spatiotemporal abundance pattern of deep-water rose shrimp...

7
Spatiotemporal abundance pattern of deep-water rose shrimp, Parapenaeus longirostris, and Norway lobster, Nephrops norvegicus, in European Mediterranean waters Mario Sbrana, Walter Zupa, Alessandro Ligas, Francesca Capezzuto, Archontia Chatzispyrou, Maria Cristina Follesa, Vita Gancitano, Beatriz Guijarro, Igor Isajlovic, Angelique Jadaud, Olivera Markovic, Reno Micallef, Panagiota Peristeraki, Corrado Piccinetti, Ioannis Thasitis, Pierluigi Carbonara Supplementary material SCIENTIA MARINA 83S1 December 2019, S1-S7, Barcelona (Spain) ISSN-L: 0214-8358 Mediterranean demersal resources and ecosystems: 25 years of MEDITS trawl surveys M.T. Spedicato, G. Tserpes, B. Mérigot and E. Massutí (eds)

Upload: others

Post on 21-Mar-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Spatiotemporal abundance pattern of deep-water rose shrimp ...scimar.icm.csic.es/scimar/supplm/sm04858esm.pdf · Spatiotemporal abundance pattern of deep-water rose shrimp, Parapenaeus

Spatiotemporal abundance pattern of deep-water rose shrimp, Parapenaeus longirostris, and Norway lobster, Nephrops norvegicus, in European Mediterranean waters

Mario Sbrana, Walter Zupa, Alessandro Ligas, Francesca Capezzuto, Archontia Chatzispyrou, Maria Cristina Follesa, Vita Gancitano, Beatriz Guijarro, Igor Isajlovic, Angelique Jadaud, Olivera Markovic, Reno Micallef, Panagiota Peristeraki, Corrado Piccinetti, Ioannis Thasitis, Pierluigi Carbonara

Supplementary material

Scientia Marina 83S1December 2019, S1-S7, Barcelona (Spain)

ISSN-L: 0214-8358

Mediterranean demersal resources and ecosystems: 25 years of MEDITS trawl surveysM.T. Spedicato, G. Tserpes, B. Mérigot and E. Massutí (eds)

Page 2: Spatiotemporal abundance pattern of deep-water rose shrimp ...scimar.icm.csic.es/scimar/supplm/sm04858esm.pdf · Spatiotemporal abundance pattern of deep-water rose shrimp, Parapenaeus

S2 • M. Sbrana et al.

SCI. MAR. 83S1, December 2019, S1-S7. ISSN-L 0214-8358

Tab

le S

1. –

Str

atif

ied

mea

n bi

omas

s an

d de

nsity

indi

ces

(kg

km–2

and

N k

m–2

± s

tand

ard

devi

atio

n, S

D) p

er y

ear (

1994

-201

5) o

f dee

p-w

ater

rose

shr

imp

(P. l

ongi

rost

ris)

in th

e in

vest

igat

ed G

SAs.

Info

rma-

tion

on th

e re

sults

of

Spea

rman

Rho

coe

ffic

ient

ana

lysi

s is

als

o sh

own.

GSA

19

9419

9519

9619

9719

9819

9920

0020

0120

0220

0320

0420

0520

0620

0720

0820

0920

1020

1120

1220

1320

1420

15Sp

earm

an

Rho

1

kg k

m–2

0.0

0.2

0.8

1.9

2.1

1.4

1.6

1.9

1.7

0.5

1.3

0.6

1.0

0.6

0.7

4.9

1.5

2.2

3.6

1.6

1.1

1.1

Posi

tive

tren

dSD

0.0

0.1

0.2

1.0

1.0

0.6

0.5

1.0

0.3

0.1

0.5

0.4

0.6

0.2

0.3

1.2

1.0

0.8

1.2

0.5

0.3

0.3

N k

m–2

1.1

38.0

98.7

265.

638

6.3

169.

019

4.3

204.

921

9.1

46.1

137.

659

.411

0.7

73.4

83.4

527.

232

1.0

257.

457

5.5

1126

5.2

122.

410

0.0

Posi

tive

tren

dSD

1.1

18.2

31.5

155.

217

4.6

59.0

63.0

113.

543

.411

.060

.147

.961

.834

.728

.912

8.9

285.

069

.621

8.7

9029

.437

.425

.4

2

kg k

m–2

0.

34.

40.

10.

70.

0N

egat

ive

tren

dSD

0.

34.

20.

10.

70.

