sparsity methods for systems and control - algorithms for ... · convexoptimizationproblem...

167
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sparsity Methods for Systems and Control Algorithms for Convex Optimization Masaaki Nagahara 1 1 The University of Kitakyushu [email protected] M. Nagahara (Univ of Kitakyushu) Sparsity Methods 1 / 55

Upload: others

Post on 27-Sep-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Sparsity Methods for Systems and ControlAlgorithms for Convex Optimization

Masaaki Nagahara1

1The University of [email protected]

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 1 / 55

Page 2: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Table of Contents

1 Basics of convex optimization

2 Proximal Operator

3 Proximal splitting methods for ℓ1 optimization

4 Proximal gradient method for ℓ1 regularization

5 Generalized LASSO and ADMM

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 2 / 55

Page 3: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Table of Contents

1 Basics of convex optimization

2 Proximal Operator

3 Proximal splitting methods for ℓ1 optimization

4 Proximal gradient method for ℓ1 regularization

5 Generalized LASSO and ADMM

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 3 / 55

Page 4: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ℓ1 optimization by CVX

ℓ1 Optimization

minimizex∈Rn

∥x∥1 subject to Φx � y.

The MATLAB CVX codecvx_begin

variable x(n)minimize( norm(x, 1) )subject to

y == Phi * xcvx_end

Useful for a small or middle scale problemsNot that useful for

large-scale problems like image processingreal-time applications for control system

You need to build an efficient algorithm by yourself for yourspecific problem.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 4 / 55

Page 5: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ℓ1 optimization by CVX

ℓ1 Optimization

minimizex∈Rn

∥x∥1 subject to Φx � y.

The MATLAB CVX codecvx_begin

variable x(n)minimize( norm(x, 1) )subject to

y == Phi * xcvx_end

Useful for a small or middle scale problemsNot that useful for

large-scale problems like image processingreal-time applications for control system

You need to build an efficient algorithm by yourself for yourspecific problem.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 4 / 55

Page 6: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ℓ1 optimization by CVX

ℓ1 Optimization

minimizex∈Rn

∥x∥1 subject to Φx � y.

The MATLAB CVX codecvx_begin

variable x(n)minimize( norm(x, 1) )subject to

y == Phi * xcvx_end

Useful for a small or middle scale problemsNot that useful for

large-scale problems like image processingreal-time applications for control system

You need to build an efficient algorithm by yourself for yourspecific problem.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 4 / 55

Page 7: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ℓ1 optimization by CVX

ℓ1 Optimization

minimizex∈Rn

∥x∥1 subject to Φx � y.

The MATLAB CVX codecvx_begin

variable x(n)minimize( norm(x, 1) )subject to

y == Phi * xcvx_end

Useful for a small or middle scale problemsNot that useful for

large-scale problems like image processingreal-time applications for control system

You need to build an efficient algorithm by yourself for yourspecific problem.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 4 / 55

Page 8: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ℓ1 optimization by CVX

ℓ1 Optimization

minimizex∈Rn

∥x∥1 subject to Φx � y.

The MATLAB CVX codecvx_begin

variable x(n)minimize( norm(x, 1) )subject to

y == Phi * xcvx_end

Useful for a small or middle scale problemsNot that useful for

large-scale problems like image processingreal-time applications for control system

You need to build an efficient algorithm by yourself for yourspecific problem.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 4 / 55

Page 9: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ℓ1 optimization by CVX

ℓ1 Optimization

minimizex∈Rn

∥x∥1 subject to Φx � y.

The MATLAB CVX codecvx_begin

variable x(n)minimize( norm(x, 1) )subject to

y == Phi * xcvx_end

Useful for a small or middle scale problemsNot that useful for

large-scale problems like image processingreal-time applications for control system

You need to build an efficient algorithm by yourself for yourspecific problem.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 4 / 55

Page 10: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convex set

Convex setLet C be a subset of Rn . C is said to be a convex set if the followinginclusion

tx + (1 − t)y ∈ Cholds for any vectors x , y ∈ C and for any real number t ∈ [0, 1].

Convex and non-convex setsx

yx y

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 5 / 55

Page 11: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Effective domain

The effective domain of a function f : Rn → R ∪ {∞} is defined by

dom( f ) ≜ {x ∈ Rn : f (x) < ∞}.Indicator function

f (x) �{

0, if ∥x∥2 ≤ 1,∞, if ∥x∥2 > 1.

The effective domain of the indicator function is

dom( f ) � {x ∈ Rn : ∥x∥2 ≤ 1}.

x

C

IC(x)

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 6 / 55

Page 12: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Effective domain

The effective domain of a function f : Rn → R ∪ {∞} is defined by

dom( f ) ≜ {x ∈ Rn : f (x) < ∞}.Indicator function

f (x) �{

0, if ∥x∥2 ≤ 1,∞, if ∥x∥2 > 1.

The effective domain of the indicator function is

dom( f ) � {x ∈ Rn : ∥x∥2 ≤ 1}.

x

C

IC(x)

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 6 / 55

Page 13: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Effective domain

The effective domain of a function f : Rn → R ∪ {∞} is defined by

dom( f ) ≜ {x ∈ Rn : f (x) < ∞}.Indicator function

f (x) �{

0, if ∥x∥2 ≤ 1,∞, if ∥x∥2 > 1.

The effective domain of the indicator function is

dom( f ) � {x ∈ Rn : ∥x∥2 ≤ 1}.

x

C

IC(x)

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 6 / 55

Page 14: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convex function

Convex functionLet f : Rn → R∪ {∞} be a proper function. The function f is said to bea convex function if the following inequality

f(tx + (1 − t)y

)≤ t f (x) + (1 − t) f (y)

holds for any vectors x , y ∈ dom( f ) and for any real number t ∈ [0, 1].

Convex and non-convex functions

x y x y

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 7 / 55

Page 15: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Epigraph

The epigraph epi( f ) of function f is defined by

epi( f ) ≜{(x , t) ∈ Rn × R : x ∈ dom( f ), f (x) ≤ t

}.

x

f(x)

epi(f)

Proper, convex, and closed functionfunction f epigraph epi( f )

convex convex setclosed closed setproper non-empty

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 8 / 55

Page 16: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Epigraph

The epigraph epi( f ) of function f is defined by

epi( f ) ≜{(x , t) ∈ Rn × R : x ∈ dom( f ), f (x) ≤ t

}.

x

f(x)

epi(f)

Proper, convex, and closed functionfunction f epigraph epi( f )

convex convex setclosed closed setproper non-empty

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 8 / 55

Page 17: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convex optimization problem

Convex optimization problemLet f : Rn → R ∪ {∞} be a proper, closed, and convex function, andC ⊂ Rn be a closed convex set. Then, a convex optimization problem isa problem to find a vector x∗ ∈ Rn that minimizes the function f (x)over the set C ⊂ Rn . The problem is briefly written as

minimizex∈Rn

f (x) subject to x ∈ C.

