spatio-temporal missing data reconstruction in satellite ...displacement measurement time series...

16
Context and motivation The extended EM-EOF method Application on real data Conclusion and perspective Spatio-temporal missing data reconstruction in satellite displacement measurement time series Alexandre Hippert-Ferrer 1, Yajing Yan 1 , Philippe Bolon 1 , Romain Millan 2 1 Laboratoire d’Informatique, Systèmes, Traitement de l’Information et la Connaissance (LISTIC), Annecy, France 2 Institut des Géosciences de l’Environnement (IGE), Université Grenoble Alpes, CNRS, Grenoble, France Correspondence to: [email protected] Thursday, May 7 Alexandre Hippert-Ferrer, Yajing Yan, Philippe Bolon, Romain Millan EGU2020 Thursday, May 7 1 / 16

Upload: others

Post on 31-May-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Spatio-temporal missing data reconstruction in satellite ...displacement measurement time series Alexandre Hippert-Ferrer 1y, Yajing Yan , Philippe Bolon , Romain Millan2 1Laboratoire

Context and motivation The extended EM-EOF method Application on real data Conclusion and perspective

Spatio-temporal missing data reconstruction in satellitedisplacement measurement time series

Alexandre Hippert-Ferrer1†, Yajing Yan1, Philippe Bolon1, Romain Millan2

1Laboratoire d’Informatique, Systèmes, Traitement de l’Information et la Connaissance (LISTIC), Annecy, France2Institut des Géosciences de l’Environnement (IGE), Université Grenoble Alpes, CNRS, Grenoble, France

†Correspondence to: [email protected]

Thursday, May 7

Alexandre Hippert-Ferrer, Yajing Yan, Philippe Bolon, Romain Millan EGU2020 Thursday, May 7 1 / 16

Page 2: Spatio-temporal missing data reconstruction in satellite ...displacement measurement time series Alexandre Hippert-Ferrer 1y, Yajing Yan , Philippe Bolon , Romain Millan2 1Laboratoire

Context and motivation The extended EM-EOF method Application on real data Conclusion and perspective

Introduction

Alexandre Hippert-Ferrer, Yajing Yan, Philippe Bolon, Romain Millan EGU2020 Thursday, May 7 2 / 16

Missing data is a frequent issue in displacement time series in both space and time.

It can prevent the full understanding of the physical phenomena under observation.

Causes : rapid surface changes, missing image, technical limitations.

Argentière glacier, offset tracking of TerraSAR-X in Summer 2010(Fallourd et al., 2011)

Slow slip event(interferometry), Mexico(Maubant et al., 2020)Surface velocity over Fox Glacier, offset tracking of Sentinel-2

images in February 2018 (Millan et al., 2019)

Page 3: Spatio-temporal missing data reconstruction in satellite ...displacement measurement time series Alexandre Hippert-Ferrer 1y, Yajing Yan , Philippe Bolon , Romain Millan2 1Laboratoire

Context and motivation The extended EM-EOF method Application on real data Conclusion and perspective

Motivation of the study

Handling missing data in displacement time seriesClassical approach : spatial or temporal interpolationNot exploited (yet) : spatio-temporal information

→ Manage spatio-temporal missing data in time series←

Objective : propose a statistical gap-filling method addressing1. Randomness and possible spatial, temporal and spatio-temporal

correlation ofNoiseMissing data

2. Complex displacement behaviors (mixed frequencies)3. Small time series

Alexandre Hippert-Ferrer, Yajing Yan, Philippe Bolon, Romain Millan EGU2020 Thursday, May 7 3 / 16

Page 4: Spatio-temporal missing data reconstruction in satellite ...displacement measurement time series Alexandre Hippert-Ferrer 1y, Yajing Yan , Philippe Bolon , Romain Millan2 1Laboratoire

Context and motivation The extended EM-EOF method Application on real data Conclusion and perspective

Extended EM-EOF

→ Extension of the EM-EOF method (Hippert et al., 2019, 2020) [3, 4]

Key features of the extended EM-EOF method :

Low rank structure of the sample spatio-temporal covariance matrix.

Displacement signal and noise decomposed in empirical orthogonal functions(EOFs).

Reconstruction with an appropriate initialization of missing values.

Expectation-Maximization (EM)-type algorithm for resolution.

