spin physics at anke-cosytheor.jinr.ru/~spin2012/talks/plenary/dymov.pdfnn interaction properties at...

33
September 21 st 2012, Sergey Dymov, JINR, FZ Juelich for the ANKE collaboration SPIN 2012, Dubna Spin Physics at ANKE-COSY Mitglied der Helmholtz-Gemeinschaft

Upload: others

Post on 31-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • September 21st 2012,

    Sergey Dymov, JINR, FZ Juelich

    for the ANKE collaboration

    SPIN 2012, Dubna

    Spin Physics at ANKE-COSY

    Mitg

    lied

    der H

    elm

    holtz

    -Gem

    eins

    chaf

    t

  • S. Dymov Spin Physics at ANKE-COSY 2

    Contents

    Experimental facility• COSY in Juelich• ANKE @ COSY

    Experiments with polarized beam and target at ANKE• NN interaction properties at small momentum transfers• nuclear structure, short range NN interactions • η meson properties• NN→NNπ near threshold (χPT) and in Δ region

    Future program

    Summary

  • S. Dymov Spin Physics at ANKE-COSY 3

    • Energy range: 0.045 – 2.8 GeV (p)

    0.023 – 2.3 GeV (d)

    • Max. momentum ~ 3.7 GeV/c• Energy variation (ramping mode)• Electron and Stochastic cooling• Internal and external beams• High polarization (p,d)• Spin manipulation

    Hadronic probes: protons, deuterons

    Polarization: beam and targets

    COSY (COoler SYnchrotron) at Jülich (Germany)

  • S. Dymov Spin Physics at ANKE-COSY 4

    Beam quality: without cooling: ∆p/p ~ 1·10-3 electron cooling: ∆p/p ≤ 5·10-5 pp1.5 GeV/c

    Beam intensities: protons, unpolarized: 2·1010 (cooled) protons, polarized: 7·109 (cooled) deuterons, unpolarized: 5·1010 (cooled) deuterons, polarized: 1·1010 (cooled)

    COSY – Beam parameters

  • S. Dymov Spin Physics at ANKE-COSY 5

    ANKE

    TOF

    WASA

    COSY – Experimental Facilities

    Hadron physics with hadronic probes

    Experimental set-ups:

    ANKE WASA EDM (BNL/JEDI) PAX

    TOF (ext.)

    PAX

    EDM

    … the machine forhadron spin physics

  • S. Dymov Spin Physics at ANKE-COSY 6

    ANKE@COSY

    The ANKE spectrometer at internal targetposition of COSY allows measurement of:

    • Fast forward positive and negative ejectiles in Forward, Positive and Negative detectors (FD, PD, ND): momentum, Id by TOF, dE/dX

    • Slow positive ejectiles in Vertex detector (STT): energy, tracking, Id by dE/dX

    Targets available:• Cluster jet H2 and D2• Internal polarized (H, D) target (PIT) with a storage cell

    STT

  • S. Dymov Spin Physics at ANKE-COSY 7

    Polarized Internal Target (PIT):

    Polarised H (D) gas (ABS) in the cell Qy = 0, -1, +1

    Density ~1013 cm-2

    Storage cell: 20 x 15 x 390 mm3

    Lamb-shift Polarimeter

    Polarized Internal Target (PIT):

    Polarised H (D) gas (ABS) in the cell Qy = 0, -1, +1

    Density ~1013 cm-2

    Storage cell: 20 x 15 x 390 mm3

    Lamb-shift Polarimeter

    PIT at ANKE

    COSY beamCOSY beam

  • S. Dymov Spin Physics at ANKE-COSY 8

    η meson properties:• study of FSI in the near-threshold dp→3He η with polarized d beam• presize η-mass determination by missing-mass method

    NN interaction properties at small momentum transfers:• small angle pp, np-elastic scattering

    • charge-exchange (CE) deuteron break-up reaction

    Short range NN interactions:• deuteron break-up reaction at large momentum transfer• pp→{pp}sπ