The function f (x) is called a cost function or an objective function.The set C is called a constraint set or a feasible set.The entries of C is called feasible solutions.The inclusion x ∈ C is called a constraint

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 9 / 55

Page 18: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convex optimization problem

Convex optimization problemLet f : Rn → R ∪ {∞} be a proper, closed, and convex function, andC ⊂ Rn be a closed convex set. Then, a convex optimization problem isa problem to find a vector x∗ ∈ Rn that minimizes the function f (x)over the set C ⊂ Rn . The problem is briefly written as

minimizex∈Rn

f (x) subject to x ∈ C.

The function f (x) is called a cost function or an objective function.The set C is called a constraint set or a feasible set.The entries of C is called feasible solutions.The inclusion x ∈ C is called a constraint

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 9 / 55

Page 19: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convex optimization problem

Convex optimization problemLet f : Rn → R ∪ {∞} be a proper, closed, and convex function, andC ⊂ Rn be a closed convex set. Then, a convex optimization problem isa problem to find a vector x∗ ∈ Rn that minimizes the function f (x)over the set C ⊂ Rn . The problem is briefly written as

minimizex∈Rn

f (x) subject to x ∈ C.

The function f (x) is called a cost function or an objective function.The set C is called a constraint set or a feasible set.The entries of C is called feasible solutions.The inclusion x ∈ C is called a constraint

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 9 / 55

Page 20: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convex optimization problem

Convex optimization problemLet f : Rn → R ∪ {∞} be a proper, closed, and convex function, andC ⊂ Rn be a closed convex set. Then, a convex optimization problem isa problem to find a vector x∗ ∈ Rn that minimizes the function f (x)over the set C ⊂ Rn . The problem is briefly written as

minimizex∈Rn

f (x) subject to x ∈ C.

The function f (x) is called a cost function or an objective function.The set C is called a constraint set or a feasible set.The entries of C is called feasible solutions.The inclusion x ∈ C is called a constraint

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 9 / 55

Page 21: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convex optimization problem

Convex optimization problemLet f : Rn → R ∪ {∞} be a proper, closed, and convex function, andC ⊂ Rn be a closed convex set. Then, a convex optimization problem isa problem to find a vector x∗ ∈ Rn that minimizes the function f (x)over the set C ⊂ Rn . The problem is briefly written as

minimizex∈Rn

f (x) subject to x ∈ C.

The function f (x) is called a cost function or an objective function.The set C is called a constraint set or a feasible set.The entries of C is called feasible solutions.The inclusion x ∈ C is called a constraint

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 9 / 55

Page 22: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Notation

Minimum value:minx∈C

f (x).

Minimizer (set):

arg minx∈C

f (x) ≜{

x∗ ∈ C : f (x∗) ≤ f (x), ∀x ∈ C ∩ dom( f )}.

minimizex∈Rn

f(x)︸︷︷︸

subject to x ∈ C︸ ︷︷ ︸

cost function constraint

minx∈C

f(x)

arg minx∈C

f(x)

minimum value

minimizer (set)

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 10 / 55

Page 23: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Notation

Minimum value:minx∈C

f (x).

Minimizer (set):

arg minx∈C

f (x) ≜{

x∗ ∈ C : f (x∗) ≤ f (x), ∀x ∈ C ∩ dom( f )}.

minimizex∈Rn

f(x)︸︷︷︸

subject to x ∈ C︸ ︷︷ ︸

cost function constraint

minx∈C

f(x)

arg minx∈C

f(x)

minimum value

minimizer (set)

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 10 / 55

Page 24: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Notation

Minimum value:minx∈C

f (x).

Minimizer (set):

arg minx∈C

f (x) ≜{

x∗ ∈ C : f (x∗) ≤ f (x), ∀x ∈ C ∩ dom( f )}.

minimizex∈Rn

f(x)︸︷︷︸

subject to x ∈ C︸ ︷︷ ︸

cost function constraint

minx∈C

f(x)

arg minx∈C

f(x)

minimum value

minimizer (set)

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 10 / 55

Page 25: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Global/local minimizers

Local minimizer: there exists an open set B that contains a feasiblesolution x̄ ∈ C ∩ dom( f ) such that

f (x) ≥ f (x̄), ∀x ∈ B ∩ C.

Global minimizer: a feasible solution x∗ ∈ C that satisfies

f (x) ≥ f (x∗), ∀x ∈ C.

x̄ = x∗

x̄ x∗

f(x) f(x)

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 11 / 55

Page 26: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Global/local minimizers

Local minimizer: there exists an open set B that contains a feasiblesolution x̄ ∈ C ∩ dom( f ) such that

f (x) ≥ f (x̄), ∀x ∈ B ∩ C.

Global minimizer: a feasible solution x∗ ∈ C that satisfies

f (x) ≥ f (x∗), ∀x ∈ C.

x̄ = x∗

x̄ x∗

f(x) f(x)

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 11 / 55

Page 27: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Global/local minimizers

TheoremFor the convex optimization problem,

minimizex∈Rn

f (x) subject to x ∈ C.

any local minimizer is (if it exists) a global minimizer, and the set ofglobal minimizers is a convex set.

For convex optimization problems, you just need to find a localminimizer, which is consequently a global minimizer.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 12 / 55

Page 28: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Global/local minimizers

TheoremFor the convex optimization problem,

minimizex∈Rn

f (x) subject to x ∈ C.

any local minimizer is (if it exists) a global minimizer, and the set ofglobal minimizers is a convex set.

