spe 021513 (mccray) decl curve an for var pressure drop var flowrate

Upload: tomk2220

Post on 02-Jun-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/11/2019 SPE 021513 (MCcray) Decl Curve an for Var Pressure Drop Var Flowrate

    1/17

    cop~hhl t 99\, S&et y of Pe rdeum Engi neers, Inc.

    Th is f mp er WA 8 pr ep et i Ps vp ms en lat im a? d m SPE Qat Ted mb gy Sy mp os iu m h el d i n H ws to n, Tex as , J an uar y 23-24,1691.

    TM p ap rx w as $el em ed f or p res en lal ic m b y m SPE Pr og ram Com mi tr to e f ol lo wi ng m ti ew o f i nl or met km c on lei ned In an Mr nc 4 w bm ir ted b y t he au th or (s ), C%n mn ,s o f Um p ap er , ac

    p mw nt ed , h am n ot b ean r ev kw ed

    gmesoc*vol Pl rk e o urn I%qi neem t nd are sub ject 10 C&mot ion by t ie eul hor(t ). The mat eri el ,

    : p resen ted , does not necosaan ly r el lec r any

    p os lr im _I of rh o S od al y o f Pet deu m n gl neem , 11so lf io er c, m m em ber s, Pap er a p res en ted at SPE m eet in gs ar e w bj ac t t o p ub li do n r av bw b y Ed it or ki l c om mi tt ees o f t he So dar y o f

    Perml wm &@neers, Perml mbn t o copy i s res tdcl ed 10 a n ab$t ract o not m ore t hnn 303 words . Il [ut l ari ons may no be copi ed. The abs tract shou ld c onl ai n .%ns pl cw ous

    ~~t~ *m @ @ f im me paper i s Pmmmt ad. wri te puMi c.at as hkwer, SPE, P.O Sex S3S9SS. Ri durd$on, TX T5C8S-21S6, Tel ex, 730369 SPEOAL

    The motivationfortheworkdescribedin this paperarosefrom

    formed intoan cquivslcmconstantrateca.wfor bothgas and liquid

    a need to analyze production dcclinc data where the flowing

    flow data. Camacho9indcpndcntly vcnficd that this equivalent

    bottomhole pressure varies significantly, The varirtncc of the

    constant rate formulation is exact for the constant pressure

    bottomhole [email protected] theexponential

    J

    ecline m c1for conventional dcclinc curve analysis (scmilog

    production of a sli htly comprtssiblc liquid during boundary

    ominri:ti flowcon mons,

    plots arid type curves). Using pressure nonmalizcd flow rate

    rather than flow rate usuallydoes not remedy this problem. The

    McCrayto sought to develop a method to transformvariablc-

    rncthmi wc present uscs a rigorous superposition function to

    rate/vanablc pressure drop data into an equivalent constant

    account for the varianceof rstc and pressure during production.

    pressure

    case. In doing this, McC raydcvclopcd a recursion

    This furwdon is the constant rate analog for vanablc.rate flow

    formula to compute an cquivdcnt time for constant wellbore

    during post-tmnsicnt conditions and can bc used to develop a

    pressure production, tcp,that could bc used with pressure drop

    normalizedflowrate to performdcclincCUTVCnalysisusing type

    WC b

    61%J1U

    M@wtJ@xan EnLmms

    Decline Curve Analysis for Variable Pressu, J Drop/Variable Flowrate Systems

    by T.A. Blaslngame, T,L. McCray, and W,J. Lee, Texas A&M U.

    This is a preprint -- subject to correction.

  • 8/11/2019 SPE 021513 (MCcray) Decl Curve an for Var Pressure Drop Var Flowrate

    2/17

    constant pressure analog for the dcclinc curve analysis of field

    2

    DeclineCurveAnalysisfor VariablePressureDrop/VariableFlowrateSystcn?s

    SpE 21513

    Thecomputationalformulaearc givenin AppcndiccsBandC

    and wc will verify each. Thcsc include the fcilowing rccuraion

    formulae; the integralmethodproposedby McC ray10nd the 2-

    and 3-pointbrickwarddtifcmncomethodsdcvclopcdin thiswork

    The recursion relations for this part of the verification arc

    dcvclopcdinAppendixB andsummarizedinAppendixC,

    We willalsouse theboundarydominatedflowrelationswhich

    result from

    7

    tsating the constant rate and constant pressure

    anal tics SOIUor..,This dcvclopmcntand thepertinentrelations

    ior t is psxtof theverificationamgiveninAppendixB.