0N

km

–2

68.5

660.

714

.710

3.5

7.2

Neg

ativ

e tr

end

SD

68.5

585.

714

.710

3.5

7.2

5

kg k

m–2

0.

20.

40.

50.

60.

10.

50.

80.

40.

2N

SSD

0.

10.

20.

20.

30.

10.

20.

30.

20.

1N

km

–2

13.5

46.0

48.2

44.2

12.0

59.2

60.1

45.3

13.0

NS

SD

8.0

24.4

19.8

19.3

4.8

20.0

23.3

16.8

7.1

6

kg k

m–2

0.1

0.2

0.3

0.0

0.2

0.2

1.0

1.5

0.2

0.1

0.6

0.2

0.2

0.2

0.1

0.6

0.9

0.4

0.7

0.9

2.1

1.0

Posi

tive

tren

dSD

0.0

0.1

0.2

0.0

0.1

0.1

0.4

0.7

0.1

0.0

0.3

0.1

0.1

0.1

0.1

0.2

0.3

0.1

0.2

0.3

0.5

0.2

N k

m–2

12.5

22.2

36.3

2.4

17.5

29.6

128.

911

3.7

19.4

4.9

52.1

16.5

11.7

16.6

11.4

58.5

72.9

44.1

285.

173

.221

1.5

159.

2Po

sitiv

e tr

end

SD5.

910

.627

.01.

79.

916

.567

.946

.47.

31.

826

.16.

23.

810

.26.

019

.627

.213

.323

9.1

22.7

61.0

24.6

7

kg k

m–2

0.6

0.3

0.0

0.0

0.0

0.2

0.1

0.1

0.0

0.1

0.2

0.1

0.1

0.0

0.0

0.1

0.4

0.7

0.6

0.3

1.0

1.4

Posi

tive

tren

dSD

0.5

0.3

0.0

0.0

0.0

0.1

0.0

0.0

0.0

0.0

0.1

0.1

0.1

0.0

0.0

0.1

0.2

0.4

0.3

0.1

0.3

0.3

N k

m–2

56.4

31.5

0.3

0.2

0.5

17.9

5.6

4.0

1.9

5.2

20.8

5.8

5.1

2.8

2.6

7.6

41.2

46.9

44.6

25.4

86.1

353.

3Po

sitiv

e tr

end

SD40

.829

.90.

20.

20.

314

.72.

22.

50.

92.

49.

54.

13.

02.

31.

94.

410

.525

.524

.26.

825

.588

.8

8

kg k

m–2

0.3

0.3

0.3

0.2

0.2

1.1

1.9

1.1

0.

80.

91.

11.

20.

71.

00.

52.

41.

82.

52.

52.

12.

3Po

sitiv

e tr

end

SD0.

10.

20.

10.

10.

10.

40.

40.

3

0.5

0.3

0.4

0.3

0.2

0.3

0.1

0.9

0.4

0.3

0.9

0.4

0.4

N k

m–2

21.4

21.1

21.3

19.8

25.3

114.

612

4.1

81.7

49

.786

.197

.584

.545

.183

.839

.922

6.8

145.

223

9.1

289.

924

6.2

254.

7Po

sitiv

e tr

end

SD8.

611

.77.

911

.39.

939

.129

.423

.5

31.4

33.2

41.5

33.6

12.9

25.6

8.2

70.9

29.4

40.6

105.

946

.048

.2

9

kg k

m–2

0.6

0.7

0.5

0.8

2.5

4.3

2.8

1.4

1.6

1.5

2.7

3.4

3.8

1.8

3.6

3.4

10.5

7.8

7.5

8.1

5.1

10.7

Posi

tive

tren

dSD

0.1

0.1

0.1

0.1

0.3

0.5

0.4

0.2

0.2

0.2

0.3

0.5

0.6

0.2

0.4

0.4

1.0

0.8

0.7

0.8

0.6

1.3

N k

m–2

41.8

56.3

42.2

129.

035

2.8

397.

725

0.4

126.

018

8.3

196.

125

2.4

368.

828

3.6

173.

138

2.2

407.

512

82.4

1014

.477

9.9

973.

775

4.6

1250

.6Po

sitiv

e tr

end

SD6.

09.

35.

917

.847

.537

.730

.114

.623

.226

.628

.162

.140

.816

.244

.651

.712

9.2

118.

278

.211

9.5

131.