For convex optimization problems, you just need to find a localminimizer, which is consequently a global minimizer.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 12 / 55

Page 29: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Strictly and strongly convex functions

Let f : Rn → R ∪ {∞} be a proper function.The function f is said to be a strictly convex function if for anyx , y ∈ dom( f ) ⊂ Rn with x , y and any t ∈ (0, 1),

f(tx + (1 − t)y

)< t f (x) + (1 − t) f (y)

The function f is said to be a strongly convex function if thereexists β > 0 such that for any x , y ∈ dom( f ) ⊂ Rn and anyt ∈ [0, 1],

f(tx + (1 − t)y

)≤ t f (x) + (1 − t) f (y) − t(1 − t)

β

2 ∥x − y∥22

The constant β is called a modulus.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 13 / 55

Page 30: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Strictly and strongly convex functions

Let f : Rn → R ∪ {∞} be a proper function.The function f is said to be a strictly convex function if for anyx , y ∈ dom( f ) ⊂ Rn with x , y and any t ∈ (0, 1),

f(tx + (1 − t)y

)< t f (x) + (1 − t) f (y)

The function f is said to be a strongly convex function if thereexists β > 0 such that for any x , y ∈ dom( f ) ⊂ Rn and anyt ∈ [0, 1],

f(tx + (1 − t)y

)≤ t f (x) + (1 − t) f (y) − t(1 − t)

β

2 ∥x − y∥22

The constant β is called a modulus.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 13 / 55

Page 31: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Strictly and strongly convex functions

Let f : Rn → R ∪ {∞} be a proper function.The function f is said to be a strictly convex function if for anyx , y ∈ dom( f ) ⊂ Rn with x , y and any t ∈ (0, 1),

f(tx + (1 − t)y

)< t f (x) + (1 − t) f (y)

The function f is said to be a strongly convex function if thereexists β > 0 such that for any x , y ∈ dom( f ) ⊂ Rn and anyt ∈ [0, 1],

f(tx + (1 − t)y

)≤ t f (x) + (1 − t) f (y) − t(1 − t)

β

2 ∥x − y∥22

The constant β is called a modulus.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 13 / 55

Page 32: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Strongly convex functions

TheoremAssume f : Rn → R ∪ {∞} is a proper, closed, and strongly convexfunction with modulus β > 0. Then f has the unique minimizerx∗ ∈ dom( f ). That is, for all x ∈ dom( f ) such that x , x∗,

f (x) > f (x∗).

Moreover, for any x ∈ dom( f ), we have

f (x) ≥ f (x∗) +β

2 ∥x − x∗∥22 .

This is an important property of strongly convex functions.This is used to define the proximal operator (see next Section).

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 14 / 55

Page 33: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Strongly convex functions

TheoremAssume f : Rn → R ∪ {∞} is a proper, closed, and strongly convexfunction with modulus β > 0. Then f has the unique minimizerx∗ ∈ dom( f ). That is, for all x ∈ dom( f ) such that x , x∗,

f (x) > f (x∗).

Moreover, for any x ∈ dom( f ), we have

f (x) ≥ f (x∗) +β

2 ∥x − x∗∥22 .

This is an important property of strongly convex functions.This is used to define the proximal operator (see next Section).

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 14 / 55

Page 34: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Strongly convex functions

TheoremAssume f : Rn → R ∪ {∞} is a proper, closed, and strongly convexfunction with modulus β > 0. Then f has the unique minimizerx∗ ∈ dom( f ). That is, for all x ∈ dom( f ) such that x , x∗,

f (x) > f (x∗).

Moreover, for any x ∈ dom( f ), we have

f (x) ≥ f (x∗) +β

2 ∥x − x∗∥22 .

This is an important property of strongly convex functions.This is used to define the proximal operator (see next Section).

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 14 / 55

Page 35: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Table of Contents

1 Basics of convex optimization

2 Proximal Operator

3 Proximal splitting methods for ℓ1 optimization

4 Proximal gradient method for ℓ1 regularization

5 Generalized LASSO and ADMM

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 15 / 55

Page 36: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Proximal operator

Proximal operatorLet f : Rn → R ∪ {∞} be a proper, closed, and convex function. Theproximal operator proxγ f with parameter γ > 0 is defined by

proxγ f (v) ≜ arg minx∈dom( f )

{f (x) + 1

2γ ∥x − v∥22}.

γ � ∞: Minimizer of f (z):proxγ f (v) � arg min

x∈dom( f )f (x)

γ � 0: Projection onto dom( f ):

proxγ f (v) � arg minx∈dom( f )

12γ ∥x − v∥2

2

γ ∈ (0,∞): a mixture of those.M. Nagahara (Univ of Kitakyushu) Sparsity Methods 16 / 55

Page 37: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Proximal operator

Proximal operatorLet f : Rn → R ∪ {∞} be a proper, closed, and convex function. Theproximal operator proxγ f with parameter γ > 0 is defined by

proxγ f (v) ≜ arg minx∈dom( f )

{f (x) + 1

2γ ∥x − v∥22}.

γ � ∞: Minimizer of f (z):proxγ f (v) � arg min

x∈dom( f )f (x)

γ � 0: Projection onto dom( f ):

proxγ f (v) � arg minx∈dom( f )

12γ ∥x − v∥2

2

γ ∈ (0,∞): a mixture of those.M. Nagahara (Univ of Kitakyushu) Sparsity Methods 16 / 55

Page 38: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Proximal operator

Proximal operatorLet f : Rn → R ∪ {∞} be a proper, closed, and convex function. Theproximal operator proxγ f with parameter γ > 0 is defined by

proxγ f (v) ≜ arg minx∈dom( f )

{f (x) + 1

2γ ∥x − v∥22}.

γ � ∞: Minimizer of f (z):proxγ f (v) � arg min

x∈dom( f )f (x)

γ � 0: Projection onto dom( f ):

proxγ f (v) � arg minx∈dom( f )

12γ ∥x − v∥2

2

γ ∈ (0,∞): a mixture of those.M. Nagahara (Univ of Kitakyushu) Sparsity Methods 16 / 55

Page 39: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Proximal operator

Proximal operatorLet f : Rn → R ∪ {∞} be a proper, closed, and convex function. Theproximal operator proxγ f with parameter γ > 0 is defined by

proxγ f (v) ≜ arg minx∈dom( f )

{f (x) + 1

2γ ∥x − v∥22}.

γ � ∞: Minimizer of f (z):proxγ f (v) � arg min

x∈dom( f )f (x)

γ � 0: Projection onto dom( f ):

proxγ f (v) � arg minx∈dom( f )

12γ ∥x − v∥2

2

γ ∈ (0,∞): a mixture of those.M. Nagahara (Univ of Kitakyushu) Sparsity Methods 16 / 55

Page 40: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Proximal operator

Proximal operator

proxγ f (v) ≜ arg minx∈dom( f )

{f (x) + 1

2γ ∥x − v∥22

}.

v

dom(f)

projection

minimum

prox

vprox

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 17 / 55

Page 41: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Proximal operator

The "crossing the street" problem.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 18 / 55

Page 42: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Proximal operatorThe "crossing the street" problem.