    Fi . I

    shows the log-log

    behaviorof the

    qo

    functionsvcraus

    t

    Dan tcp~function for tic cssc of a wellccntcrcd in abounded

    cimulaxreservoir(r~=NP), Duc to thenumberof mcthcdsbeing

    cansidcm wewill discussthe transientand boundarydominated

    flow behavior separately, First wc note that, during early times

    (transient flow), all of the tcpp methods yield a good

    approximation to tic

    q~(t~)

    sohmon, cxccpt at very early times

    (t@20). This

    impliesthat allof thesemethodsyielda reasonable

    approximation to the analytical solution during transient flow,

    Obviously,theanalyticalsolutionfor tmundarydominatedflow is

    not valid during transient flow as shown by the deviation of this

    solutionand the transientflow sohstion.

    Now if wc consider the late time (boundarydominated flow)

    portion of Fi&.1 (rD>3x105),wc find that virtuallyall of the

    to D

    mcthds agrc.cwry closdy

    with the

    qD(lD)

    Solution.Athough

    &ls

    scale

    prccludcsveryCIOSCnspection,it dots appearthat t D2 for

    thedcnvativcmcth(xl1dots showsigni lcantdeviation,

    f%iswill

    bc invcstigsttcdmore closely when these dara arc rcplottcd on a

    scmilog

    q~

    gmphin Fig. 2.

    Fig. 2 is

    a

    rcplot of Fig. 1 using a scmilogscale for the

    qD

    fLSnctiOnSnd a cancsian scsdcfor the tDfunctions. Wc nOtChat

    the

    scsulta

    fordcnvativc method1 do beginto diverge from those

    r f the Othermcthtsds,which cIwly ovcr]ay thecorrect solution,

    Fig, 2 sug~sta that dtivativc rrscthod1 should not be used in

    L

    racticc,but that theintegraltncthw dcnvativcmcthcx 2, andthe

    undarydominatd flowmethodshouldgiveaccuratewsults.

    Of these, the boundarydominatti flowmethod is the easiest

    to apply since it dots not rcqtlirc recursion calculations, but

    functions. Wc will demonstrate the ap~licationof the boundary

    dominatedflowmcthcxion a simulatedhquidproductioIIaqucncc

    anda fic dcaacfor a gasWCIIhathasbeenanalyzedpreviouslyin

    the literature.ZM

    In this sectionwcwill applythe tcP-tcrransformdescribediri

    theprevioussectionto a simulatedproductionsqucrtcc in anOil

    WCI1.Themscrvoirdataand flowhistoryarcgivenin Table 1.

    TABLE 1

    WellimdReservdr Parameters

    (Well Centered in alloundedCircular Resemoir)

    B,

    RB/STB

    1,00

    cl,psia-l

    15.0X 1o-I5

    h,

    ft

    4

    0.::

    \i, Cp

    rW,

    ft

    02:

    re, ft

    745 (40

    acre)

    k,

    md

    1,0

    s

    pi, psia 48~

    CA

    31.62

    Usingthe WC] ndrcscswoirparametersgivenaboveandEqs.A-3

    toA-5,wccomputethem

    and b

    paramctwsandwcobtain

    m=

    2,3&/09x10-z@S~/D/D

    b

    =

    32.8948

    pSi&~@

    Flom History

    flowscqucncc

    ;

