may be embedded with dirt and foreign materials.

Treatment : gentle cleansing and sterilisation of the wound to prevent infection.

Page 19: Sports med powerpoint 2011

A laceration is a wound where the flesh has incurred an irregular tear.

Lacerations can occur to to the scalp and mouth, particularly the lips and tongue if the soft tissue has been forced against the teeth.

Pressure may need to be applied to prevent bleeding.

Lacerations longer than one centimetre need to be referred to a doctor.

Page 20: Sports med powerpoint 2011

Blisters are caused by a collection of fluid below or within the surface layer of the skin giving rise to intense pain.

Blisters can contain clear liquid or even blood if a blood vessel has been ruptured.

Blisters occur when new equipment is used, equipment is used for a long time repetitively, or the activity requires sudden changes in direction, causing friction (in a shoe).

Treatment: 24 hours rest. If fluid in blister is still present and causing concern, it may need to be surgically released and dressing applied. Torn blisters should be washed in soap and water and liquid antiseptic applied.

Page 21: Sports med powerpoint 2011

Calluses are increased thickness of skin that usually occur over bone protuberances.

Caused by constant pressure from external sources eg: a shoe that is too small

Commonly found on hands because of gripping bat etc.

Calluses cause pain because the area underneath loses blood supply and elasticity, resulting in cracks and tears.

Prevention: ensure clothing and equipment fit, using materials to reduce friction (eg: Socks) and applying donut pads and jellies to reduce resistance between body and object.

Page 22: Sports med powerpoint 2011

Hard Tissue Injuries

Page 23: Sports med powerpoint 2011

CAUSE DEFINITION EXAMPLE

Direct contact withOthersImplementsThe ground

The bone is struck directly, breaking at the point of impact

Forearm is hit by a hockey stick, resulted in a fractured ulna

Indirect force on a body part Force is indirectly applied to the bone causing a fracture away from the point of impact.

Landing on an out stretched arm, resulting in a fracture of the clavicle.

Inappropriate muscular action, for example forceful contraction

Muscles contract forcefully and strongly pull on bones causing a fracture

An athlete jumping from a height, landing on their feet and fracturing their patella.

Overuse, repeated trauma The repeated use (overuse) of a joint causes small fractures in the bone called stress fractures

A runner who trains long distances may develop a stress fracture of a bone in the foot.

Page 24: Sports med powerpoint 2011

Cause damage to bones and teeth e.g.dislodging a tooth or fracturing a bone.

Frequently more serious than soft tissue injuries.

Must be carefully examined because of their structural role.

Page 25: Sports med powerpoint 2011

A fracture is a break in a bone.

Stress fractures develop slowly and caused by overuse.

Classified as simple or compound fractures.

Page 26: Sports med powerpoint 2011

Signs and Symptoms;intense painsound of a bone crackingswelling and deformitybruising and discolorationloss of functiongrating sound if moved

Page 27: Sports med powerpoint 2011

Simple or ClosedThe bone is

fracturedbut there is no cut

or wound at the fracture site.

Page 28: Sports med powerpoint 2011

Compound or Open

A jagged end of the fractured bone protrudes through the skin or there is

a cut near the fracture site but

the bone does not penetrate the skin.

Page 29: Sports med powerpoint 2011

There are many different types of simple fractures they include;

greenstick (zig zag)communited (broken into small

pieces)depressed (sunken)oblique (diagonal)spiral (corkscrew) transverse (horizontal)Types of Fractures

Page 30: Sports med powerpoint 2011

Occurs when the fractured bone damages the local tissues, ie. the organ(s) which it protects.

For example, a lung punctured by a fractured rib.

Page 31: Sports med powerpoint 2011

Dislocation is the displacement of a bone at a joint.

Cause pain and deformity Not a hard tissue injury

technically as the bone is not damaged.

Damage occurs to ligaments which have been stretched or ruptured.

Bone actually comes out of the joint and remains out until it is physically reinserted.