418

0.0

10

kg k

m–2

1.3

1.3

0.9

2.3

3.7

5.6

4.3

3.6

1.8

2.4

3.9

6.2

7.8

2.4

3.5

4.3

7.4

4.2

8.2

9.0

3.0

2.1

Posi

tive

tren

dSD

0.3

0.2

0.1

0.3

0.6

0.6

0.6

0.4

0.5

0.4

0.6

0.6

0.8

0.4

0.4

0.5

0.8

0.4

0.9

1.3

0.4

0.3

N k

m–2

130.

822

8.5

160.

041

1.8

550.

995

4.9

756.

150

7.2

422.

253

3.4

549.

211

21.2

970.

026

6.6

474.

952

9.4

889.

665

3.3

1377

.813

14.1

401.

425

3.4

Posi

tive

tren

dSD

26.2

44.6

37.4

65.8

90.3

116.

010

9.5

68.1

154.

180

.688

.612

6.1

116.

836

.869

.271

.295

.474

.817

7.9

202.

653

.638

.8

11

kg k

m–2

0.5

0.5

0.5

1.6

4.5

7.1

3.2

2.1

1.1

4.0

2.6

1.0

2.3

0.8

0.4

2.2

3.1

3.8

3.1

1.6

1.3

1.1

NS

SD0.

10.

10.

10.

41.

12.

10.

70.

50.

20.

90.

60.

30.

40.

20.

10.

60.

71.

00.

50.

40.

30.

4N

km

–241

.441

.762

.425

5.0

730.

782

9.0

291.

020

7.5

130.

141

6.9

247.

796

.619

3.3

45.5

47.8

208.

533

8.9

441.

733

0.6

156.

911

5.5

100.

3N

SSD

10.4

11.2

16.6

65.9

175.

324

6.2

73.4

51.0

27.3

86.5

62.8

25.5

39.3

13.1

10.8

58.5

87.9

117.

656

.241

.626

.934

.0

Page 3: Spatiotemporal abundance pattern of deep-water rose shrimp ...scimar.icm.csic.es/scimar/supplm/sm04858esm.pdf · Spatiotemporal abundance pattern of deep-water rose shrimp, Parapenaeus

Abundance of deep-water rose shrimp and Norway lobster • S3

SCI. MAR. 83S1, December 2019, S1-S7. ISSN-L 0214-8358

Tab

le S

1 (C

ont.)

. – S

trat

ifie

d m

ean

biom

ass

and

dens

ity in

dice

s (k

g km

–2 a

nd N

km

–2 ±

sta

ndar

d de

viat

ion,

SD

) pe

r ye

ar (

1994

-201

5) o

f de

ep-w

ater

ros

e sh

rim

p (P

. lon

giro

stri

s) in

the

inve

stig

ated

GSA

s.

Info

rmat

ion

on th

e re

sults

of

Spea

rman

Rho

coe

ffic

ient

ana

lysi

s is

als

o sh

own.

GSA

19

9419

9519

9619

9719

9819

9920

0020

0120

0220

0320

0420

0520

0620

0720

0820

0920

1020

1120

1220

1320

1420

15Sp

earm

an

Rho

15

kg k

m–2

7.

516

.612

.122

.323

.114

.217

.117

.115

.411

.74.

1N

SSD

2.

05.

23.

35.

45.

24.

64.

33.

95.

02.

80.

5N

km

–2

1029

.831

77.4

2186

.848

69.5

4295

.023

69.6

3405

.731

87.5

2183

.126

61.9

940.

6N

SSD

28

8.6

1069

.970

7.8

1317

.510

55.0

774.

289

6.9

762.

369

7.6

634.

697

.0

16

kg k

m–2

5.9

5.1

7.6

7.5

11.5

15.8

16.0

13.0

4.8

7.4

16.8

11.3

12.4

5.3

11.8

23.9

16.6

13.0

38.2

21.8

10.7

5.4

Posi

tive

tren

dSD

2.7

1.8

2.6

2.2

3.3

4.6

5.0

4.4

1.1

2.4

6.3

3.8

5.9

1.9

4.4

10.1

6.6

5.5

11.3

6.3

4.3

1.8

N k

m–2

793.

878

5.2

1523

.314

61.8

2448

.231

90.3

2868

.725

48.0

1571

.714

33.3

4565

.518

58.1

1848

.481

5.2

2286

.935

63.1

2717

.922

52.1

8012

.146

06.9

3245

.194

8.0

Posi

tive

tren

dSD

314.

421

3.9

450.

542

7.1

693.

387

7.1

850.

275

1.0

484.