    r, days q,STBfD

    180

    50

    180

    const~t

    p~

    p~,

    psia

    constantrate

    2000

  • 8/11/2019 SPE 021513 (MCcray) Decl Curve an for Var Pressure Drop Var Flowrate

    3/17

    SPE21513

    T.A.B usingamc,T.L. McCrayandW,J,La

    3

    I

    correctconstant pressure solution. It can be seen in Fig. 4 that

    prcs: xc drop normalization does not yickl a constant nrcssure

    I analogsolution,

    Clearly, wc must usc other techniques which are more

    rigorousthan psessumdrop normalizationfor field applica{{,onsf

    decline curve analysis,

    The methodof choice will be the onc

    proposed by Blasmgamc and Lec7 whit: converts variablc-

    ratchriablc rcssure tip data to the equiwdcm constant rare

    case. From t is anal sis wc will obtain them andb parameters

    quired by Eq. B-1 or transformationto an equivalent constant

    pressure system,

    Fig, 5 showsthe cartesianplot of alp/q vs. tcr(=Q/q) rquircd

    to determine them and b parameters. m is the slope of this plot

    and

    b

    is the intcrcc t. Although thcte is somedata scatter, it is

    1kar that them an

    b

    psramctcrado rcprmcnt a best fit trend of

    the dam. Therefore, the step of determining the m and b

    parametersis illustrtttcdas a simple and straightforwardprocess.

    Fig. 6 showsthe log-logplot of Ap/q vetmssrc,that could be used

    for typecurve matchingon constantrate typecurves. Fig. 6 also

    shows that the concept of using Aplq and fcr appears to also be

    validfor transientflow, giventhe agreementbetweenthe constant

    rate and constant pressure base case (pW~3000 psia) during

    transientflow (rcrc50days).

    The nextstep is tousc them and b parameters in Eq. B-1 to

    convert from tcr (constant rate analog time) to

    tcp

    (constant

    pressure analog time), This is also a simpleand straightforward

    procedure. Once tc is computed,a log-log plot of q/@ vs. Gp is

    iade. Fig.7 is suc a plot andwcimmcxiiatclynote that all cases

    overlay the same trend during both transient and boundary

    dominatedflow. obviously, the analyticalsolution for boundary

    dominatedflow(exponentialdecline)will not agreewith transient

    flowsolution.

    Fig, 7 represents the endpoint of our effort to determine art

    quivalent anstant pressuretransformationfor variablc-rate/vari-

    ~blcpressuredrop flowdata, Wc aresatisfiedthatthis is a logical

    and consistentprocedurethat shouldyield accurate rcsuhs when

    applied to field data, The verification of this method is that all

    cases overlay the base case @~-30fXt ]sia), where ~IAPand t

    were used as the plotting functions for I$Cbase case. At this

    TABLE 2

    Well~Reservoir par~ters

    (Assumed Geometry: Well Centered in

    a Bounded Circular Reservoir)

    B, R13/MSCF

    0.70942

    et, psia-l

    1.870

    X 104

    h, ft

    0.;:

    Cp

    0,02167

    Fw,ft

    0,354

    -5,30 *

    ~, md

    0,0786S *

    p.~ psia 710

    pi, psia

    4175

    C*

    31,62

    G, Bscf ( ef,2)

    3.360

    G, Bscf (rcf,3)

    3.035

    *Averageof valuesobtainedfromref. 2 and3.

    Fromthe resultsof ref. 8 wchave

    ma =

    2,O5536X1O-3s@lSCFP/D

    b. =

    1.3094psi/MscF/D

    G= 2.6281 Bscf

    Fig. 8, which is a log-log plot of

    @a/q

    versus tc~,a,is taken

    directly fromrcf, 8 and shownhere for complctcmess.Wc htwc

    includedthe computedresponseduting boundarydominatedflow

    as prescribedby Eq. A-1, T hc A pa /4 and tcr,a variables arc the

    pseudotimc and pseudopressureas defined and computed in ref.

    8, This nomenclature may seem awkward, but defining these

    variablesin thismannerallowsus to usc liquidflowquations for

    analysis, Therefore, anyequationswcpreaemarevalid for either

    liquid or gas flow as long as the correct time and pressure

    variablesarc used.

    Wc note that the boundarydominated flow sohstiondoss not

    model the transient flowbehaviorof the data in Fig. 8. This is

    cxpectcdandwc onlystatethisobservationforcompletcncss,Wc

  • 8/11/2019 SPE 021513 (MCcray) Decl Curve an for Var Pressure Drop Var Flowrate

    4/17

    4

    DcclincCur-wAnalysisfor VariablePressureDrop/VaririblcFlowrateSystetm

    SPE21513

    And finally,for gasweil test analysisEq. B-1hxomes

    (5),

    We haveusedEq. 5 toeomjwtcthe tc~ functionsusedin Fig.

    f

    . Note that Fig,9 is a log-log lotot

    q AP~

    versus tcp,~and that

    h

    he the boundary dominated ow sOIWiOn(Computccfq14Pa

    function) agrees very wcli with the data during boundary

    dominated flow but not during transient flow. This is expected

    andwe shouldnot be conccrncdaboutthisdifference.