Page 32: Sports med powerpoint 2011

Signs and symptoms of dislocation are;

deformity and swelling

pain and tenderness

loss of function

Page 33: Sports med powerpoint 2011
Page 34: Sports med powerpoint 2011
Page 35: Sports med powerpoint 2011
Page 36: Sports med powerpoint 2011
Page 37: Sports med powerpoint 2011
Page 38: Sports med powerpoint 2011
Page 39: Sports med powerpoint 2011
Page 40: Sports med powerpoint 2011
Page 41: Sports med powerpoint 2011
Page 42: Sports med powerpoint 2011

potentially between 30 – 50% of sports injuries

are preventable

Page 43: Sports med powerpoint 2011

Human (54%) Muscle weakness and imbalance Inadequate warm up and cool down Spectators Collision Improper technique

Terrain (31%) Uneven ground Obstructions on grounds Wet and/or slippery grounds

Equipment (15%) Unsafe protective equipment Inadequate, ill fitting protective equipment Unpadded fixtures

Page 44: Sports med powerpoint 2011

Warm UpAthletes should warm up before all trainings and competitions as close to the commencement as possible. They should warm up with 5 – 10 minutes of light activity, stretching and specific skills of the sport – until they have a light sweat.

Warm up: Helps prepare the mind and

body for exercise Increases body and muscle

temperature Increases the blood and

oxygen to the working muscles

Increases flexibility

StretchingStretching should be performed during warm up and cool down and should follow ‘Guidelines for safe stretching’.

Stretching: Lengthens muscles so

there is minimal strain during exercise

Reduces the risk of injury Maintains flexibility so

muscles can respond effectively during sporting activity

Page 45: Sports med powerpoint 2011

Cool DownAthletes should gradually reduce activity for 5 – 10 minutes following training or competition, followed by static stretching.

Cool down: Prevents pooling of the blood

in the limbs, which can lead to dizziness and fainting

Aids the removal of waste products from the muscles eg lactic acid

Helps maintain flexibility Enhances recovery Reduces muscle soreness and

stiffness

Skill DevelopmentThe higher the skill level the

lower the rate of injury, therefore

skill development and technique is

crucial.

Page 46: Sports med powerpoint 2011

FitnessFitness is important because it allows the athlete to perform at their best and assists in injury prevention. While injuries can occur at any time they are more likely to occur at the end of the sporting activity because the athlete is tire, less able to cope with physical demand and less capable of performing skills to an adequate level due to fatigue.

Components of fitness include: Cardiovascular endurance

(heart and lungs delivering oxygen to the muscles over time)

Muscular endurance (muscles continuing work over an extended period of time)

Strength (muscles producing force against resistance)

Speed (to move as fast as possible)

Power (producing maximum force in the shortest time)

Flexibility (range of movement around a joint)

Page 47: Sports med powerpoint 2011

Improving fitness:Involves the principle of overload, the

body must work harder than it is used to, adapt to this higher level and then improve. This must be done gradually; therefore only one FITT factor should be increased at a time.F Frequency (number of session per day/week)I Intensity (how hard the exercise is performed)T Time (length of time at the intensity required)T Type (exercise must be specific to fitness component)

Page 48: Sports med powerpoint 2011

Rules of the gameMany rules are written for the safety of the game, therefore athletes should learn both the written and unwritten rules of the game. Coaches should emphasise good sportsmanship and fair play and discourage violence or dangerous techniques.

Sporting grounds/areasEnvironments should be safe, be sure of the following:

Level and firm Free from obstructions eg

sprinkler heads Permanent fixtures should

be padded, flexible and highly visible

Spectators should be well away from the playing areas

Adequate matting is provided where necessary

Have safe ground markings

Page 49: Sports med powerpoint 2011

EquipmentCheck equipment for:

Properly erected/constructedStable or movable if necessaryProperly anchoredPadded as appropriateChecked before being used, especially if supporting body weight

Change roomsShould be:

Clean and tidyAdequate size for the number of athletes using themHave adequate soap, paper towel, rubbish bins, brooms, disinfectant available at all times.

Page 50: Sports med powerpoint 2011

Protective equipmentShould be: Designed to protect

against injury Light and comfortable

to wear In good condition Correctly assembled Correctly worn by the

athlete An appropriate size

and fit and not interfere with function

Appropriate for the sport and conditions encountered

Taping and Bracing

Taping and bracing can help to reduce injury or the chance of injury by restricting the movement of the joint. It is effective in prevention and reducing the severity of injuries.

Page 51: Sports med powerpoint 2011

Fluid replacementWhen exercising it is important to replace lost fluids, especially in the heat, otherwise it can lead to dehydration, fatigue, reduced performance, heat illness and even death.When exercising in heat or humid conditions: take it easy, wear loose, light coloured clothing that permits air flow and drink before, during and after activity. Note: It is possible to become dehydrated

in cooler conditions Children and elderly are more susceptible

to heat illness so must be closely monitored in hot and humid conditions.

