specification and site control of the permeability of the

27
Specification and site control of the permeability of the cover concrete: The Swiss approach E. Denarié, EPFL, Lausanne F. Jacobs, TFB, Wildegg A. Leemann, EMPA, Dübendorf T. Teruzzi, SUPSI, Lugano R. Torrent, Quali-TI-Mat, Coldrerio Switzerland RILEM Workshop Durability, ETHZ, 17-18 April 2012

Upload: others

Post on 18-Dec-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Specification and site control of the permeability of the cover concrete:

The Swiss approach

E. Denarié, EPFL, LausanneF. Jacobs, TFB, WildeggA. Leemann, EMPA, DübendorfT. Teruzzi, SUPSI, LuganoR. Torrent, Quali-TI-Mat, Coldrerio

Switzerland

RILEM Workshop Durability, ETHZ, 17-18 April 2012

2

Content

Need to assess the penetrability of the covercrete onsite

Relevance of site measurement of air-permeability

Recommendations of the Swiss FHWA

Conclusions: foreseeable consequences of theSwiss approach for Concrete Construction

3

Content

Need to assess the penetrability of the covercrete onsite

Relevance of site measurement of air-permeability

Recommendations of the Swiss FHWA

Conclusions: foreseeable consequences of theSwiss approach for Concrete Construction

4

Quality of Concrete in a Real Structure

Specimens, cast and cured under standard conditions, DO

NOT represent the quality of the vital “covercrete”

Due to:

• Segregation

• Compaction

• Curing

• Bleeding

• Finishing

• Microcracks

“Covercrete” ofPoorer Quality

CO2 Cl- SO42-, Abrasion,

Frost

Durability = f (penetrability, thickness)

5

Swiss Standard SIA 262:2003“Concrete Construction” (Swiss Concrete Code)

”With regard to durability, the quality of the cover concrete is of particular importance“

”The ‘impermeability’ of the cover concrete shall be checked, by means of permeability tests (e.g. air permeability measurements), on the structure or on cores taken from the structure“

6

Valve 1

Vacuum Pump

PressureRegulator

(Pe=Pi)

PiPe

i

i : Inner chamber

e : External chamber

2-Chamber

Vacuum cell

Computer

Touch-screen

Concrete

Soft rings

Valve 2

e

Air Permeability “in situ”: SIA 262/1-E:2003

PermeaTORR (M-A-S 2008)

Torrent Permeability Tester (Proceq 1995)

7

Evolution of Pi (simplified)

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30

Pre

ssu

reP

i(m

bar)

60 720

Close V2

∆P=0

t =0Pi ~1000

Close V1

0 135tf

time (s) – square root scale

tmax

360

∆P~20 mbar

kT = 9.2 10 -16 m²

kT = 0.070 10-16

807/05/2012 8

Pi = Pe Controlled unidirectional air-flow

i

e

Concrete

Unidirectional air flow

into the inner chamber

9

Calculation of kT

kT =A

ln

2 ε Pa

Vc2

2

µ

Pa + ∆Pi (tf)Pa - ∆Pi (tf)

√ tf - √ to

• kT: coefficient of air-permeability (m2)

• Vc : volume of inner cell system (m3)• A : cross-sectional area of inner cell (m2)• µ : viscosity of air (= 2.0 10-5 N.s/m2)• ε : estimated porosity of the covercrete (= 0.15)• Pa : atmospheric pressure (N/m2)• ∆Pi: pressure rise in the inner cell at end of test (N/m2)• tf : time (s) at the end of the test (2 to 6 or 12 min)• to : time (s) at the beginning of the test (= 60 s)

Derivation at www.m-a-s.com.ar

10

Content

Need to assess the penetrability of the covercrete onsite

Relevance of site measurement of air-permeability

Recommendations of the Swiss FHWA

Conclusions: foreseeable consequences of theSwiss approach for Concrete Construction

11

Relation of kT with other Durability Indicators

0

5

10

15

20

25

0.001 0.01 0.1 1 10 100

kT (10-16

m²)

24

-h S

orp

tiv

ity

(g

/m²/

)

Laboratory

Tunnel

Bridge

0

25

50

75

100

125

150

0.001 0.01 0.1 1 10

kT (10-16

m²)

Ma

x.

Pe

ne

tra

tio

n (

mm

) Water Penetration

under Pressure

(EN 12390-8)

100

1000

10000

100000

0.001 0.01 0.1 1 10 100

kT (10-16

m²)

Co

ulo

mb

s

Very

Low

Low

Moderate

High (+ Very High)ASTM C1202Water Sorptivity

0

5

10

15

20

25

0.001 0.01 0.1 1 10 100

28-d. kT (10-16

m²)

Carbonation

50

0-d

. C

arb

on

ati

on

(mm

)

12

Content

Need to assess the penetrability of the covercrete onsite

Relevance of site measurement of air-permeability

Recommendations of the Swiss FHWA

Conclusions: foreseeable consequences of theSwiss approach for Concrete Construction

13

Involvement of ASTRA (Swiss FHWA)

(1993)

(2009)