चाय

professional

beginnerprox

dom(f)

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 19 / 55

Page 43: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Proximal algorithm

Proximal algorithmInitialization: give an initial vector x[0] and positive numbersγ0 , γ1 , γ2 , . . .Iteration: for k � 0, 1, 2, . . . , do

x[k + 1] � proxγk f (x[k]) � arg minx∈dom( f )

{f (x) + 1

2γk∥x − x[k]∥2

2}.

The algorithm minimizes the strongly convex function

gk(x) ≜ f (x) + 12γk

∥x − x[k]∥22

at each step k, which is an approximation of f that may not bestrongly convex.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 20 / 55

Page 44: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Proximal algorithm

Proximal algorithmInitialization: give an initial vector x[0] and positive numbersγ0 , γ1 , γ2 , . . .Iteration: for k � 0, 1, 2, . . . , do

x[k + 1] � proxγk f (x[k]) � arg minx∈dom( f )

{f (x) + 1

2γk∥x − x[k]∥2

2}.

The algorithm minimizes the strongly convex function

gk(x) ≜ f (x) + 12γk

∥x − x[k]∥22

at each step k, which is an approximation of f that may not bestrongly convex.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 20 / 55

Page 45: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Proximal algorithm

Proximal algorithmInitialization: give an initial vector x[0] and positive numbersγ0 , γ1 , γ2 , . . .Iteration: for k � 0, 1, 2, . . . , do

x[k + 1] � proxγk f (x[k]) � arg minx∈dom( f )

{f (x) + 1

2γk∥x − x[k]∥2

2}.

The algorithm minimizes the strongly convex function

gk(x) ≜ f (x) + 12γk

∥x − x[k]∥22

at each step k, which is an approximation of f that may not bestrongly convex.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 20 / 55

Page 46: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Proximal algorithm

Proximal algorithmInitialization: give an initial vector x[0] and positive numbersγ0 , γ1 , γ2 , . . .Iteration: for k � 0, 1, 2, . . . , do

x[k + 1] � proxγk f (x[k]) � arg minx∈dom( f )

{f (x) + 1

2γk∥x − x[k]∥2

2}.

The algorithm minimizes the strongly convex function

gk(x) ≜ f (x) + 12γk

∥x − x[k]∥22

at each step k, which is an approximation of f that may not bestrongly convex.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 20 / 55

Page 47: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convergence theorem of proximal algorithm

TheoremSuppose that the parameter sequence {γk} satisfies γk > 0 for all k and

∞∑k�0γk � ∞.

Then, the vector sequence {x[k]} generated by the proximal algorithm

x[k + 1] � proxγk f (x[k])

converges to one of the minimizers of f for any initial vector x[0].

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 21 / 55

Page 48: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convergence theorem of proximal algorithm

TheoremSuppose that the parameter sequence {γk} satisfies γk > 0 for all k and

∞∑k�0γk � ∞.

Then, the vector sequence {x[k]} generated by the proximal algorithm

x[k + 1] � proxγk f (x[k])

converges to one of the minimizers of f for any initial vector x[0].

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 21 / 55

Page 49: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Proximable functions

Proximal operator

proxγ f (v) ≜ arg minx∈dom( f )

{f (x) + 1

2γ ∥x − v∥22

}.

needs to be obtained in a closed form to derive an efficientalgorithm.A proximable function is a function that has a closed-formproximal operator.The following functions are proximable:

quadratic functions (including the ℓ2 norm)indicator functionsthe ℓ1 norm

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 22 / 55

Page 50: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Proximable functions

Proximal operator

proxγ f (v) ≜ arg minx∈dom( f )

{f (x) + 1

2γ ∥x − v∥22

}.

needs to be obtained in a closed form to derive an efficientalgorithm.A proximable function is a function that has a closed-formproximal operator.The following functions are proximable:

quadratic functions (including the ℓ2 norm)indicator functionsthe ℓ1 norm

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 22 / 55

Page 51: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Proximable functions

Proximal operator

proxγ f (v) ≜ arg minx∈dom( f )

{f (x) + 1

2γ ∥x − v∥22

}.

needs to be obtained in a closed form to derive an efficientalgorithm.A proximable function is a function that has a closed-formproximal operator.The following functions are proximable:

quadratic functions (including the ℓ2 norm)indicator functionsthe ℓ1 norm

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 22 / 55

Page 52: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Proximable functions

Proximal operator

proxγ f (v) ≜ arg minx∈dom( f )

{f (x) + 1

2γ ∥x − v∥22

}.

needs to be obtained in a closed form to derive an efficientalgorithm.A proximable function is a function that has a closed-formproximal operator.The following functions are proximable:

quadratic functions (including the ℓ2 norm)indicator functionsthe ℓ1 norm

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 22 / 55

Page 53: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Proximable functions

Proximal operator

proxγ f (v) ≜ arg minx∈dom( f )

{f (x) + 1

2γ ∥x − v∥22

}.

needs to be obtained in a closed form to derive an efficientalgorithm.A proximable function is a function that has a closed-formproximal operator.The following functions are proximable:

quadratic functions (including the ℓ2 norm)indicator functionsthe ℓ1 norm

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 22 / 55

Page 54: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Proximable functions

Proximal operator

proxγ f (v) ≜ arg minx∈dom( f )

{f (x) + 1

2γ ∥x − v∥22

}.

needs to be obtained in a closed form to derive an efficientalgorithm.A proximable function is a function that has a closed-formproximal operator.The following functions are proximable:

quadratic functions (including the ℓ2 norm)indicator functionsthe ℓ1 norm

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 22 / 55

Page 55: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Quadratic function

The quadratic function

f (x) � 12 x⊤Φx − y⊤x ,

where Φ is a positive-definite matrix.The proximal operator is given by

proxγ f (v) � arg minx∈Rn

{12 x⊤Φx − y⊤x +

12γ (x − v)⊤(x − v)

}�

(Φ +

I)−1 (

y +1γ

v).