Page 52: Sports med powerpoint 2011

SunshineAustralia’s harsh conditions, especially between 11 am and 3 pm can be harmful. The Australian Cancer Society recommends:

Slip on a shirtSlop on some

sunscreenSlap on a hat

Wrap on a pair on sunglasses

ColdWhen exercising in the cold consider the following: Plan properly and avoid

long breaks If long breaks occur re

warm up Wear warm clothing Dress in layers to trap

heat The layer closest to the

body should be a natural fibre (wool or cotton)

Cover heads, face and hands to reduce heat loss

Wear wind and waterproof outer clothing

Page 53: Sports med powerpoint 2011

Appropriate management of existing illness/injury

When ill or injured an athlete should not train as it can cause tissue and organ damage and further damage to the injury.

Before returning to sports, athletes should ensure: The doctor or physio has

given them clearance The injured part has full

range of movement Injured area has full

strength The injured area is pain free There is no inflammation of

the injured area

Personal HygieneBathing reduces body odour, keeps skin healthy, is soothing to the skin, prevents chafing and prevents blocked pores. Hand washing reduces the risk of spreading infection or illness. This is important for the health of the athlete.

Page 54: Sports med powerpoint 2011

Group hygieneGolden Rule

DO NOTSHARE

DO NOT share towels, razors, sponges, face washers, water bottles or any other equipment that may contain body fluids

Discourage communal bathing areas such as spas

Ban spitting or urinating in team areas

Do not put hands in water buckets

Proper use of water bottles, nozzle should not touch the lips

All clothes, equipment and surface areas contaminated by blood must be treated as potentially infectious and treated accordingly

All athletes should be vaccinated against Hep B

All group areas should be dry and clean with adequate supplies of cleaning products.

Page 55: Sports med powerpoint 2011

Balanced competitionCompetitions should not simply by age groups, try to balance through: Age Size Strength Skill Gender Disability Height Weight

Common Sense

Tells you it is far better to

prevent than manage!!!!

Page 56: Sports med powerpoint 2011

S STOPT TALKO OBSERVEP PREVENT FURTHER INJURY

Severe injury – get helpLess severe – RICER regimeMinor injury – play on

Page 57: Sports med powerpoint 2011

T TALK O OBSERVE T TOUCH A ACTIVE MOVEMENT P PASSIVE MOVEMENT S SKILL TEST

Page 58: Sports med powerpoint 2011

TYPE CAUSE INJURYACUTE INJURIES

Injuries that occur from a known,or sometimes unknown incident.Symptoms and signs develop rapidly.

(i) Bruise (haematoma)

Direct force applied to the body, such as being hit or kicked, or making contact with player, implement etc.

Compression of soft tissue, resulting in damage to soft tissue and bleeding into the tissue eg bruise (haematoma)May bruise any soft tissue (muscle, skin & fat, periosteum)

(ii) Sprain Joint is forced beyond its normal range of motion

Ligament fibres are tornCategorised according to severityFirst degree (mild) – very few fibres are tornSecond degree (moderate) large number of fibres are tornThird degree (severe) –a complete rupture of the ligament

(iii) Strain Muscle is overstretched or contracts too quickly

The muscle and/or tendon fibres are torn.Categorised according to severity First degreeSecond degreeThird degree

OVERUSE INJURIES

Injuries that develop over a period of time. Symptoms and signs develop slowly

i. continual, repetitive movements Inflammation and pain eg bursitis

ii. Repeating the movement following a minor acute injury which was not noted and which is then aggravated by the repeated action.

Repeated stress and microtrauma to soft tissue eg shin splints, tennis elbow

Page 59: Sports med powerpoint 2011

Minimise tissue damage Minimise inflammation Prevent further tissue damage Early and efficient removal of blood clot and

tissue swelling Minimise scarring of damaged tissue Regain full function before returning to play Enable the doctor or physiotherapist to make

an early diagnosis because the swelling will be less

Reduce rehabilitation time Minimise the seriousness of the injury Allow rehabilitation to begin sooner Allow early and complete return to sport

Page 60: Sports med powerpoint 2011

R REST I ICE C COMPRESSION E ELEVATION R REFER AND RECORD

Page 61: Sports med powerpoint 2011

R – Rest the athlete How – remove athlete from the field

without further damaging and rest from the activity causing the injury

Why – movement will increase blood flow to the injured site, may cause blood clots to dislodge & begin bleeding again and may cause further damage