Alexandre Hippert-Ferrer, Yajing Yan, Philippe Bolon, Romain Millan EGU2020 Thursday, May 7 4 / 16

Page 5: Spatio-temporal missing data reconstruction in satellite ...displacement measurement time series Alexandre Hippert-Ferrer 1y, Yajing Yan , Philippe Bolon , Romain Millan2 1Laboratoire

Context and motivation The extended EM-EOF method Application on real data Conclusion and perspective

Data representation

Let Xt = {xij (t)}1≤i≤Px ,1≤j≤Py be a spatial grid observed at time t = 1, . . . ,N.

Some elements of Xt are missing.

All Xt are stacked into a spatio-temporal data matrix Y = (X1,X2, . . . ,XN ).

Each Xt is augmented into a Hankel-block Hankel (HbH) matrix Dt of sizeK ×M = Kx Ky ×Mx My , with Kx = (Px −Mx + 1), Ky = (Py −My + 1).

All Dt is stacked into a spatio-temporal matrix D of size (K × NM), that isD = (D1,D2, . . . ,DN ).

Alexandre Hippert-Ferrer, Yajing Yan, Philippe Bolon, Romain Millan EGU2020 Thursday, May 7 5 / 16

Square windowof sizeMx ×My = M

Xt

Page 6: Spatio-temporal missing data reconstruction in satellite ...displacement measurement time series Alexandre Hippert-Ferrer 1y, Yajing Yan , Philippe Bolon , Romain Millan2 1Laboratoire

Context and motivation The extended EM-EOF method Application on real data Conclusion and perspective

Covariance estimation and decomposition

Sample spatio-temporal covariance is estimated :

C =1KDTD (1)

The eigenvalue decomposition (EVD) of matrix C yields to :

C EVD=

NM∑i=1

λi ui uTi (2)

Vectors ui are the NM EOFs modes of matrix D. First modes capture the mainspatio-temporal dynamical behavior of the signal, others represent perturbations.

Reconstruction with an optimal number of EOF modes R � NM is obtained as

D = ARUR (3)

A is the matrix of principal components, which are the projection of D on each EEOF u.

How do we find R ?

Alexandre Hippert-Ferrer, Yajing Yan, Philippe Bolon, Romain Millan EGU2020 Thursday, May 7 6 / 16

Page 7: Spatio-temporal missing data reconstruction in satellite ...displacement measurement time series Alexandre Hippert-Ferrer 1y, Yajing Yan , Philippe Bolon , Romain Millan2 1Laboratoire

Context and motivation The extended EM-EOF method Application on real data Conclusion and perspective

Selection of the optimal number of EOF modes

1. Root-mean-square error (cross-RMSE) on cross-validated data Y ∈ Y :

1MN||Yk − Y||2 (4)

Requires no a priori information

2. Confidence index associated with each eigenvalue of D :

Ck =max(Γk )− Γk

max(Γk )−min(Γk )k = 1, . . . ,NM (5)

with Γk = log( ∆λkλj−λk

).

Investigation of eigenvalue degeneracy, which is linked to their uncertainties ∆λkλj−λk

.

Over-estimation of EOF modes is addressed by building metric Ck .

Alexandre Hippert-Ferrer, Yajing Yan, Philippe Bolon, Romain Millan EGU2020 Thursday, May 7 7 / 16

Page 8: Spatio-temporal missing data reconstruction in satellite ...displacement measurement time series Alexandre Hippert-Ferrer 1y, Yajing Yan , Philippe Bolon , Romain Millan2 1Laboratoire

Context and motivation The extended EM-EOF method Application on real data Conclusion and perspective

General principle of the method

Alexandre Hippert-Ferrer, Yajing Yan, Philippe Bolon, Romain Millan EGU2020 Thursday, May 7 8 / 16

Initialize missing values First estimation of theoptimal number of EOF R

Update missing valuesReconstruction with r ≤ R EOFs

Compute Ck

EM iteration?

Update r

? For a fixed number of EOF modes, cross-RMSE is computed until it converges.