244

9.1

1888

.565

4.2

933.

928

4.6

860.

115

10.6

1124

.088

0.1

2366

.113

54.4

1911

.532

6.4

17

kg k

m–2

2.2

3.0

2.4

2.6

3.4

2.1

1.4

0.8

0.9

0.5

0.7

0.7

1.6

3.0

NS

SD

0.

40.

50.

50.

60.

70.

60.

30.

20.

20.

10.

20.

10.

20.

4N

km

–2

40

5.6

518.

636

2.6

441.

445

9.0

270.

119

2.1

81.0

105.

259

.411

4.6

92.2

260.

457

8.3

Neg

ativ

e tr

end

SD

75

.681

.566

.792

.783

.970

.148

.220

.122

.813

.427

.418

.332

.399

.9

18

kg k

m–2

0.1

0.3

4.9

2.1

4.2

1.9

2.5

4.2

4.6

5.6

7.3

9.8

7.0

3.3

9.0

7.3

5.2

4.2

5.5

2.1

4.9

2.2

Posi

tive

tren

dSD

0.0

0.1

1.0

0.3

0.8

0.3

0.4

0.6

0.6

0.8

1.3

1.5

1.0

0.8

2.0

1.1

0.7

0.7

1.0

0.4

1.0

0.5

N k

m–2

12.5

21.7

870.

430

7.3

517.

820

9.4

352.

262

9.5

603.

383

7.3

985.

415

38.7

798.

033

8.6

890.

210

97.7

815.

370

0.9

791.

033

9.2

940.

528

6.0

Posi

tive

tren

dSD

4.8

9.6

208.

664

.010

5.1

31.4

62.1

83.5

70.3

136.

921

8.5

222.

111

9.8

72.0

186.

519

5.5

145.

913

8.7

147.

690

.021

6.2

68.8

19

kg k

m–2

5.4

8.1

4.6

6.9

9.4

3.9

3.3

3.2

5.8

7.2

7.8

6.9

7.1

4.4

8.6

12.1

10.8

6.8

8.8

10.1

7.2

11.7

Posi

tive

tren

dSD

1.1

1.8

0.8

1.5

2.1

1.0

1.4

0.8

1.1

1.6

1.3

1.5

1.3

0.7

1.5

1.6

1.6

1.6

1.3

2.0

1.4

1.8

N k

m–2

698.

110

51.2

855.

311

23.8

1538

.372

3.2

541.

850

9.8

949.

414

03.0

1046

.911

67.4

1436

.294

0.3

1662

.823

07.6

2066

.813

26.0

1573

.422

37.7

1561

.718

57.3

Posi

tive

tren

dSD

177.

124

6.8

198.

130

0.0

453.

322

0.6

192.

213

1.1

186.

134

2.1

181.

227

3.7

371.

215

4.5

421.

847

2.0

340.

933

8.2

303.

647

6.3

351.

528

6.8

20

kg k

m–2

3.5

2.7

5.0

4.1

3.5

3.8

6.5

5.0

6.

07.

913

.56.

5

7.2

2.

9

Posi

tive

tren

dSD

1.4

0.7

1.6

1.2

0.9

0.8

2.2

1.6

1.

01.

93.

01.

8

1.8

1.

0

N k

m–2

246.

343

7.6

734.

044

9.1

514.

281

0.1

930.

169

7.2

13

01.9

1580

.726

25.9

1239

.0

1475

.3

434.

2

Posi

tive

tren

dSD

96.6

98.6

309.

923

9.7

161.

418

2.6

284.

524

5.4

24

0.3

398.

856

3.0

350.

7

362.

8

158.

6

22

kg k

m–2

1.5

3.0

14.6

18.2

10.9

13.5

14.3

13.6

14

.214

.113

.312

.9

8.9

10

.6

NS

SD0.

50.

82.

74.

41.

72.

02.

62.

6

2.4

2.7

2.2

2.3

2.

1

1.8

N

km

–212

5.2

559.

227

02.6

2305

.215

99.0

2486

.927

24.2

2139

.0

2693

.124

64.5

2294

.026

88.0

14

66.8

22

33.2

N

SSD

34.7

159.

364

0.1

601.

025

7.0

367.

978

9.0

411.

9

532.

956

1.9

392.

266

9.3

39

7.7

43

3.1

23

kg k

m–2

1.4

34.2

27.1

4.8

15.0

15.3

43.4

7.1

45

.130

.627

.534

.2

33.7

6.