14

Reproducibility of kT test

Specification of kT

Suitable age, temperature and moistureconditions

Sampling

Conformity Rules

Reporting

Recommendations for site kT quality control

Issued by the Swiss Federal Highway Administration end 2009

15

Reproducibility on Bridge and Tunnel Elements

0.001 0.01 0.1 1 10 100

Coeff. Air-Permeability kT (10-16

m²)

2

1

4

3

Very Low Low Moderate High

Lab

Bridge

low SD

N=15

Tunnel

high SD

N=6

5

Very High

2

1

4

3

16

Situation Swiss Standards

1010------------------DCl max(10-12 m²/s)

0.450.450.500.500.500.600.650.65w/cmax

320320300300300280280280Cmin (kg/m³)

30/37

30/37

25/30

25/30

30/37

25/30

25/30

25/30

StrengthClassmin

XD3XD2bXD2aXD1XC4XC3XC2XC1

0.50.52.02.02.0---------Site kTs(10-16 m²)

------101010---------qwmax (g/m²h)

ChloridesCarbonationExposure

Class

20

03

20

08

Ye

ar

20

13

?

kTs= "statistical maximum"; limits proposed in Recommendations

17

Testing Recommendations

Age of testing:Between 28 (60 for slow binders) and 90 days

Temperature

Concrete temperature should be ≥ 5°C.

Moisture (one of the following conditions should be fulfilled)

Absolute moisture, measured by contact impedance surface tester, ≤ 5.5 %

Electrical resistivity, measured by Wenner method, ≥10-20 kΩ.cm

Guidelines given on when the above conditions are likely to be fulfilled

18

Sampling

Elements made under nominally same conditions are grouped and listed chronologically

Surface Lots defined (500 m² or 3 concreting days)

Measurement points (6) selected at randomSurface LotH > 150 mm

H > 150 mm

D > 50 mm D > 50 mm

kT1

kT2

kT3

kT4 kT5

kT6

> 200 mm

19

Condition 1:Not more than 1 test (out of the 6) with kT > kTs

Condition 2:If 2 tests > kTs, 6 new points are selected at random from the same Lot

Not more than 1 (out of the new 6 tests) with kT >

kTs

Conformity Criterion

If none of the above Conditions is fulfilled, the Lot is considered as non-compliant with the specified kTs and consequences follow

20

O-C Curve of Adopted Conformity Criterion

This gives a probabilistic meaning to kTs

010

2030

4050

6070

8090

100

0 10 20 30 40 50 60 70 80

Percentage of Concrete with kT>kTs in Test Area

Pro

ba

bili

ty o

f Acc

ep

ting

Te

st A

rea

(%

)

Condition1

Condition 2

21

‘Covercrete’

Quality = K-1Execution:

• Placing• Compaction• Finishing• Curing

kT checked on

site

K = Penetrability

Concrete

Production

Standard “K”

Tests on cast

Specimens

New Situation

Performance specification of site concrete

DESIGN PRACTICE CONTROL

Specification

of

Kmax

on Delivered

and Site

Concrete

22

Content

Need to assess the penetrability of the covercrete onsite

Relevance of site measurement of air-permeability

Recommendations of the Swiss FHWA

Conclusions: foreseeable consequences of theSwiss approach for Concrete Construction

23

1. Specifying the air-permeability of the covercrete, measured on site, aims at controlling the end product

Conclusions

2. By checking the end product, a performance-oriented mindset is created in all players, ensuring a fair competition for:

Contractors, who have to deliver the specified quality of the product to be tested

Concrete Producers, who have to efficiently design, produce and deliver mixes capable of achieving the required performance

Raw Materials Suppliers (cement, additions, admixtures) who have to design their products to achieve the best performance in concrete

24

3. Discourages all too common bad practices such as:

Accidental or deliberate transgressions of the specified w/cmax by concrete producers

Uncontrolled addition of water to the ready-mixed concrete trucks after leaving the batching point

Incorrect placing and compaction practices

Poor finishing techniques of floors and pavements

Insufficient or total absence of moist curing

Conclusions

25

SCC, creating a more compact and uniform covercrete

Permeable formwork liners

More efficient curing compounds and/or “self-curing”concretes

High Performance Concretes and Composites

Low or no Shrinkage Concretes (ShCC)

More sustainable systems, currently precluded by prescriptive standards

4. Incentives innovation by encouraging the use of:

Conclusions

26

Measurement of the coefficient of air-permeability kT

Measurement of cover depth

Application of models for carbonation-induced corrosion based on air-permeability kT (e.g. Parrott)

Application of models for chloride-induced corrosion based on air-permeability kT (e.g. EPFL) or through correlations of DCl and kT (e.g. EHE-08)

5. Allows estimating service life from measurements conducted on the structure

Conclusions

27

Andrade, C., González Gasca, C. and Torrent, R. (2000), “The suitability of the ‘TPT’ to measure the air-permeability of the covercrete”, ACI SP-192: 301-318.

Brühwiler, E., Denarié, E., Wälchli, Th., Maître, M. et Conciatori, D. (2005), "Dauerhafte Kunstbauten bei geringem Unterhalt - Ausgewählte Kapitel", Office Fédéral des Routes, VSS Report 587, Chapter 1, pp. 1-48, Bern, Suisse.