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 23 / 55

Page 56: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Quadratic function

The quadratic function

f (x) � 12 x⊤Φx − y⊤x ,

where Φ is a positive-definite matrix.The proximal operator is given by

proxγ f (v) � arg minx∈Rn

{12 x⊤Φx − y⊤x +

12γ (x − v)⊤(x − v)

}�

(Φ +

I)−1 (

y +1γ

v).

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 23 / 55

Page 57: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Indicator function

Indicator functionFor a subset C in Rn , the indicator function is defined by

IC(x) �{

0, x ∈ C∞, x < C

C: non-empty, closed, and convex ⇒ IC(x): a proper, closed, andconvex functionDraw the epigraph of IC .

x

C

IC(x)

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 24 / 55

Page 58: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Indicator function

Indicator functionFor a subset C in Rn , the indicator function is defined by

IC(x) �{

0, x ∈ C∞, x < C

C: non-empty, closed, and convex ⇒ IC(x): a proper, closed, andconvex functionDraw the epigraph of IC .

x

C

IC(x)

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 24 / 55

Page 59: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Indicator function

Indicator functionFor a subset C in Rn , the indicator function is defined by

IC(x) �{

0, x ∈ C∞, x < C

C: non-empty, closed, and convex ⇒ IC(x): a proper, closed, andconvex functionDraw the epigraph of IC .

x

C

IC(x)

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 24 / 55

Page 60: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Indicator function

The proximal operator of IC(x) is given by

proxγIC (v) � arg minx∈Rn

{IC(x) +

12γ ∥x − v∥2

2

}� arg min

x∈C∥x − v∥2

2

� ΠC(v).

where ΠC is the projection operator onto the nonempty, closed,and convex set C.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 25 / 55

Page 61: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Indicator function

The proximal operator of IC(x) is given by

proxγIC (v) � arg minx∈Rn

{IC(x) +

12γ ∥x − v∥2

2

}� arg min

x∈C∥x − v∥2

2

� ΠC(v).

where ΠC is the projection operator onto the nonempty, closed,and convex set C.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 25 / 55

Page 62: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Indicator function

The proximal operator of IC(x) is given by

proxγIC (v) � arg minx∈Rn

{IC(x) +

12γ ∥x − v∥2

2

}� arg min

x∈C∥x − v∥2

2

� ΠC(v).

where ΠC is the projection operator onto the nonempty, closed,and convex set C.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 25 / 55

Page 63: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ℓ1 norm

The proximal operator of the ℓ1 norm ∥x∥1 has a closed form

proxγ∥·∥1(v) � Sγ(v),

where Sγ : Rn → Rn is the soft-thresholding operator defined by

[Sγ(v)]i �

vi − γ, vi ≥ γ,0, −γ < vi < γ,

vi + γ, vi ≤ −γ.

0

Sγ(v)

γ

−γ v

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 26 / 55

Page 64: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ℓ1 norm

The proximal operator of the ℓ1 norm ∥x∥1 has a closed form

proxγ∥·∥1(v) � Sγ(v),

where Sγ : Rn → Rn is the soft-thresholding operator defined by

[Sγ(v)]i �

vi − γ, vi ≥ γ,0, −γ < vi < γ,

vi + γ, vi ≤ −γ.

0

Sγ(v)

γ

−γ v

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 26 / 55

Page 65: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Table of Contents

1 Basics of convex optimization

2 Proximal Operator

3 Proximal splitting methods for ℓ1 optimization

4 Proximal gradient method for ℓ1 regularization

5 Generalized LASSO and ADMM

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 27 / 55

Page 66: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ℓ1 optimization

ℓ1 optimization

minimizex∈Rn

∥x∥1 subject to Φx � y ,

Φ ∈ Rm×n and y ∈ Rm are givenm < nΦ has full row rank, that is, rank(Φ) � m.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 28 / 55

Page 67: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ℓ1 optimization

ℓ1 optimization

minimizex∈Rn

∥x∥1 subject to Φx � y ,

Φ ∈ Rm×n and y ∈ Rm are givenm < nΦ has full row rank, that is, rank(Φ) � m.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 28 / 55

Page 68: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ℓ1 optimization

ℓ1 optimization

minimizex∈Rn

∥x∥1 subject to Φx � y ,

Φ ∈ Rm×n and y ∈ Rm are givenm < nΦ has full row rank, that is, rank(Φ) � m.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 28 / 55

Page 69: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ℓ1 optimization

ℓ1 optimization

minimizex∈Rn

∥x∥1 subject to Φx � y ,

Φ ∈ Rm×n and y ∈ Rm are givenm < nΦ has full row rank, that is, rank(Φ) � m.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 28 / 55

Page 70: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ℓ1 optimization

ℓ1 optimization

minimizex∈Rn

∥x∥1 subject to Φx � y ,

Constraint setC ≜

{x ∈ Rn : Φx � y

}.

Indicator function

IC(x) �{

0, if Φx � y ,∞, if Φx , y.

Equivalent unconstrained optimization

minimizex∈Rn

∥x∥1 + IC(x).

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 29 / 55

Page 71: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ℓ1 optimization

ℓ1 optimization

minimizex∈Rn

∥x∥1 subject to Φx � y ,

Constraint setC ≜

{x ∈ Rn : Φx � y

}.

Indicator function

IC(x) �{

0, if Φx � y ,∞, if Φx , y.

Equivalent unconstrained optimization

minimizex∈Rn

∥x∥1 + IC(x).

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 29 / 55

Page 72: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ℓ1 optimization

ℓ1 optimization

minimizex∈Rn

∥x∥1 subject to Φx � y ,

Constraint setC ≜

{x ∈ Rn : Φx � y

}.

Indicator function

IC(x) �{

0, if Φx � y ,∞, if Φx , y.

Equivalent unconstrained optimization

minimizex∈Rn

∥x∥1 + IC(x).

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 29 / 55

Page 73: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Splitting method

Equivalent unconstrained optimization

minimizex∈Rn

∥x∥1 + IC(x).

∥x∥1 + IC(x) is proper, closed, and convex but not proximable.The proximal algorithm cannot be directly applied.Both functions,

f1(x) ≜ ∥x∥1 , f2(x) ≜ IC(x)

are proximable

We split the cost function as f � f1 + f2.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 30 / 55

Page 74: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Splitting method

Equivalent unconstrained optimization

minimizex∈Rn

∥x∥1 + IC(x).