    0 in Δ (1232) region

    χPT development for NN→NNπ:• near-threshold pp→{pp}sπ

    0 and pn→{pp}sπ-

    Experiments with polarized beam and target at ANKE

    Diproton production

  • Internal Experiments at COSY Folie 9

    GEM: pd → 3Heη

    SATURNE: pd → 3Heη

    NA48: π− p → η n

    MAMI: γ p → η p

    KLOE: φ → η γ

    CLEO: Ψ(2s) → η J/ψ

    GEM: pd → 3Heη

    SATURNE: pd → 3Heη

    NA48: π− p → η n

    MAMI: γ p → η p

    KLOE: φ → η γ

    CLEO: Ψ(2s) → η J/ψ

    COSY/ANKE: d+p→3He+ηMethod: precise determination of production threshold !

    COSY/ANKE: d+p→3He+ηMethod: precise determination of production threshold !

    Precision data – but inconsistency w/ new data !?

    Precision data – but inconsistency w/ new data !?

    dBarrier bucket

    New technique !

    New technique !

    RF solenoid EDDA

    RF-induced spin-resonance

    PLB 619 (2005) 281

    0

    1 1 resf

    G fγ

    = × − ÷

    COSY: Determination of η-mass via 2-body reaction

    Phys. Rev. ST-AB, 13, 022803 (2010)

  • S. Dymov Spin Physics at ANKE-COSY 10

    Determination of η-mass via 2-body reaction

    Near threshold: Final state momentum is very sensitive to the η-mass !

    Dependence: pf = pf ( pd, mη )

    Needed accuracy: ∆pd / pd < 10 -4

    The goal:

    Accurace of the η-mass: ∆m η < 50 keV/c2

    Final state momentum of 3He-nuclei: ∆pf = 400 keV/c

    Beam momentum: ∆pd = 300 keV/c

    Result: m(η)=(547.873 +- 0.005(stat) +- 0.027(syst)) MeV/c2Compatible with the decay measurements. Phys. Rev. D 85, 112011 (2012).

  • S. Dymov Spin Physics at ANKE-COSY 11

    Diproton reactions at ANKE

    S wave: Isotropy in {pp} - rest frame pp Final State Interaction (Migdal-Watson FSI factor)

    Excitation energy resolution Example: pp→{pp}sγ at 500 MeV

    Deuteron: bound (p+n) system, very well studied Diproton: free {pp}-pair in 1S0 state, Epp < 3 MeV

    New tool to study hadron interactions

    Two nucleon systems:

  • S. Dymov Spin Physics at ANKE-COSY 12

    d-breakup at high momentum transfer

    pd dynamics at high momentum transfer– pd {pp}s (00) + n– Kinematics like pd backward elastic

    → Same ∆+ONE+SS modelkey to T20 problem in pd dp

    – internal deuteron momentum for ONE 0.35 - 0.6 GeV/c– S-wave pp-pairs

    → Suppression of ∆ → Dominance of ONE→ NN-potential at short distance

    – Next: – Analyzing power T20 ,

    obtained parasitically from the CE data at 1.2, 1.6, 1..8 GeV

    S.Yaschenko et al., PRL 94 (2005) 072304

    V. Komarov et al., PL B 553 (2003) 179

  • S. Dymov Spin Physics at ANKE-COSY 13

    dp observables: dσ/dΩ, T20, T22, Cy,y,

    np observables: Ay, Ayy, Dyy, Cxy,y,

    quasi-free

    dp→{pp}S (00)+n

    pd→{pp}S(1800)+n

    ↓ p

    n

    d→

    ↑ n

    ↑ p

    ↑ psp

    p→D

    deuteron beam:

    deuteron target:

    np system: different isospin channel

    via Charge-Exchange deuteron breakup:

    Charge-exchange d-breakup (1)

    Epp < 3 MeVEpp < 3 MeV Transition from d → (pp)1S0: pn → np spin flip

    np spin-dependent amplitudes:

    22222220 ,,,, εδβγ

    σ +⇒TTdqd

  • S. Dymov Spin Physics at ANKE-COSY 14

    Axx (T22)

    Td = 1.2 GeV

    Ayy (T20)

    Tn = 600 MeV⇒ SAID np amplitudes

    Deuteron breakup: dp {pp}s n (polarized beam)

    Data for Td = 1.2 GeV – Proof of Method !

    np-data published in – EPJA ,40, 2009

    theory – David Bugg & Colin Wilkin NPA, 467, 1987

    Charge-exchange d-breakup (2)

  • S. Dymov Spin Physics at ANKE-COSY 15

    New!

    Td = 1.6 GeV

    New!

    Td = 1.8 GeV

    Td = 2.3 GeV

    New!

    Deuteron breakup: dp {pp}s n (polarized beam)

    Data for Td = 1.6, 1.8, 2.3 GeVNew: measurement of Axx, Ayy

    np pn (CEX-amplitudes)Next step: p-beam

    Charge-exchange d-breakup (3)

  • S. Dymov Spin Physics at ANKE-COSY 16

    Td = 1.8 GeV

    Td = 1.6 GeV

    New!

    New!

    Td = 2.3 GeV

    New!

    P R E L

    I M I N

    A R Y

    Deuteron breakup: dp {pp}s n (polarized beam)

    Data for Td = 1.6, 1.8, 2.3 GeV New: measurement of dσ/dq

    np pn (CEX-amplitudes)Next step: p-beam

    Charge-exchange d-breakup (4)

  • S. Dymov Spin Physics at ANKE-COSY 17

    During this time:Change of target-polarization

    (+,-) every 5 sec

    Deuteron breakup: dp {pp}s n (polarized beam and target)

    First double polarized measurement at ANKE

    E1 E2

    (COSY-Supercycle)

    Acceleration

    15 min

    45 min

    Stacking Injection (~100x)

    (Electron cooling on)

    Measurement cycle

    Beam

    current

    New! Td = 1.2 GeV

    Cy,y

    Cx,x

    Charge-exchange d-breakup (5)

  • S. Dymov Spin Physics at ANKE-COSY 18

    New!

    ∆0

    New!

    n

    n ∆0Deuteron breakup: dp {pp}s ∆0 (polarized) np p∆0

    first measurement (at 2.3 GeV)! significant differences (∆0 and n):

    - relative sign of A´s interchanged- A´s ~ 0 for low momentum transfer

    Td = 2.3 GeV

    dp {pp}s+X

    Charge-exchange d-breakup (6)

  • S. Dymov Spin Physics at ANKE-COSY 19

    Future NN interaction program at ANKE: pp scattering

    • Description of nucleon-nucleon interaction requires precise data for Phase Shift Analysis

    • COSY-EDDA collaboration produced wealth of data forpp elastic scattering.

    • There are no experimental data at low angles (θcm

  • S. Dymov Spin Physics at ANKE-COSY 20

    R. Arndt: “Gross misconception within the community that np amplitudes are known up to a couple of GeV. np data above 800 MeV is a DESERT for experimentalists.”

    Ay (np)

    dσ /dΩ (np)

    ANKE

    np forward

    np charge-exchange

    ANKE

    np forward

    np charge-exchange

    ANKE is able to provide the experimental data both for

    pp and np systems and improve our understanding of NN interaction

    Future NN interaction program at ANKE: np scattering

  • S. Dymov Spin Physics at ANKE-COSY 21

    • Theoretical description of pN→pp π process is considerably simplified if two final protons are detected at low excitation energy, i.e. such di-protons are predominantly in the 1S0 state.