    OncewehavecreatedFig, 9 using the

    q/Apa

    versus rCPadata,

    wc will want omate} this data upon the Fetkovichl typecurve,

    Fig. 10reprc%ms this typecurvematch. Note that thedata agree

    with the t

    r

    curve during the transition from transient to

    boundary ominated flow and throu hou; boundary dominated

    h

    low , The sc am it y

    of data fortc ~

  • 8/11/2019 SPE 021513 (MCcray) Decl Curve an for Var Pressure Drop Var Flowrate

    5/17

    SPE21513

    T,A. Blnsirsgime,T,L. McCrayandW.J.Lee

    5

    The fourth method developed was a rigorous identity which

    equates the kxtndary dominated solutions for constant rate and

    constant pressure production. The resulting two-parameter

    relation @q. B-1) may bc used for dimensionless solutions or

    field data applications. When the m and b parameters are

    determined using the methods developed in ref, 7, data scatter

    shouldhaveIittlceffecton theVSIUCSf theparametersbecausea

    best fit trend is established. These characteristics make the

    boundarydominated flow method the most usefulproduct of this

    work.

    Applications:

    Wc recommendusingthe methodsprcscntcdin this work thr

    the type curve analysis of variable-rate/variable pressure drop

    productiondata, The methcd is relatively simpleand should be

    applicable to a wide range of WCI1est problems, including the

    analysisof gas welltestdatademonstratedin thiswork.

    Conclusions:

    1,

    2.

    3.

    The recursion fonnulae discussed in this work should not be

    appliedin practicedue to problemsassociatedwith the erratic

    natureof fielddata,whichcouldcausepoor results.

    The boundarydominatedflowmethodis themethodof ckaicc

    to transform the constant rate analog time function ir,to a

    constant pressure analog time function, This

    mcthid

    is

    consistent,easy to apply,and shouldgive accuratercsuitsfor

    a widerangeof problcmtypes.

    The boundary dominated transform method can be used co

    model constit wellborepressureproductionbehaviorcxaciy

    during boundary dominated flow and should give accurate

    resultsduring transientflow.

    NO a

    Dimensionless Variables

    bD

    = dimensionlessconstantdefinedby Eq,B-4

    CA = dirrmsionless shapefactor

    = dimensionlessconstantdefinedbyFA.B-3

    Cp =

    constantpressureor constantpressureanalog

    D=

    dirncnsionlcssvariable

    mp = matchpointona typecurve

    Wc gratefully acknowledge the assistance of Elizatwth

    BarbozattndJemniferJohnstonfor their hcIpin thepreparationof

    dds manuscript.

    1.

    2.

    3.

    4.

    5.

    6.

    7.

    Fetkovich, M.J.: Dcclinc Curve Analysis Using Type

    Curves,JPT (June 1980) 1065-77,

    Fetkovich,M.J., et ULDecline-CurveAnalysisUsingType

    Curves.-CaseHistories,SPEFE (Dec. 1987) 637-56.

    Frairn, M.L. and Wattcnbmgcr, R,A.: Gas Reservoir

    Decline-CusvcAnalysisUsingTypeCurvesWithRealGas

    PseudopressureandNormalizedTime,WEFE (&c, 1987)

    671-82,

    Ehlig-Economides, C.A. and Ramcy,H,J., Jr.: Transient

    Rate Dcclinc Analysis for Wells Produced at Constant

    prCSSUR,

    :PEJ

    (Fcbo1981)98-104,

    Ehlig-Economides, C.A. and Ramey, H,J,, Jr,: pressure

    Buildup for Wells produced at a Constantpressure,PEJ

    (FcIJ. 1981)105-114.

    Blasingamc, T,A. and Lee, W. J.: Properties of

    HomogeneousRcscrvoi.m,NaturallyFracturedReservoirs,

    andHydraulicallyFracturedReservoirs fromDeclineCurve

    Analysis, paper SPE 15018 presented at the 1986 SPE

    PcrrnianBasinOil andGas RecoveryConfcrencc,Midland,

    TX, March 13-14, 1986.