Page 62: Sports med powerpoint 2011

I – Ice applied to the injuryApply ice directly over the injured site and surrounding tissue for 20 – 30 minutes every 2 hours,How – in a wet towel or plastic bag, in a frozen cup of water continuously moving over the site (ice massage) or a freezer gel bag with a wet towel between the pack and the skinWhy – Ice decreases swelling and painRemember – check the athlete and move the ice around to avoid; cooling too fast, superficial tissues cooling and not deeper areas and oversensitivity to ice. Reassure that the initial cold pain will subside and do not apply ice direct to the skin to avoid ice burns.Do not apply ice to – diabetics, persons with cardiovascular or circulation problems, persons with Raynaud’s phenomenon and other diseases, special body area eg eyes.

Page 63: Sports med powerpoint 2011

A procedure employing the application of ice or cold in the management of an injury

1. EffectsVasoconstriction

Reduced Blood Flow Reduced Swelling and

Haemotoma Reduced Inflammatory

response Speeds up Recovery Improves Healing

Reduced Nerve Conduction

Reduced muscle spasm Reduced pain

2. Stages of Sensationa. Initial coldness of iceb. Warming sensationc. Aching in the injured

aread. Numbness

3. Methods of Application

Ice packsGel packs‘Cryo-Cuff’Ice bucketIce massageVapo-coolant spray

Page 64: Sports med powerpoint 2011

C – Compression applied to the injury How – apply a firm, elastic, non-adhesive

bandage over the ice pack to hold it in place and provide compression

Why – reduces swelling and bleeding at the injury site

Remember – look for numbness, tingling, coldness and pale blue skin when compressing as these are signs that the bandaging is too tight. Reapply not as tight and once ice is completed reapply a dry bandage.

Page 65: Sports med powerpoint 2011

E – Elevate the injured area How – raise the injured area above the level of the

heart wherever possible (when applying ice, when at home, between rehabilitation exercises)

Why – elevation decreases bleeding, swelling and pain

R – Refer and record How – refer to a health care professional for

diagnosis and management, record observations, assessment and initial management

Why – to obtain an accurate and definitive diagnosis and for continuing management and rehabilitation.

Page 66: Sports med powerpoint 2011

NO

H HEATA ALCOHOLR RUNNING OR EXERCISING

M MASSAGE

Page 67: Sports med powerpoint 2011

H – HeatSuch as sauna spa, hot water bottle, hot shower and baths, hot liniment rubs as it increases the bleeding to the area.

A – AlcoholAs it increases swelling

R – RunningAny exercise too soon can make the injury worse

M – MassageAny use of massage and heat rubs in the first 48 – 72 hours increases swelling and bleeding and disrupts the healing process.

Page 68: Sports med powerpoint 2011

When soft tissue is injured, it becomes inflamed but responds by activating a self-healing process. This is referred to as the inflammatory response and may last up to three or four days after the injury occurs, depending on the extent of the damage. The injury will progress through the following phases as part of the healing process.

Page 69: Sports med powerpoint 2011

pain, redness and swelling around the injured area

loss of function and mobility damage to cells and surrounding

tissues increased blood flow to the area leakage of fluid causing swelling

(oedema) the formation of many blood vessels to

promote healing.

Page 70: Sports med powerpoint 2011

the elimination of debris the formation of new fibres production of scar tissue

Page 71: Sports med powerpoint 2011

increased production of scar tissue replacement tissue that needs to

strengthen and develop in the direction that the force is applied. The type of remodelling varies according to the timing and degree of mobilisation of the injury. Excessive exercise too early will cause further damage. Too little exercise will allow large quantities of scar tissue to form, which lacks strength and flexibility.

Page 72: Sports med powerpoint 2011

reduce swelling prevent further damage ease pain.

in the long term, treatment aims to: restore flexibility regain full function prevent recurrence return the player to the field as soon as

possible.

Page 73: Sports med powerpoint 2011

The Three Phases of Healing

Page 74: Sports med powerpoint 2011

This diagram shows the three phases of the repair response, which can be applied to the healing of tissue in general. It also shows the cells involved in the healing process.