∥x∥1 + IC(x) is proper, closed, and convex but not proximable.The proximal algorithm cannot be directly applied.Both functions,

f1(x) ≜ ∥x∥1 , f2(x) ≜ IC(x)

are proximable

We split the cost function as f � f1 + f2.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 30 / 55

Page 75: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Splitting method

Equivalent unconstrained optimization

minimizex∈Rn

∥x∥1 + IC(x).

∥x∥1 + IC(x) is proper, closed, and convex but not proximable.The proximal algorithm cannot be directly applied.Both functions,

f1(x) ≜ ∥x∥1 , f2(x) ≜ IC(x)

are proximable

We split the cost function as f � f1 + f2.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 30 / 55

Page 76: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Splitting method

Equivalent unconstrained optimization

minimizex∈Rn

∥x∥1 + IC(x).

∥x∥1 + IC(x) is proper, closed, and convex but not proximable.The proximal algorithm cannot be directly applied.Both functions,

f1(x) ≜ ∥x∥1 , f2(x) ≜ IC(x)

are proximable

We split the cost function as f � f1 + f2.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 30 / 55

Page 77: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Splitting method

Equivalent unconstrained optimization

minimizex∈Rn

∥x∥1 + IC(x).

∥x∥1 + IC(x) is proper, closed, and convex but not proximable.The proximal algorithm cannot be directly applied.Both functions,

f1(x) ≜ ∥x∥1 , f2(x) ≜ IC(x)

are proximable

We split the cost function as f � f1 + f2.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 30 / 55

Page 78: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Douglas-Rachford splitting algorithm

General optimization problem

minimizex∈Rn

f1(x) + f2(x),

f1 and f2 are proper, closed, and convex functions.f1 and f2 are proximable.

Douglas-Rachford splitting algorithmInitialization: give an initial vector z[0] and a parameter γ > 0Iteration: for k � 0, 1, 2, . . . do

x[k + 1] � proxγ f1(z[k])z[k + 1] � z[k] + proxγ f2(2x[k + 1] − z[k]) − x[k + 1]

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 31 / 55

Page 79: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Douglas-Rachford splitting algorithm

General optimization problem

minimizex∈Rn

f1(x) + f2(x),

f1 and f2 are proper, closed, and convex functions.f1 and f2 are proximable.

Douglas-Rachford splitting algorithmInitialization: give an initial vector z[0] and a parameter γ > 0Iteration: for k � 0, 1, 2, . . . do

x[k + 1] � proxγ f1(z[k])z[k + 1] � z[k] + proxγ f2(2x[k + 1] − z[k]) − x[k + 1]

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 31 / 55

Page 80: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Douglas-Rachford splitting algorithm

General optimization problem

minimizex∈Rn

f1(x) + f2(x),

f1 and f2 are proper, closed, and convex functions.f1 and f2 are proximable.

Douglas-Rachford splitting algorithmInitialization: give an initial vector z[0] and a parameter γ > 0Iteration: for k � 0, 1, 2, . . . do

x[k + 1] � proxγ f1(z[k])z[k + 1] � z[k] + proxγ f2(2x[k + 1] − z[k]) − x[k + 1]

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 31 / 55

Page 81: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Douglas-Rachford splitting algorithm

General optimization problem

minimizex∈Rn

f1(x) + f2(x),

f1 and f2 are proper, closed, and convex functions.f1 and f2 are proximable.

Douglas-Rachford splitting algorithmInitialization: give an initial vector z[0] and a parameter γ > 0Iteration: for k � 0, 1, 2, . . . do

x[k + 1] � proxγ f1(z[k])z[k + 1] � z[k] + proxγ f2(2x[k + 1] − z[k]) − x[k + 1]

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 31 / 55

Page 82: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Douglas-Rachford splitting for ℓ1 optimization

ℓ1 optimization: minimizex∈Rn ∥x∥1 + IC(x)C � {x ∈ Rn : Φx � y}.

f1(x) � ∥x∥1 and f2(x) � IC(x) are proximable.

proxγ f1(v) � Sγ(v),proxγ f2(v) � ΠC(v) � v +Φ⊤(ΦΦ⊤)−1(y −Φv).

Now we have got the algorithm!

Douglas-Rachford splitting algorithm for ℓ1 optimizationInitialization: give an initial vector z[0] and a parameter γ > 0Iteration: for k � 0, 1, 2, . . . do

x[k + 1] � Sγ(z[k])z[k + 1] � z[k] +ΠC(2x[k + 1] − z[k]) − x[k + 1]

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 32 / 55

Page 83: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Douglas-Rachford splitting for ℓ1 optimization

ℓ1 optimization: minimizex∈Rn ∥x∥1 + IC(x)C � {x ∈ Rn : Φx � y}.

f1(x) � ∥x∥1 and f2(x) � IC(x) are proximable.

proxγ f1(v) � Sγ(v),proxγ f2(v) � ΠC(v) � v +Φ⊤(ΦΦ⊤)−1(y −Φv).

Now we have got the algorithm!

Douglas-Rachford splitting algorithm for ℓ1 optimizationInitialization: give an initial vector z[0] and a parameter γ > 0Iteration: for k � 0, 1, 2, . . . do

x[k + 1] � Sγ(z[k])z[k + 1] � z[k] +ΠC(2x[k + 1] − z[k]) − x[k + 1]

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 32 / 55

Page 84: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Douglas-Rachford splitting for ℓ1 optimization

ℓ1 optimization: minimizex∈Rn ∥x∥1 + IC(x)C � {x ∈ Rn : Φx � y}.

f1(x) � ∥x∥1 and f2(x) � IC(x) are proximable.

proxγ f1(v) � Sγ(v),proxγ f2(v) � ΠC(v) � v +Φ⊤(ΦΦ⊤)−1(y −Φv).

Now we have got the algorithm!

Douglas-Rachford splitting algorithm for ℓ1 optimizationInitialization: give an initial vector z[0] and a parameter γ > 0Iteration: for k � 0, 1, 2, . . . do

x[k + 1] � Sγ(z[k])z[k + 1] � z[k] +ΠC(2x[k + 1] − z[k]) − x[k + 1]

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 32 / 55

Page 85: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Douglas-Rachford splitting for ℓ1 optimization

ℓ1 optimization: minimizex∈Rn ∥x∥1 + IC(x)C � {x ∈ Rn : Φx � y}.

f1(x) � ∥x∥1 and f2(x) � IC(x) are proximable.

proxγ f1(v) � Sγ(v),proxγ f2(v) � ΠC(v) � v +Φ⊤(ΦΦ⊤)−1(y −Φv).