Page 9: Spatio-temporal missing data reconstruction in satellite ...displacement measurement time series Alexandre Hippert-Ferrer 1y, Yajing Yan , Philippe Bolon , Romain Millan2 1Laboratoire

Context and motivation The extended EM-EOF method Application on real data Conclusion and perspective

Determination of the spatial lag M for spatio-temporal covarianceconstruction

Trade-off between the amount of information extracted in the window (large M)and the number of repetitions of the window within each image (small M).

Upper limit based on covariance estimation theory : M < P/6

Lower limit :We use the spatial decorrelation decay τ defined as :

τ = −∆Plog r

(6)

r : lag-one auto-correlation∆P : spatial sampling rate, here 1 pixel.

M can be approximated by M ' P/τ (Ghil et al., 2002) [1] which gives M > P/20with r < 0.95.

Alexandre Hippert-Ferrer, Yajing Yan, Philippe Bolon, Romain Millan EGU2020 Thursday, May 7 9 / 16

Page 10: Spatio-temporal missing data reconstruction in satellite ...displacement measurement time series Alexandre Hippert-Ferrer 1y, Yajing Yan , Philippe Bolon , Romain Millan2 1Laboratoire

Context and motivation The extended EM-EOF method Application on real data Conclusion and perspective

Surface velocities on Fox Glacier, New Zealand

Period Platform Data type Time series size [min, max]% missing02/2018-09/2018 Sentinel-2 Offset tracking 12 [10, 60]%

Time series description.

Surface velocities computed from the study of (Millan et al., 2019) [5].

Surface velocities (m/year) on Fox Glacier. P1 and P2 locations are selected for temporal evolution analysis.

Alexandre Hippert-Ferrer, Yajing Yan, Philippe Bolon, Romain Millan EGU2020 Thursday, May 7 10 / 16

Page 11: Spatio-temporal missing data reconstruction in satellite ...displacement measurement time series Alexandre Hippert-Ferrer 1y, Yajing Yan , Philippe Bolon , Romain Millan2 1Laboratoire

Context and motivation The extended EM-EOF method Application on real data Conclusion and perspective

Reconstruction results

Alexandre Hippert-Ferrer, Yajing Yan, Philippe Bolon, Romain Millan EGU2020 Thursday, May 7 11 / 16

02 05 08

200

400

600

800

Date (mm/2018)

Velo

city

(m/y

ear)

P1 P2 P2Extended P2EM-EOF

13 EOFs modes ; M=225 ; cross-validation data : 1% of observed values.

Seasonal variation is retrieved, consistent values with the literature (4.5 m/day belowthe main ice fall in winter).

Improved accuracy of '15m/year compared to the EM-EOF method.

Page 12: Spatio-temporal missing data reconstruction in satellite ...displacement measurement time series Alexandre Hippert-Ferrer 1y, Yajing Yan , Philippe Bolon , Romain Millan2 1Laboratoire

Context and motivation The extended EM-EOF method Application on real data Conclusion and perspective

Selection of the optimal number of EOF modes

Alexandre Hippert-Ferrer, Yajing Yan, Philippe Bolon, Romain Millan EGU2020 Thursday, May 7 12 / 16

Optimal number of EOF modes (13) corresponds to a peak in Ck which coincides witha break in the eigenvalue spectrum.

Eigenvalues multiplets are kept in the reconstructed data.

105

106

107

(a)

λk

0 20 40

0.6

0.8

1(b)

Eigenvalue number

C k

105 106 107

0.6

0.8

1

(c)

λk

C k

Ck = max(Γk )−Γkmax(Γk )−min(Γk )

Γk = log( ∆λkλj−λk

)

Page 13: Spatio-temporal missing data reconstruction in satellite ...displacement measurement time series Alexandre Hippert-Ferrer 1y, Yajing Yan , Philippe Bolon , Romain Millan2 1Laboratoire

Context and motivation The extended EM-EOF method Application on real data Conclusion and perspective

Conclusion

Extension of the EM-EOF method to impute spatio-temporal missing values.Can handle small time series with high incompletenessExtraction of the displacement signal from heterogeneous perturbations (noise)

Robust selection of the optimal number of EOF modes based on :Iterative computation of the cross-validation errorConfidence metric based on eigenvalue uncertainties to address potentialover-estimation due to eigenvalue degeneracy

A range of spatial lag M is provided

Limitations : potential edge effect due to spatial square window.

Perspective : Use a shaped window (adaptive spatial lag) instead of a square window.