    INasingamc,T.A. and Lee,W.J.: Variable-RateReservoir

    Limits Testing, paper SPE 1.5028presented at the 1986

    SW? Permian Basin Oil and Gas Recovery Conference,

  • 8/11/2019 SPE 021513 (MCcray) Decl Curve an for Var Pressure Drop Var Flowrate

    6/17

    6

    DeclineCurveAnalysisfor VariablepressureI)rop/VaricblcF mvratesystems

    SPE21513

    4(0

    =mtcr+b

    N)

    where

    (t) (time in Days)

    --1- q(t)dr =

    Cr f?(r) *

    q(t)

    (A-1)

    (A-2)

    m=5.6l5--@---

    @hcfi

    (A-3)

    ()

    =70.6 n~

    eTCAr~2

    (A-4)

    and

    ,

    rw = rw e-s

    (A-5)

    We will also need the general solutionfor a well producing at a

    constantpressureduringboundarydominatedflow. Thk solution

    is given by Ehlig-Economides and Ramey~,Sand later by

    BlasingameandLec.c This so utionis

    &)cprow)

    (A-6)

    Ourobjecciveis to develop a general time function that allowsus

    to use Eq. A-6 to model a variable-rate/vanable-pressur~ drop

    process,

    Thisgeneralrelationis

    (A-7)

    where tcp is the

    time

    at which the constant pressure solution is

    valid for a general variable-rate/variable-pressuredrop response.

    In this sense,ICPs an unknownwhichmustlx dctcrmincri.

    McCray10proposed [he following rcl.~tionas a defining refwion

    fortcp

    tp

    We

    need

    to prove theright-h~.,ld-side(RHS) of ~., A-8. This is

    done by integratingEq. A-7 so it is the sameformas the RHSof

    W,.A-8. This gives

    or

    CombiningEqns.A-7andA-11gives

    (A-11)

    (A-12)

    Notice that the right-hand-sides of Eqs. A-10 and A-12 arc

    identical, This result proves that Eq. A-8 is exact for boundary

    dominatedflow,

    AppendixB: J% @Jl

    rv

    130ml~

    Theobjectiveof thisswion is todevelopa methodtocomputethe

    rcpfunction. A relatively simplerelation is obtainedby quating

    Eqs.A-1and A-7 and solvingfortcp.Thisgives

    ~ Exp(~@), *

    or

    %/2=$ql

    +f pcr )

    (B-1)

    or in termsof dimcnsimlessvariables

    (

    mq. .d

    c/)D=mD

    )

    (R-2)

    where

  • 8/11/2019 SPE 021513 (MCcray) Decl Curve an for Var Pressure Drop Var Flowrate

    7/17

    SPE21513

    T,A.31asingamc,T,L,McCrayandW,J, lee

    7

    I

    And combiningEqns. B-8,B-9, and B-11, and solving for AtCP,i

    Integral hiethod

    gives

    McCmylo proposed to computethetc functionby approximation

    i

    [

    .~ @(ti) Q(ti.$ 4Q(ti-1)+~

    of the integral in Eq. A-8 using t c trapezoidal rule, This

    repl %(ti) Ap(ri.2) @(ti-1) AP(ti)

    1

    (B-13)

    essentiallyresults in a recursionformulawherethe tcpfunciion

    is

    computeda:

    Cp= f

    At.p,i

    Appendix C:

    ~~

    i= 1

    The AtCP,iermsare computedusingindividualtrapumidpanelsof

    In the calculations, the constant pressure dimensionless rate

    *C q(1)

    solutionis definedas

    function. For an individualtrapezoidwchave

    APO)

    qcpD = ~

    (c-1)

    [

    Theequivalentdimensionlesstimeis

    Ii .% ?L * + ~ti-l)

    2 @(ti) &(ti. 1)

    1

    tcpD = i~l AtcpD,i

    (c-2)

    also

    where theZMCpDjregiven for theintegralmethodas

    [

    /i - Q(tJ Q(ti.])

    .. .

    AP(ri) Wi-1)

    1

    2[%%+1

    AtcPD,i~ ~ ~-

    for a givenpane .