Now we have got the algorithm!

Douglas-Rachford splitting algorithm for ℓ1 optimizationInitialization: give an initial vector z[0] and a parameter γ > 0Iteration: for k � 0, 1, 2, . . . do

x[k + 1] � Sγ(z[k])z[k + 1] � z[k] +ΠC(2x[k + 1] − z[k]) − x[k + 1]

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 32 / 55

Page 86: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Douglas-Rachford splitting for ℓ1 optimization

ℓ1 optimization: minimizex∈Rn ∥x∥1 + IC(x)C � {x ∈ Rn : Φx � y}.

f1(x) � ∥x∥1 and f2(x) � IC(x) are proximable.

proxγ f1(v) � Sγ(v),proxγ f2(v) � ΠC(v) � v +Φ⊤(ΦΦ⊤)−1(y −Φv).

Now we have got the algorithm!

Douglas-Rachford splitting algorithm for ℓ1 optimizationInitialization: give an initial vector z[0] and a parameter γ > 0Iteration: for k � 0, 1, 2, . . . do

x[k + 1] � Sγ(z[k])z[k + 1] � z[k] +ΠC(2x[k + 1] − z[k]) − x[k + 1]

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 32 / 55

Page 87: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Douglas-Rachford splitting for ℓ1 optimization

ℓ1 optimization: minimizex∈Rn ∥x∥1 + IC(x)C � {x ∈ Rn : Φx � y}.

f1(x) � ∥x∥1 and f2(x) � IC(x) are proximable.

proxγ f1(v) � Sγ(v),proxγ f2(v) � ΠC(v) � v +Φ⊤(ΦΦ⊤)−1(y −Φv).

Now we have got the algorithm!

Douglas-Rachford splitting algorithm for ℓ1 optimizationInitialization: give an initial vector z[0] and a parameter γ > 0Iteration: for k � 0, 1, 2, . . . do

x[k + 1] � Sγ(z[k])z[k + 1] � z[k] +ΠC(2x[k + 1] − z[k]) − x[k + 1]

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 32 / 55

Page 88: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Douglas-Rachford splitting algorithm

Douglas-Rachford splitting algorithm for ℓ1 optimizationInitialization: give an initial vector z[0] and a parameter γ > 0Iteration: for k � 0, 1, 2, . . . do

x[k + 1] � Sγ(z[k])z[k + 1] � z[k] +ΠC(2x[k + 1] − z[k]) − x[k + 1]

Douglas-Rachford algorithm only requiressimple continuous mapping of the soft-thresholding function Sγlinear computation of matrix-vector multiplication and vectoraddition

Much faster and easier to implement than the standardinterior-point method

The standard interior-point method requires to solve linearequations at each step.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 33 / 55

Page 89: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Douglas-Rachford splitting algorithm

Douglas-Rachford splitting algorithm for ℓ1 optimizationInitialization: give an initial vector z[0] and a parameter γ > 0Iteration: for k � 0, 1, 2, . . . do

x[k + 1] � Sγ(z[k])z[k + 1] � z[k] +ΠC(2x[k + 1] − z[k]) − x[k + 1]

Douglas-Rachford algorithm only requiressimple continuous mapping of the soft-thresholding function Sγlinear computation of matrix-vector multiplication and vectoraddition

Much faster and easier to implement than the standardinterior-point method

The standard interior-point method requires to solve linearequations at each step.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 33 / 55

Page 90: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Douglas-Rachford splitting algorithm

Douglas-Rachford splitting algorithm for ℓ1 optimizationInitialization: give an initial vector z[0] and a parameter γ > 0Iteration: for k � 0, 1, 2, . . . do

x[k + 1] � Sγ(z[k])z[k + 1] � z[k] +ΠC(2x[k + 1] − z[k]) − x[k + 1]

Douglas-Rachford algorithm only requiressimple continuous mapping of the soft-thresholding function Sγlinear computation of matrix-vector multiplication and vectoraddition

Much faster and easier to implement than the standardinterior-point method

The standard interior-point method requires to solve linearequations at each step.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 33 / 55

Page 91: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Douglas-Rachford splitting algorithm

Douglas-Rachford splitting algorithm for ℓ1 optimizationInitialization: give an initial vector z[0] and a parameter γ > 0Iteration: for k � 0, 1, 2, . . . do

x[k + 1] � Sγ(z[k])z[k + 1] � z[k] +ΠC(2x[k + 1] − z[k]) − x[k + 1]

Douglas-Rachford algorithm only requiressimple continuous mapping of the soft-thresholding function Sγlinear computation of matrix-vector multiplication and vectoraddition

Much faster and easier to implement than the standardinterior-point method

The standard interior-point method requires to solve linearequations at each step.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 33 / 55

Page 92: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Douglas-Rachford splitting algorithm

Douglas-Rachford splitting algorithm for ℓ1 optimizationInitialization: give an initial vector z[0] and a parameter γ > 0Iteration: for k � 0, 1, 2, . . . do

x[k + 1] � Sγ(z[k])z[k + 1] � z[k] +ΠC(2x[k + 1] − z[k]) − x[k + 1]

Douglas-Rachford algorithm only requiressimple continuous mapping of the soft-thresholding function Sγlinear computation of matrix-vector multiplication and vectoraddition

Much faster and easier to implement than the standardinterior-point method

The standard interior-point method requires to solve linearequations at each step.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 33 / 55

Page 93: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Douglas-Rachford splitting algorithm

Douglas-Rachford splitting algorithm for ℓ1 optimizationInitialization: give an initial vector z[0] and a parameter γ > 0Iteration: for k � 0, 1, 2, . . . do

x[k + 1] � Sγ(z[k])z[k + 1] � z[k] +ΠC(2x[k + 1] − z[k]) − x[k + 1]

Douglas-Rachford algorithm only requiressimple continuous mapping of the soft-thresholding function Sγlinear computation of matrix-vector multiplication and vectoraddition

Much faster and easier to implement than the standardinterior-point method

The standard interior-point method requires to solve linearequations at each step.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 33 / 55

Page 94: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Table of Contents

1 Basics of convex optimization

2 Proximal Operator

3 Proximal splitting methods for ℓ1 optimization

4 Proximal gradient method for ℓ1 regularization

5 Generalized LASSO and ADMM

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 34 / 55

Page 95: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ℓ1 regularization (LASSO)

ℓ1 regularization (LASSO)

minimizex∈Rn

12 ∥Φx − y∥2

2 + λ∥x∥1.