Denarié E., Conciatori D., Simonin P., (2004), "Essais comparatifs de caractérisation de bétons d'enrobage - phase I: bétons de laboratoire", Rapport d'essais MCS 02.12.07-1, Laboratoire de Maintenance, Construction et Sécurité des Ouvarges (MCS), Ecole Polytechnique Fédérale de Lausanne, Switzerland.

Denarié E., Maître M., Conciatori D., Brühwiler E., (2005), Air permeability measurements for the assessment of the in situ permeability of cover concrete, in proceedings International Conference on Concrete repair, rehabilitation and retrofitting – ICCRRR 2005, 21-23, November 2005, Cape Town,South Africa.

Di Pace G., Calo D. and Torrent, R. (2008), “Assessment of concrete permeability in tunnels”, SACoMaTIS 2008, Rilem Intern. Conf., Varenna, Italy, Vol. 1, pp. 327-336.

Fernández Luco, L. and Revuelta Crespo, D. (2005), “Ensayo de penetración de agua bajo presión y Ensayo de permeabilidad al aire, método de Torrent, sobre probetas de hormigón de 150x300mm”, Informe N° 18’728, Instituto Eduardo Torroja, Madrid, 8 p.

Fornasier, G., Fava, C., Fernández Luco, L. and Zitzer, L. (2003), “Design of Self Compacting Concrete for Durability of Prescriptive vs. Performance-Based Specifications”, ACI SP 212:197-210

Jacobs, F. (2006), “Luftpermeabilität als Kenngrösse für die Qualität des Überdeckungsbetons von Betonbauwerken”, Office Fédéral des Routes, VSS Rapport 604, Bern, Suisse, downloadable from www.tfb.ch Publikationen.

Jacobs, F., Denariè, E., Leemann, A. und Teruzzi T. (2009), “Empfehlungen zur Qualitätskontrolle von Beton mit Luftpermeabilitätsmessungen”, Office Fédéral des Routes, VSS Report 641, Bern, Suisse, downloadable from www.tfb.ch Publikationen.

Kattar, J.E., Abreu, J.V. de and Cruz, L.O. (1995), “Concreto de alto desempenho modificado con polímero para pisos industriais”, 37ª Reunião Anual do IBRACON, Goiânia, 3-7 Julho, 1995.

Kattar, J., Abreu, J.V. and Regattieri, C.E.X. (1999), “Inovações na metodologia para avaliação da permeabilidade por difusão ao ar”, 41° Congresso Brasileiro do Concreto, Ibracon, Salvador.

Kubens, S., Wassermann, R. and Bentur, A (2003). "Non destructive air permeability tests to assess the performance of the concrete cover", 15th ibausil, Univ. Weimar, 24-27 September 2003.

Mathur VK., Verma CL., Gupta BS., Agarwal SK. And Kumar A. (2005), “Use of High Volume Fly Ash in Concrete for Building Sector”, Report No. T(S)006, Central Build. Res. Inst., Roorkee, 35 p.

Romer M. (2005), RILEM TC 189-NEC "Comparative test - Part I - Comparative test of penetrability methods”, RILEM Materials and Structures, v38 (12): 895 - 906. Updated in v41(4): 443-447.

Romer M. (2005 a), “Effect of moisture and concrete composition on the Torrent permeability measurement”, RILEM Materials and Structures, v38 (6): 541 – 547.

Rodríguez de Sensale, G., Sabalsagaray, B.S., Cabrera, J., Marziotte, L. and Romay, C. (2005), “Effect of the Constituents on the Properties of SCC in Fresh and Hardened State”, fib Symposium “Structural Concrete and Time”, La Plata, Argentina, Sept. 2005.

SIA (2003), Norme Suisse SIA 262/1: "Construction en béton – Spécifications complémentaires", Annexe E: Perméabilité à l'air dans les Structures, pp. 30-31.

SIA (2003b), Norm Swiss SIA 262: “Concrete Structures”. Torrent, R.J. (1992), "A two-chamber vacuum cell for measuring the coefficient of permeability to air of

the concrete cover on site", RILEM Materials and Structures, 25(7): 358-365. Torrent, R. u. Ebensperger, L. (1993), “Studie über Methoden zur Messung und Beurteilung der

Kennwerte des Überdeckungsbetons auf der Baustelle”, Office Fédéral des Routes, VSS Rapport 506, Bern, Suisse.

Torrent, R. und Frenzer, G. (1995), "Methoden zur Messung und Beurteilung der Kennwerte des Ueberdeckungsbetons auf der Baustelle -Teil II", Office Fédéral des Routes, VSS Rapport 516, Bern, Suisse.

Torrent, R. (2009), “PermeaTORR: Modelling of Air-Flow and derivation of formulae”, Materials Advanced Services Ltd. Report, July 2009, 9 p., downloadable from www.m-a-s.com.

Van Eijk, R.J. (2009), “Evaluation of concrete quality with PermeaTORR, Wenner Probe and Water Penetration Test” (in Dutch), KEMA Report, Arnhem, Netherlands, 8 July 2009.

References