    [

    PD,i FD,i-l

    1

    (c-3)

    Combiningand solvingfor AtcP,igives andfol dxivative method1 astD,i pfi,i

    AtcPD,i = tD,i -

    [

    J

    @2iL. aLIL

    PD,i-1

    (c-4)

    t~p,i =

    ~(ti) A~ti-

    and forderivativemethod2 as

    [

    &,. 4U.L

    1

    [

    ,- pll,i tD,i-2 . 4tD,i- 1&

    AlcpD,I

    @(ti) AP(~i.] )

    2 PD,i-2 PD,i-1 PE,;

    (B-7)

    1

    (c-5)

    Derivative

    Metlwds

    Othermethods,which are basedon thedcnvativc of Eq.A.7, can

    bedevelopedtocompute the tcpfunctionusingEq.B-6.Differen-

    tiationof Eq.A-7 withrespectto rCPyields

    q(t)

    ()

    - d Q(O

    dtcp Ap(i)

    I

    (B-8)

    We can alsou~eihcImund.uydominatedflowmethodto compute

    the tcpDfunct]on, In this case, tcp is obtained using E+ R-2,

    B-3 and B-4.

    [

    I

    I

  • 8/11/2019 SPE 021513 (MCcray) Decl Curve an for Var Pressure Drop Var Flowrate

    8/17

    o

    0

    o

    Y

    u

    11,,,

    j

    1

    ... . . . . . . . . .. , , . . . .. ,, ,. .. . . . . . . .

    //

    ..............

    ..,,,..,,. . . . . . . .

    o

    -

    .,,,,.,,.

    ...,,,,,,

    z

    v

    ,,,,

    2

    o ~ ............

    E

    .

    Lf i t l l

    I 1 1

    1,,,,,

    I

    1

    1,,1,,

    I t

    9

    ,......-.=

    --

  • 8/11/2019 SPE 021513 (MCcray) Decl Curve an for Var Pressure Drop Var Flowrate

    9/17

    m

    ,,,,,,,,.,,,,,,..,,,,.

    .W-)

    cd

  • 8/11/2019 SPE 021513 (MCcray) Decl Curve an for Var Pressure Drop Var Flowrate

    10/17

    o

    o

    %

    a

    d

    cu~

    -

    n /

    ~twl

    p>

    -i+

    c l

    .

    CO

    a~a;

    (

    .........

    .$J ~ ,............... . . .d. . , d, ,

    ..............

    Wo

    yc&

    k

    -/

    :

    /If

    %

    \

    (Q

    ..-

    5?

    8g

    (

    ,, ,-i

    G

    1~ u

    2

    .... ,. , ,, , ,, , , . , .. . . . . . . . . . . . .. , , . ., ,, ,

    m

    ,,.,,

    ...,,

    ,.,,,,,,,,,.,,..,...,..,.,,,

    r:

    Q

    ,.1

    ,, ..,,.,,,,..,,, ,,, ,,, ,,, ,,, ,,, .,,,,

    %., ~a

    CQ

    .

    w

    g :-

    Lg

    -z T.

    3

    =$&

    ~

    \; - -

    IIUQ

    CA

    ..,.,,,.,,,,., .,.,,,.,.,,..,,,,4,,,,,,,

    %

    m

    .,-

    % -

    %g

    u

    IL w

    J

    d

    ,,................., .....................

    -o

    TY

    .-

    %

    .-

    -

  • 8/11/2019 SPE 021513 (MCcray) Decl Curve an for Var Pressure Drop Var Flowrate

    11/17

    m

    1

    .........................

    , ,, , , ,4

    t-a

    .

    ::/

    W-io

    y~

    ~

    c1.

    /

    .,

    ,, .,,. . . . . . . . . . . . .,. ...., . ,,,..

    r:

    ,

    LA

    0?

    8g

    m ~

    IL w

    &

    ... .......,,,,,.

    m

    L-9

    0

    ;:

    ~-%

    /

    >

    ........

    . ...4.... . ... ,,

    A)/

    . ..... , ,., ,,, ,, ,,, ,,, ,,, ,,,

    (u

    .?-

    VI

    cb@

    .