Alexandre Hippert-Ferrer, Yajing Yan, Philippe Bolon, Romain Millan EGU2020 Thursday, May 7 13 / 16

Page 14: Spatio-temporal missing data reconstruction in satellite ...displacement measurement time series Alexandre Hippert-Ferrer 1y, Yajing Yan , Philippe Bolon , Romain Millan2 1Laboratoire

Références Supplementary material

Bibliography

Thank you for your attention.

[1] M. Ghil, M. Allen, M. D. Dettinger, K. Ide, D. Kondrashov, M. Mann, A. Robertson,A. Saunders, Y. Tian, F. Varadi, and P. Yiou. Advanced spectral methods forclimatic time series. Review of Geophysics, 40, 1 :1–41, 2002.

[2] N. Golyandina and K. Usevich. 2d-extension of singular spectrum analysis :Algorithm and elements of theory. Matrix Methods : Theory, Algorithms andApplications, pages 449–473, 2010.

[3] A. Hippert-Ferrer, Y. Yan, and P. Bolon. Gap-filling based on iterative EOF analysisof temporal covariance : application to InSAR displacement time series. InIGARSS, pages 262–265, 2019.

[4] A. Hippert-Ferrer, Y. Yan, and P. Bolon. EM-EOF : gap-filling in incomplete SARdisplacement time series. IEEE Trans. Geosci. Remote Sens., in review, 2020.

[5] R. Millan, J. Mouginot, A. Rabatel, S. Jeong, D. Cusicanqui, A. Derkacheva, andM. Chekki. Mapping surface flow velocity of glaciers at regional scale using amultiple sensors approach. Remote Sensing, 11(21), 2019.

This work has been supported by the Programme National de Télédétection Spatiale (PNTS,http ://www.insu.cnrs.fr/pnts), grant PNTS-2019-11, and by the SIRGA project.

Alexandre Hippert-Ferrer, Yajing Yan, Philippe Bolon, Romain Millan EGU2020 Thursday, May 7 14 / 16

Page 15: Spatio-temporal missing data reconstruction in satellite ...displacement measurement time series Alexandre Hippert-Ferrer 1y, Yajing Yan , Philippe Bolon , Romain Millan2 1Laboratoire

Références Supplementary material

Reconstruction averaging

Diagonal averaging, called hankelization, [2] is applied successively to each matrix Hi,tand to each matrix Dt , so that we have the following averaging :

xik (t) =1

#Ak

∑(l,l′)∈Ak

xll′ (t) (7)

Hk,t =1

#Bk

∑(l,l′)∈Bk

Hll′,t (8)

with Ak = {(l, l ′) : 1 ≤ l ≤ Ky , 1 ≤ l ′ ≤ My , l + l ′ = k + 1} andBk = {(l, l ′) : 1 ≤ l ≤ Kx , 1 ≤ l ′ ≤ Mx , l + l ′ = k + 1}.

Alexandre Hippert-Ferrer, Yajing Yan, Philippe Bolon, Romain Millan EGU2020 Thursday, May 7 15 / 16

Page 16: Spatio-temporal missing data reconstruction in satellite ...displacement measurement time series Alexandre Hippert-Ferrer 1y, Yajing Yan , Philippe Bolon , Romain Millan2 1Laboratoire

Références Supplementary material

Confidence index and effective sample size

North’s et al. "rule of thumb" (North, 1982) to approximate the eigenvalue uncertainty :

∆λk ≈√

2L∗λk ∆uk ≈

∆λk

λj − λkuj (9)

with L∗ = N∗M∗.

N∗ = N[1 + 2

∑N−1k=1 (1− k

N )ρ(k)]−1 is the temporal ESS (Thiébaux, 1984)

M∗ is the spatial ESS within each spatial window of size M. We estimate it by :

M∗ = M(

1 + 2M∑

k=1

(1−kM

)ν(k)

)−1(10)

Then Γk = log( ∆λkλj−λk

)and Ck is computed as :

Ck =max(Γk )− Γk

max(Γk )−min(Γk )k = 1, . . . ,NM (11)

Alexandre Hippert-Ferrer, Yajing Yan, Philippe Bolon, Romain Millan EGU2020 Thursday, May 7 16 / 16