    • Spin structure of the pn→{pp}sπ-- (or pp→{pp}sπ

    0 ) is ½+½+→0+0- only two spin amplitudes (compared to 6 for pp→dπ+)

    Near-threshold pion production at ANKE (1)

  • S. Dymov Spin Physics at ANKE-COSY 22

    Near-threshold pion production at ANKE (2)

    Extension of ChPT to the NN→NNπ process

    A full data set of all observables in pp → {pp}sπ0 and np → {pp}sπ− would allow us to determine the partial wave amplitudes and test the ChPT predictions.

    pp → {pp}sπ0 includes 3P0 → 1S0 s, 3P2 → 1S0 d and 3F2 → 1S0 d (Ps, Pd and Fd)np → {pp}sπ−− adds 3S1 → 1S0 p and 3D1 → 1S0 p (Sp and Dp)

    The p-wave amplitudes give access to the 4Nπ contact operator, controlled by the low energy constant d.

    3Nscattering

    NN NNπ

    LEC d connects different low-energy reactions: pp→de+ν, pd→pd, γd→nnπ+

    Our goal is to establish that the same LEC controls NN→NNπ

  • S. Dymov Spin Physics at ANKE-COSY 23

    Accessing LEC d via Ax,x and dσ/dΩ The direct and most clean way to access the LEC d is to measure the cross section and the spin correlation coefficient Ax, x in np → {pp}sπ−−:

    (1-Ax,x)dσ/dΩ ~ |δ|2k2 sin2θ, Ay,y=1

    where δ is one of the p-wave amplitudes, containing the 4Nπ contact termOnly one factor (1-Ax, x)dσ/dΩ(90

    0) has to be extracted from the measurement.

    The method does require subtraction of data with different systematic errors.

    ChPT calculation by FZJuelich IKP theory, no dwaves included (V.Baru et al)

  • S. Dymov Spin Physics at ANKE-COSY 24

    Experimental program at ANKE

    pN→{pp}sπ interactions at T=353 MeV:

    dσ/dΩ and Ayp in pp→{pp}sπ

    0 measured in 2009, published

    dσ/dΩ and Ayp in pn→{pp}sπ

    - measured in 2009, published

    Ax,x, Ay,y in np→{pp}sπ- measured in 2011

    Next step: measurement of Ax,z in pn→{pp}sπ-

  • S. Dymov Spin Physics at ANKE-COSY 25

    Experiment: scheme of measurementdσ/dΩ and Ay

    p

    pd→{pp}sπ-+pspec pp→{pp}sπ

    0

    Polarized proton beam: Py=65%H2 , D2 cluster jet target: d=5∙10

    14 cm-2

    Luminosity: L=1.5 pb-1Polarimetry, normalization: pn→dπ0

    π0 case: {pp} detectedπ- case: + pspec or π-

  • S. Dymov Spin Physics at ANKE-COSY 26

    pp→{pp}sπ0 (talk by D. Tsirkov on Tuesday)

    ANKE (black) compared to CELCIUS (red) at 360 MeV(R. Bilger et al, NPA 663 (2001) 633)

    Results on dσ/dΩ and Ay (1)

    D.Tsirkov et al., Phys. Lett. B 712, 370 (2012)

  • S. Dymov Spin Physics at ANKE-COSY 27

    pn→{pp}sπ-

    TRIUMF dataH. Hahn et al., Phys. Rev. Lett. 82 (1999) 2258,H. Hahn et al., Phys. Rev. Lett. 82 (1999) 2258,F. Duncan et al., Phys. Rev. Lett. 80 (1998) 4390F. Duncan et al., Phys. Rev. Lett. 80 (1998) 4390

    S.Dymov et al., , Phys. Lett. B 712, 375 (2012)

    Results on dσ/dΩ and Ay (2)

    ANKETRIUMF pn→{pp}sπ

    -

    TRIUMF π- 3He→pnnsp

  • S. Dymov Spin Physics at ANKE-COSY 29

    Measurement of Ax,x in dp→psp{pp}sπ-

    Vector polarized deuteron beam (P=50-60%) + hydrogen polarized internal target (Q=70-80%)with a storage cell (lower target density)