5

NS

SD1.

16.

411

.41.

73.

34.

017

.41.

9

17.7

6.7

7.3

9.0

10

.0

1.6

N

km

–213

6.3

5290

.350

71.7

589.

727

05.1

4181

.993

48.2

1675

.1

9866

.374

05.4

8251

.486

32.1

53

16.9

18

37.4

N

SSD

121.

310

65.6

1498

.218

0.9

538.

010

92.5

4110

.652

5.9

39

55.3

2265

.224

86.6

2856

.3

1838

.2

399.

5

25

kg k

m–2

0.

80.

30.

10.

32.

10.

63.

04.

01.

7

1.8

NS

SD

0.2

0.1

0.0

0.3

0.7

0.2

0.9

1.9

0.7

0.

5N

km

–2

262.

486

.225

.411

6.0

296.

496

.758

4.8

680.

822

9.9

27

4.6

NS

SD

50.3

31.9

12.1

78.0

80.5

16.6

171.

135

3.5

63.1

64

.2

Page 4: Spatiotemporal abundance pattern of deep-water rose shrimp ...scimar.icm.csic.es/scimar/supplm/sm04858esm.pdf · Spatiotemporal abundance pattern of deep-water rose shrimp, Parapenaeus

S4 • M. Sbrana et al.

SCI. MAR. 83S1, December 2019, S1-S7. ISSN-L 0214-8358

Tab

le S

2. –

Str

atif

ied

mea

n bi

omas

s an

d de

nsity

indi

ces

(kg

km–2

and

N k

m–2

± s

tand

ard

devi

atio

n, S

D)

per

year

(19

94-2

015)

of

Nor

way

lobs

ter

(N. n

orve

gicu

s) in

the

inve

stig

ated

GSA

s. I

nfor

mat

ion

on

the

resu

lts o

f Sp

earm

an R

ho c

oeff

icie

nt a

naly

sis

is a

lso

show

n.

GSA

19

9419

9519

9619

9719

9819

9920

0020

0120

0220

0320

0420

0520

0620

0720

0820

0920

1020

1120

1220

1320

1420

15Sp

earm

an

Rho

1

kg k

m–2

0.6

1.0

1.8

3.4

0.6

0.7

1.0

1.2

2.9

6.2

5.7

2.6

4.4

2.4

1.4

2.4

1.5

1.4

0.6

1.8

2.2

2.0

NS

SD0.

20.

40.

82.

00.

30.

50.

40.

50.

92.

22.

91.

21.

50.

70.

41.

30.

50.

60.

31.

00.

70.

5N

km

–29.

619

.928

.469

.616

.521

.221

.520

.877

.313

4.1

106.

249

.169

.924

.819

.144

.928

.120

.86.

221

.136

.333

.2N

SSD

4.1

6.8

12.0

37.9

7.9

11.6

7.7

8.3

31.8

46.6

53.7

22.0

24.5

7.3

5.6

25.7

9.3

9.2

3.1

12.9

13.6

9.4

2

kg k

m–2

1.

31.

61.

20.

81.

8N

SSD

0.

50.

70.

80.

40.

9N

km

–2

21.2

552.

812

.49.

523

.9N

SSD

12

.253

1.9

7.7

3.7

12.4

5

kg k

m–2

5.

36.

32.

53.

81.

92.

34.

12.

32.

2N

egat

ive

tren

dSD

2.

32.

81.

11.

61.

00.

91.

80.

70.

8N

km

–2

120.

014

5.0

61.5

82.9

44.6

55.3

240.

654

.949

.4N

SSD

59

.268

.334

.233

.824

.124

.513

5.9

19.2

18.6

6

kg k

m–2

3.1

3.7

6.7

6.2

2.4

1.3

4.1

11.1

4.7

4.6

5.5

2.5

4.9

4.8

2.2

8.1

3.6

3.9

5.7

6.4

5.6

7.6

Posi

tive

tren

dSD

1.0

0.8

1.9

2.1

1.1

0.4

1.8

3.0

1.2

1.3

2.0

0.9

1.2

1.4

0.9

2.8

1.2

1.3

1.8

2.1

1.4

1.9

N k

m–2

135.

313

6.8

246.

324

5.7

77.9

65.7

244.

940

4.7

182.

716

9.0

236.

888

.715

7.8

132.

286

.630

0.1

127.

612

7.0

224.

435

4.1

182.

023

3.5

NS

SD34

.731

.273

.588

.729

.831

.213

5.8

119.