Intensity of Response

InjuryRepair Phase

Remodelling Phase

0 3d 4d 11days 6 weeks 6 months

Page 75: Sports med powerpoint 2011

0 days – Erythrocytes and Megakaryocytes – Platelets PDGF, MDGF etc.0 – 1 days – Polymorphonuclear leucocytes,

monocytes, lymphocytes, mast cells and macrophages2 days – Fibroblasts 4 days – Endothelial cells (EDGF)11 days – Microfibroblasts

Page 76: Sports med powerpoint 2011

Cell necrosis occurs immediately following injury Blood capillary rupture leads to haemorrhage and leakage of

plasma Vasoconstriction occurs within 5 – 10 minutes followed by

vasodilation Lymphatic capillaries are also ruptured leading to fluid leakage

into the area Clotting agents block both the blood and lymphatic capillaries,

which prevents any drainage from the area Combination of vasodilation, fluid leakage and cessation of fluid

drainage leads to redness, swelling and heat Pain is due to tissue pressures as well as release of chemicals These chemicals also attract a rapid accumulation of certain

leukocytes, lymphocytes and macrophages into the injured area Macrophages are essential for the progression of the repair

process due to their phagocytic properties and the releasing of further fibroblast growth factors, which are essential to the next phase

Page 77: Sports med powerpoint 2011

Proliferation of Capillaries and Connective tissue

Formulation of granulation tissue containing budding capillaries and fibroblasts. This can be seen in open wounds and is destined to become scar tissue.

Collagen (Type III) causes wound contraction Scar tissue changes the material properties of

the tissue, especially in ligaments and tendons where target collagen fibrils determine the tensile strength

Collagen (I) is orientated in parallel bundles – this forms the classic collagen ‘crimp’

Page 78: Sports med powerpoint 2011

Myofibroblasts (contains actin proteins), interact with the newly laid down collagen fibrils and continue contraction of the collagen fibril framework

They also reorientate the collagen fibrils in the direction of loading, especially during ligament repair

Collagen maturation continues and cell numbers decrease within the tissue

Early motion of ligament as opposed to immobilisation appears to send mechanical signals to the fibroblasts at this stage to assist in the remodelling process

This process is the removal of early poorly orientated collagen fibrils and the deposition of new collagen fibres in the direction of loading

Page 79: Sports med powerpoint 2011

The major objective is – Minimise movement of the injured body part by: Immobilising the joint above the fracture Immobilising the joint below the fracture Support the injured area using a splint or sling

1. Immobilise and support the injured area using a splint or sling

2. Where an ambulance is close at hand (less than 45 minutes), it is recommended that fractures be managed in the position found to prevent further damage. This can be achieved with padding rather than splinting.

3. Check for signs of impaired circulation4. Seek qualified help5. Arrange transport to the hospital6. ‘RICER’ regime and NO ‘HARM’ if appropriate for the injury

and if it does not aggravate the pain.

Page 80: Sports med powerpoint 2011

Splinting: Choose an appropriate splint – the body, the other limb, a smooth, firm

object long enough to extend beyond the joint above and below the fracture Pad the splint at the sites of contact and any hollows Tie the splint to the injured limb above and below the fracture Immobilise the joints above and below the fracture by tying the splint at

those joints Immobilise the fracture site and provide further support by bandaging above

and below the fracture Check for signs of impaired circulation

Air splint:An air splint is easy to apply, provides support and is comfortable. However, they can leak, are often not returned to medical clinics, are difficult to re-clean and sterilise, can impair circulation if inflated too much and do not support upper arm or upper leg injuries.If they are used carefully place the injured limb in the splint, do up the zipper, inflate until firm (ensuring you can touch the limb through the splint) and check circulation and sensation.

Slings: Low arm sling – provides support for the forearm and maintains it in a

horizontal position High arm sling – provides support for the arm and elevates the forearm Improvisation – proper slings are best but improvising is an alternative Knots – when bandages and slings are being used, use reef knots as they do

not tighten and can be quickly released.

Page 81: Sports med powerpoint 2011

The management of a dislocation is the same as that of a fracture.The management of a dislocation involves the following steps:

1. Immobilise and support the injured area using a splint or sling2. Check for signs of impaired circulation3. Seek qualified help4. Arrange transport to the hospital5. ‘RICER’ regime and NO ‘HARM’ if appropriate for the injury and

if it does not aggravate the pain.

Due to the deformity associated with dislocations: pad the injury to the body, other limb or splint before being

tied for immobilisation It may not be possible to effectively immobilise some

dislocations, therefore allow the athlete or support person to keep the injured area in the position of most comfort, and then pad appropriately.