    + Beam and target polarization product PyQy from Ay, y=1, Ax, x(0

    0)=Ax, x(1800)=1 :

    Ax, x~ PyQy , Ay, y~ PyQy

    • Cell material: 25 μm of Al + 5 μm of teflon is the main source of background• Shape of background obtained from dedicated measurement with N2 in the cell and with empty cell

    Polarimetry, normalization: pn→dπ0

  • S. Dymov Spin Physics at ANKE-COSY 30

    cos2(φ) = 1 get Ay,y

    cos2(φ) = 0 get Ax,x

    θπ=72-1080θπ=0-36

    0

    θπ=36-720 θπ=108-144

    0

    θπ=144-1800

    3) Ax,x from 1-parameter fit

    Results on Ax,x in pn→{pp}sπ- (1)

    Observed experimental asymmetry:

    ξ=Σ1−Σ2Σ1+ Σ2

    where Σ1=N ↑↑+ N ↓↓,Σ2=N ↑↓+ N ↓↑

    1) Ay,y from the 2-parameter fit2) From the theory Ay,y = 1, consistent with data. Ay,y can be fixed

    ξ /PQ=(Ax , x sin2φ+ A y , y cos

    2φ ),

  • S. Dymov Spin Physics at ANKE-COSY 31

    PWA prediction without d-waves:

    (1-Ax,x) dσ/dΩ(900) ≈ 52 nb

    Preliminary result from the Ax,x measurement:

    (1-Ax,x)dσ/dΩ(900) = (78 ± 25) nb

    (analysis is in progress)

    Preliminary results on Ax,x in pn→{pp}sπ- (2)

    (1-Ax,x)dσ/dΩ ~ |δ|2k2 sin2θ

  • S. Dymov Spin Physics at ANKE-COSY 32

    Next step: Ax,z in pn→{pp}s π--

    Assumptions used in PWA:

    Phase of MSP fixed by Watson theorem

    (relates the phase of initial interaction to that of pp-elastic scattering)

    Neglect initial 3P2-3F2 coupling,

    phases of MdP, Md

    F fixed by Watson theorem

    Neglect squares of d-waves and their interference

    Ax,z will test the assumptions and provide new constrains on PWA.np → {pp}sπ− is preferable since it contains information on the p-waves

    Theoretical uncertainty inherent in the assumptions is hard to estimate

    Longitudinal beam polarization requires a Siberian snake @ COSY(snake installation at PAX IP is foreseen in 2012-2013)

  • S. Dymov Spin Physics at ANKE-COSY 33

    Physics at COSY using longitudinally polarized beams: Snake Concept

    • Should allow for flexible use at two locations

    • Fast ramping (< 30s)

    • Cryogen-free system

    B⋅ dl (Tm)

    pn→{pp}sπ- at 353 MeV 3.329

    PAX at COSY 140 MeV 1.994

    BUP at COSY 30-50 MeV 1.165

    Tmax at COSY 2.88 GeV 13.887

    ANKE-location

    180o

    180o

    EDDA

    PAX-location

  • S. Dymov Spin Physics at ANKE-COSY 34

    COSY - unique fascility for hadron physics with polarized hadronic probes

    ANKE allows to investigate a broad field of physics, including NN-scattering, meson production and presicion experiments

    The polarized internal target at ANKE allows thedouble polarization experiments – key to the future experimental program at ANKE

    Longitudinal polarization at COSY brings new opportunities

    Summary

    Introduction: OverviewSlide 2Slide 3COSY – Beam parametersSlide 5Slide 6Slide 7Slide 8Slide 9COSY: Determination of h-mass via 2-body reactionSlide 11NN Scattering: pd dynamicsCOSY: NN scattering at ANKERecent Achievements – NN scatteringSlide 15Slide 16Slide 17Slide 18Introduction: NN interactionSlide 20Slide 21Slide 22Slide 23Slide 24Slide 25Slide 26Slide 27Slide 29Slide 30Slide 31Slide 32Slide 33Slide 34