356

.049

.810

0.0

31.4

36.4

46.2

37.3

115.

045

.042

.465

.015

4.0

50.1

61.9

7

kg k

m–2

4.8

6.2

4.9

2.0

4.2

9.3

14.3

23.2

18.6

14.6

6.6

8.8

10.2

10.7

9.1

11.5

10.0

8.3

4.3

4.9

7.5

9.6

NS

SD2.

11.

71.

80.

82.

23.

36.

26.

79.

57.

23.

66.

16.

55.

14.

13.

92.

23.

01.

82.

92.

93.

3N

km

–212

4.4

186.

916

0.4

66.9

128.

319

6.6

400.

158

2.4

513.

731

5.9

177.

320

4.4

271.

528

4.7

260.

238

3.5

308.

322

1.7

122.

616

7.1

203.

226

0.4

NS

SD52

.245

.855

.725

.764

.052

.117

1.5

144.

823

2.0

136.

288

.713

0.2

157.

211

9.1

102.

812

9.6

69.0

73.0

47.6

90.9

72.1

82.4

8

kg k

m–2

24.2

11.1

24.5

15.8

19.3

18.1

28.6

28.8

46

.152

.438

.627

.122

.133

.140

.431

.733

.634

.117

.426

.815

.7N

SSD

7.9

2.1

3.1

4.9

4.9

2.1

3.6

4.0

9.

714

.514

.35.

33.

95.

28.

27.

27.

27.

65.

23.

41.

8N

km

–262

8.2

302.

359

5.6

325.

752

0.5

602.

766

2.5

897.

7

1077

.613

26.3

1143

.168

8.5

527.

284

5.4

1158

.587

2.5

829.

090

5.0

471.

671

0.3

431.

8Po

sitiv

e tr

end

SD19

9.2

51.8

82.0

91.9

134.

821

8.2

92.8

185.

5

256.

437

5.5

518.

314

7.4

97.7

134.

027

7.9

290.

420

3.1

222.

912

9.6

97.6

56.7

9

kg k

m–2

3.4

3.7

5.6

4.4

6.1

4.4

5.6

6.2

3.7

5.5

4.6

3.4

4.9

5.3

5.5

7.1

5.4

4.4

5.3

3.2

4.1

4.4

NS

SD0.

40.

40.

70.

60.

70.

60.

80.

90.

91.

20.

80.

60.

80.

90.

81.

10.

90.

81.

10.

50.

70.

7N

km

–291

.311

0.1

159.

812

1.5

170.

912

5.0

179.

020

5.3

110.

917

9.4

138.

211

4.9

145.

219

2.8

184.

025

1.2

176.

213

0.9

180.

398

.314

4.5

141.

8N

SSD

11.9

16.3

21.0

15.4

22.1

17.8

24.7

30.7

27.6

40.7

22.7

19.6

23.6

34.1

30.6

46.2

38.1

23.1

40.2

15.5

29.2

25.9

10

kg k

m–2

1.1

1.1

0.7

1.1

1.7

1.6

0.9

1.1

0.2

0.5

1.4

1.3

1.2

1.2

1.3

1.0

1.2

1.2

1.3

1.0

0.6

0.8

NS

SD0.

20.

30.

10.

30.

30.

30.

20.

30.

10.

10.

50.

30.

20.

30.

30.

20.

30.

20.

20.

20.

20.

2N

km

–226

.225

.915

.428

.442

.843

.026

.927

.75.

812

.930

.943

.827

.421

.721

.415

.023

.327

.023

.920

.511

.014

.3N

egat

ive

tren

dSD

5.6

9.3

3.8

8.7

9.9

8.7

7.2

6.4

3.1

2.6

8.6

9.4

4.0

4.9

4.7

3.5

4.9

4.1

4.1

3.6

3.3

2.9

Page 5: Spatiotemporal abundance pattern of deep-water rose shrimp ...scimar.icm.csic.es/scimar/supplm/sm04858esm.pdf · Spatiotemporal abundance pattern of deep-water rose shrimp, Parapenaeus

Abundance of deep-water rose shrimp and Norway lobster • S5

SCI. MAR. 83S1, December 2019, S1-S7. ISSN-L 0214-8358

Tab

le S

2 (C

ont.)

. – S

trat

ifie

d m

ean

biom

ass

and

dens

ity in

dice

s (k

g km

–2 a

nd N

km

–2 ±

sta

ndar

d de

viat

ion,

SD

) per

yea

r (19

94-2

015)

of N

orw

ay lo

bste

r (N

. nor

vegi

cus)

in th

e in

vest

igat

ed G

SAs.