    8$

    %g

    II w

    Y

    CA

    ., ,.,,,,,,, ,,,,.,,.,..,,,,,.,,,,,,

    1-

    t-

    /

    H :

    ,.,,

    /,:

    ...,,,,.,,, ,,, ,,, ,, ,,, ,,, .,

    \

    ~-

    ; g~

    I fiq

    2

    J

    C&

    .,,,,

    . . . . .. . . . . .. . . .. .,, , , ,,.,,

    Z

    ~ ~~

    8

    m

    , -

    K.

    ;i$ g

    J

    V*

    ....,,,.,,,,,,,

    2,,.,,,,,,

    .n.

    %

    d)

    G

    c)

    r-l

    %

    -3

    E

    I-.4

    WJ

    T1

    .-

    .ij-

    -

    &

    8

    .-

  • 8/11/2019 SPE 021513 (MCcray) Decl Curve an for Var Pressure Drop Var Flowrate

    12/17

    .

    0

    ~(jo

    1000

    1500

    2000 2500

    120

    I

    3000

    1

    1

    I

    I

    ~ 120

    ~p=+() ltl psia ~

    j)o-.

    .. ..-..---.--.-_______...........

    ......... ............... ..................... .................. .........

    .................. .. .....

    ........

    ...._.-...-.__

    ~

    80-

    . - - - .+.._-. _-. . _ ..... ... . . -. -+...................................+............................

    ~

    ~

    2 40

    ............. ... . -- _. ______

    q=50 S?B/l) ~?.~z~ p~a pWf=15U0 psia ~

    @W;] ; (ficw 2) ~ (fl~v~ @ ;

    i

    \

    o

    i

    500

    1

    1000

    i

    1500

    2000

    2500

    3000

    L (=Q/q),days

    \

    F@ITe 5- ~afi~sja~

    plot of Ap/q versus ta for the liquid simulation cases.

  • 8/11/2019 SPE 021513 (MCcray) Decl Curve an for Var Pressure Drop Var Flowrate

    13/17

    i

    ,,,,,,,,.,..,,,,,,,

    .,

    ,,,,,,,,,,,,

    u

  • 8/11/2019 SPE 021513 (MCcray) Decl Curve an for Var Pressure Drop Var Flowrate

    14/17

    to

    --23

    %

    .,,,,.,,,,,,,,,,,

    C2

    (J

    .

    %

    c l .

    . .,, ,.,,,,,,,,,,,,,.

    . .

    - r-

    -t)

    F*

    ,0--

    {

    II

    ,,,.,,.........................,,,.

    cd

    .

    K

    /

    ............ ,,,,,,.,

  • 8/11/2019 SPE 021513 (MCcray) Decl Curve an for Var Pressure Drop Var Flowrate

    15/17

    $5

    .-

    -&)

    c

    10

  • 8/11/2019 SPE 021513 (MCcray) Decl Curve an for Var Pressure Drop Var Flowrate

    16/17

    sPE 21513

    .

    10

    101

    102

    103

    104

    d---

    *

    1

    n

    1 1

    1

    1

    q7J01

    6

    4

    1

    2

    {

    --------------------------------s,

    ----

    --- - -*.-.----------------------------------------------------------------------------------------00

    -

    6

    /

    \

    ~ f

    4

    4

    Bmmdaiiy Dominated Flow Solution

    @APa=(l/ba) El:p[-(rnJbJtcP,.l

    -). \:

    or

    2

    @Pa=[% 1.,,, + baJ-l

    ............ .................................+........................................ ................................................... ...... ...... ...... ..................

    10-]

    6

    Results of Gas

    ~aterial J3alance Iterative

    4-

    solution ( 131asinmrne and Lee8~

    ma =2.05536x10-3 Psi/MSCF~~

    2-

    ba =1.3094 @./lvlSCF/D

    2

    G=2.6281 Bscf [tW,.= (bJmJ ~[1 + ([email protected]&J I

    ~o-2

    i

    1

    I1

    I J

    10-2

    10 101 102 103

    4

    10

    t

    .P,a,days

    Figure 9- Plot of q/Apa versus tCP,aor d~.taof Fetkovich, et aL2

    t

    ~P,afunction computed using IC,, and the equation shown.

    .

  • 8/11/2019 SPE 021513 (MCcray) Decl Curve an for Var Pressure Drop Var Flowrate

    17/17

    102

    101

    10

    10-]

    ~o-2

    r

    =k=

    .-

    1

    .........................