Page 82: Sports med powerpoint 2011

Common dislocations: Shoulder – are common because of the structure of the

joint, first time dislocations may have fractures and nerve damage. Refer to a doctor for relocation – DO NOT ATTEMPT THE RELOCATION.

Fingers – may be associated with fractures, refer to a doctor for relocation.

Patella – are not overly common but occur more often in teenage athletes, some relocate spontaneously as the muscle spasm relaxes, however they still require medical attention.

Why not to relocate a dislocation: The potential for fractures to exist The muscles that cross the joint usually go into very

forceful spasm, thus anaesthetic is often needed for relocation

The damage to ligaments or impingement of nerves

Page 83: Sports med powerpoint 2011

Common complications associated with dislocations:

The potential complications are the same as a fracture and also include: Bleeding – there may be bleeding in the joint Possible fractures – sometimes the inability to

move the joint is due to a fracture not the dislocation. Hence all dislocations should be immobilised, supported and not moved/relocated without x-ray.

Ligament damage – dislocation usually results in torn or ruptured ligaments around the joint and/or reduced stability at the joint, which may cause the joint to be more prone to further dislocations.

ALL DISLOCATIONS MUST BE REFERRED FOR PROPER ASSESSMENT AND FOLLOW

UP.

Page 84: Sports med powerpoint 2011

Diagnostic Tests

Page 85: Sports med powerpoint 2011

Most useful in assessing bony injuries and joint dislocations

Provide a general view of an injury Painless, patient remains still for a few

seconds

Page 86: Sports med powerpoint 2011
Page 87: Sports med powerpoint 2011
Page 88: Sports med powerpoint 2011

Assesses joint injuries Involves injection of a dye into a joint

followed by an X-ray

Page 89: Sports med powerpoint 2011

Radiography equipment

Page 90: Sports med powerpoint 2011
Page 91: Sports med powerpoint 2011

Allows cross-sectional and ‘up close’ assessment of bone, soft tissue and calcified areas

Assists in identifying small fractures and bone fragments within joints

Best suited to anatomically complex regions such as the spine, shoulder, hip and ankle joint

CT Arthrogram (as per arthrogram)Uses CT scanning to closely assess a joint

Page 92: Sports med powerpoint 2011
Page 93: Sports med powerpoint 2011

Figure 1 shows a computed tomography (CT) scan of two normal kidneys, looking from the top of the head down.

Figure 2 shows a CT scan of two kidneys that are much smaller and misshapen because of chronic kidney disease.

Page 94: Sports med powerpoint 2011

Allows cross-sectional assessment of soft tissue and hard tissue

A magnetic field around the injured site causes all joint structures to be displayed in varying shades

Provides most complete view of the internal structure of the body. (disease detection, joints, soft tissues, and bones of the body

Page 95: Sports med powerpoint 2011
Page 96: Sports med powerpoint 2011

Side views of the knee show the normal location of the outside, or lateral, meniscus (see fig.1) and a meniscus that has been torn and moved (see fig. 2).

Page 97: Sports med powerpoint 2011

Use a dye that seeks out and attached to new bone forming cells (osteoblasts)

Useful for assessing bony or joint injuries

Dye is injected into arm 3-4hrs before scan

Page 98: Sports med powerpoint 2011
Page 99: Sports med powerpoint 2011
Page 100: Sports med powerpoint 2011

Use sound waves to assess soft tissues, especially muscles and tendons

Most commonly used to assess large tendons (e.g. Achilles, Patella, Rotator Cuff)

Page 101: Sports med powerpoint 2011
Page 102: Sports med powerpoint 2011
Page 103: Sports med powerpoint 2011

Assess the pressure in muscle compartments at rest and during exercise

Involves placing a catheter in the compartment while area is under anaesthetic. Catheter is attached to a manometer which measures the pressure

Most common in the lower legs

Page 104: Sports med powerpoint 2011

Rehabilitation of an athlete is to ‘return the athlete to the previous level of fitness, skill and competition’.Rehabilitation: Begins during the definitive care of an injury Continues through to prevention of further injuries Is based on the ‘SAID’ principle

S SpecificA Adaptation toI ImposedD Demands

The more you do something the easier it becomes, provided there is no pain

Practice must be perfect and specific to the requirements of the athlete to achieve progress

As the skills become easier, progress to a more difficult task, until it becomes easy, and then progress again.

Rehabilitation programs are generally set by a doctor or physiotherapist.

Page 105: Sports med powerpoint 2011

END OF POWERPOINT