Info

rma-

tion

on th

e re

sults

of

Spea

rman

Rho

coe

ffic

ient

ana

lysi

s is

als

o sh

own.

GSA

19

9419

9519

9619

9719

9819

9920

0020

0120

0220

0320

0420

0520

0620

0720

0820

0920

1020

1120

1220

1320

1420

15Sp

earm

an

Rho

11

kg k

m–2

1.7

4.2

3.6

1.6

2.6

2.0

4.0

1.5

2.0

3.0

3.7

2.2

3.3

3.1

4.5

4.3

4.1

1.8

2.7

2.0

2.1

2.3

NS

SD0.

51.

30.

80.

30.

60.

61.

40.

50.

70.

81.

10.

60.

70.

71.

11.

21.

00.

50.

70.

60.

60.

8N

km

–238

.410

2.9

92.7

40.0

61.6

45.7

85.6

31.5

36.6

87.8

91.4

71.4

87.9

92.4

136.

110

0.8

87.9

37.1

58.8

45.2

45.3

47.6

NS

SD9.

931

.519

.28.

315

.315

.128

.38.

010

.325

.928

.421

.221

.322

.635

.125

.320

.78.

713

.516

.013

.016

.4

15

kg k

m–2

5.

410

.312

.58.

016

.14.

07.

64.

33.

23.

53.

4N

egat

ive

tren

dSD

1.

94.

26.

82.

410

.01.

22.

31.

10.

91.

51.

3N

km

–2

137.

321

4.8

413.

021

0.2

413.

490

.417

0.6

154.

913

7.0

148.

815

1.1

Neg

ativ

e tr

end

SD

53.9

85.5

213.

664

.627

8.7

29.0

59.1

38.6

40.2

81.6

51.5

16

kg k

m–2

1.4

2.2

4.3

1.5

2.1

2.0

2.0

2.3

2.5

2.1

5.1

3.6

4.4

6.0

6.6

7.0

5.4

4.2

6.2

2.0

0.6

3.3

NS

SD0.

51.

12.

00.

90.

90.

70.

80.

91.

20.

92.

02.

31.

72.

82.

93.

22.

31.

82.

80.

70.

31.

3N

km

–248

.796

.217

5.0

65.1

76.7

79.7

86.9

118.

910

6.0

74.5

142.

097

.712

8.9

170.

721

5.2

232.

415

8.4

121.

418

3.6

60.2

15.3

84.6

NS

SD17

.348

.476

.037

.334

.124

.041

.853

.750

.236

.258

.559

.450

.973

.299

.110

7.3

63.7

58.3

80.0

20.1

7.4

37.3

17

kg k

m–2

1.5

1.8

1.9

2.6

2.8

1.0

1.4

1.4

1.0

0.6

0.5

0.9

0.8

0.7

Neg

ativ

e tr

end

SD

0.

40.

40.

30.

70.

60.

20.

20.

30.

20.

10.

20.

20.

10.

1N

km

–2

56

.194

.672

.912

2.7

145.

344

.452

.842

.928

.413

.618

.923

.626

.724

.2N

egat

ive

tren

dSD

18.5

26.4

14.7

37.3

41.6

12.4

11.4

9.0

5.9

2.9

8.2

5.5

6.6

4.9

18

kg k

m–2

1.4

2.0

2.8

1.4

1.4

1.4

1.4

1.8

1.0

1.3

1.6

1.7

1.6

1.1

3.2

3.1

1.9

1.3

0.8

0.8

0.9

0.5

Neg

ativ

e tr

end

SD0.

30.

60.

40.

30.

20.

30.

30.

40.

20.

40.

30.

40.

40.

30.

60.

80.

40.

40.

20.

20.

20.

1N

km

–236

.764

.298

.340

.244

.345

.840

.557

.330

.440

.040

.843

.050

.126

.678

.511

8.5

74.0

47.0

22.4

21.5

26.9

19.6

Neg

ativ

e tr

end

SD8.

119

.420

.29.

19.

411

.110

.614

.98.

115

.07.

29.

718

.912

.317

.644

.321

.919

.96.

17.

76.

87.

2

19

kg k

m–2

2.2

1.6

1.1

1.6

1.7

1.5

2.5

1.3

0.8

0.8

0.7

1.5

1.7

1.1

1.5

0.7

0.8

0.6

0.5

0.4

0.4

0.5

Neg

ativ

e tr

end

SD0.

80.

50.

40.

40.

70.

30.

90.

30.

30.

20.

30.

90.

40.

30.

50.

20.

40.

20.

10.

10.

10.

1N

km

–246

.837

.732

.047

.095

.260

.121

8.7

49.7

46.4

43.0

20.8

51.5

90.7

35.7

41.3

25.7

22.1

16.0

14.6

9.6

7.9

9.7

Neg

ativ

e tr

end

SD12

.69.

98.

213

.137

.215

.311

9.6

15.7

17.6

15.4

6.4

23.3

28.2

9.2

14.3

10.2

12.6

5.1

4.3

3.0

2.6

2.4

20

kg k

m–2

5.0

5.8

2.6

4.8

1.8

0.8

1.1

2.2

0.

60.

60.

40.

6

0.1

1.

2

Neg

ativ

e tr

end

SD3.

74.

81.

42.

10.

80.

40.

71.

1

0.3

0.4

0.3

0.4

0.

1

1.1

N

km

–228

5.4

159.

273

.913

1.8

50.9

15.3

18.9

49.5

15

.916

.410

.012

.0

4.9

34

.8

Neg

ativ

e tr

end

SD24

1.8

127.

730

.157

.626

.07.

09.

820

.3

7.3

10.4

6.5

7.8

4.

6

32.0

22

kg k

m–2

5.7

3.1

2.9

3.9

3.4

4.5

2.9

4.0

1.

11.

52.

11.

5

1.3

1.

0

Neg

ativ

e tr

end

SD2.

00.

60.

70.

90.

91.

20.

81.

5

0.3

0.4

0.7

0.4

0.

4

0.2

N

km

–216

6.9

79.3

77.5

84.2

80.6

100.

678

.499

.4

36.5

39.3

56.4

46.5

41

.5

25.9

N

egat

ive

tren

dSD

70.3

19.9

17.1

19.4

18.1

27.0

25.3

40.2

13

.510

.021

.316

.0

14.7

6.

9

23

kg k

m–2

3.

72.

50.

42.

91.

9

2.5

0.

30.

20.

00.

1

Neg

ativ

e tr

end

SD

1.9

1.2

0.4

2.9

1.9

2.

5

0.3

0.2

0.0

0.1

N

km

–2

78.9

49.1

1.8

65.3

58.0

51

.0

7.9

4.8

1.4

1.3

N

egat

ive

tren

dSD

39

.524

.61.

865

.358

.0

51.0

7.

94.

81.

41.

3

25

kg k

m–2

0.

00.

00.

00.

00.

00.

00.

00.

00.

0

0.0

NS

SD

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.

0N

km

–2

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.

0N

SSD

0.

00.

00.

00.

00.

00.

00.

00.

00.

0

0.0

Page 6: Spatiotemporal abundance pattern of deep-water rose shrimp ...scimar.icm.csic.es/scimar/supplm/sm04858esm.pdf · Spatiotemporal abundance pattern of deep-water rose shrimp, Parapenaeus

S6 • M. Sbrana et al.

SCI. MAR. 83S1, December 2019, S1-S7. ISSN-L 0214-8358

Fig. S1. – Pair-plots for all the explanatory variables in the data set used for the analysis. The upper diagonal panel shows the Pearson cor-relation coefficient, and the lower diagonal panel shows the scatterplots with a smoother added to visualize the pattern. The font size of the

correlation coefficient is proportional to its estimated value.

Fig. S2. – Graphs of the validation of the best GAM model for deep-water rose shrimp. From top left, residuals versus depth, residuals versus longitude, residuals versus latitude, residuals versus SST, and residuals versus time (year) to assess homogeneity; bottom right, histogram of

residuals to assess normality.

Page 7: Spatiotemporal abundance pattern of deep-water rose shrimp ...scimar.icm.csic.es/scimar/supplm/sm04858esm.pdf · Spatiotemporal abundance pattern of deep-water rose shrimp, Parapenaeus

Abundance of deep-water rose shrimp and Norway lobster • S7

SCI. MAR. 83S1, December 2019, S1-S7. ISSN-L 0214-8358

Fig. S3. – Graphs of the validation of the best GAM model for Norway lobster. From top left, residuals versus depth, residuals versus longitude, residuals versus latitude, residuals versus SST, and residuals versus time (year) to assess homogeneity; bottom right, histogram of

residuals to assess normality.