Sum of two convex functions f � f1 + f2:

f1(x) �12 ∥Φx − y∥2

2 , f2(x) � λ∥x∥1

f1 and f2 are both proximable → Douglas-Rachford splittingf1 is also differentiableA yet faster algorithm exists for this type of optimization problem.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 35 / 55

Page 96: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ℓ1 regularization (LASSO)

ℓ1 regularization (LASSO)

minimizex∈Rn

12 ∥Φx − y∥2

2 + λ∥x∥1.

Sum of two convex functions f � f1 + f2:

f1(x) �12 ∥Φx − y∥2

2 , f2(x) � λ∥x∥1

f1 and f2 are both proximable → Douglas-Rachford splittingf1 is also differentiableA yet faster algorithm exists for this type of optimization problem.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 35 / 55

Page 97: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ℓ1 regularization (LASSO)

ℓ1 regularization (LASSO)

minimizex∈Rn

12 ∥Φx − y∥2

2 + λ∥x∥1.

Sum of two convex functions f � f1 + f2:

f1(x) �12 ∥Φx − y∥2

2 , f2(x) � λ∥x∥1

f1 and f2 are both proximable → Douglas-Rachford splittingf1 is also differentiableA yet faster algorithm exists for this type of optimization problem.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 35 / 55

Page 98: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ℓ1 regularization (LASSO)

ℓ1 regularization (LASSO)

minimizex∈Rn

12 ∥Φx − y∥2

2 + λ∥x∥1.

Sum of two convex functions f � f1 + f2:

f1(x) �12 ∥Φx − y∥2

2 , f2(x) � λ∥x∥1

f1 and f2 are both proximable → Douglas-Rachford splittingf1 is also differentiableA yet faster algorithm exists for this type of optimization problem.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 35 / 55

Page 99: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ℓ1 regularization (LASSO)

ℓ1 regularization (LASSO)

minimizex∈Rn

12 ∥Φx − y∥2

2 + λ∥x∥1.

Sum of two convex functions f � f1 + f2:

f1(x) �12 ∥Φx − y∥2

2 , f2(x) � λ∥x∥1

f1 and f2 are both proximable → Douglas-Rachford splittingf1 is also differentiableA yet faster algorithm exists for this type of optimization problem.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 35 / 55

Page 100: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Proximal gradient algorithm

Optimization problem:

minimizex∈Rn

f1(x) + f2(x),

f1 is differentiable and convex, satisfying dom( f1) � Rn

f2 is a proper, closed, and convex function.

Proximal gradient algorithmInitialization: give an initial vector x[0] and a real number γ > 0Iteration: for k � 0, 1, 2, . . . do

x[k + 1] � proxγ f2

(x[k] − γ∇ f1(x[k])

).

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 36 / 55

Page 101: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Proximal gradient algorithm

Optimization problem:

minimizex∈Rn

f1(x) + f2(x),

f1 is differentiable and convex, satisfying dom( f1) � Rn

f2 is a proper, closed, and convex function.

Proximal gradient algorithmInitialization: give an initial vector x[0] and a real number γ > 0Iteration: for k � 0, 1, 2, . . . do

x[k + 1] � proxγ f2

(x[k] − γ∇ f1(x[k])

).

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 36 / 55

Page 102: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Proximal gradient algorithm

Optimization problem:

minimizex∈Rn

f1(x) + f2(x),

f1 is differentiable and convex, satisfying dom( f1) � Rn

f2 is a proper, closed, and convex function.

Proximal gradient algorithmInitialization: give an initial vector x[0] and a real number γ > 0Iteration: for k � 0, 1, 2, . . . do

x[k + 1] � proxγ f2

(x[k] − γ∇ f1(x[k])

).

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 36 / 55

Page 103: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Proximal gradient algorithm

Optimization problem:

minimizex∈Rn

f1(x) + f2(x),

f1 is differentiable and convex, satisfying dom( f1) � Rn

f2 is a proper, closed, and convex function.

Proximal gradient algorithmInitialization: give an initial vector x[0] and a real number γ > 0Iteration: for k � 0, 1, 2, . . . do

x[k + 1] � proxγ f2

(x[k] − γ∇ f1(x[k])

).

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 36 / 55

Page 104: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Geometrical interpretation

Proximal gradient algorithm

x[k + 1] � proxγ f2

(x[k] − γ∇ f1(x[k])

)︸ ︷︷ ︸≜ϕ(x[k])

.

The function ϕ(x) is rewritten as

ϕ(x) � arg minz∈Rn

{f2(z) +

12γ

z −(x − γ∇ f1(x)

) 22}

� arg minz∈Rn

{f1(x) + ∇ f1(x)⊤(z − x)︸ ︷︷ ︸

≜ f̃1(z;x)

+ f2(z) +1

2γ ∥z − x∥22}.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 37 / 55

Page 105: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Geometrical interpretation

Proximal gradient algorithm

x[k + 1] � proxγ f2

(x[k] − γ∇ f1(x[k])

)︸ ︷︷ ︸≜ϕ(x[k])

.

The function ϕ(x) is rewritten as

ϕ(x) � arg minz∈Rn

{f2(z) +

12γ

z −(x − γ∇ f1(x)

) 22}

� arg minz∈Rn

{f1(x) + ∇ f1(x)⊤(z − x)︸ ︷︷ ︸

≜ f̃1(z;x)

+ f2(z) +1

2γ ∥z − x∥22}.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 37 / 55

Page 106: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Geometrical interpretation

The function f̃1(z; x) is a linear approximation of f1(z) around thepoint x ∈ Rn .

x

f1(z)

z

f̃1(z;x)

The iteration becomes

x[k + 1] � arg minz∈Rn

{f̃1(z; x) + f2(z) +

12γ ∥z − x∥2

2}

� proxγ f̃ (x[k])

where f̃ (z) � f̃1(z; x) + f2(z).This is a proximal algorithm for finding the minimizer of f̃ .

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 38 / 55

Page 107: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Geometrical interpretation

The function f̃1(z; x) is a linear approximation of f1(z) around thepoint x ∈ Rn .

x

f1(z)

z

f̃1(z;x)

The iteration becomes

x[k + 1] � arg minz∈Rn

{f̃1(z; x) + f2(z) +

12γ ∥z − x∥2

2}

� proxγ f̃ (x[k])

where f̃ (z) � f̃1(z; x) + f2(z).This is a proximal algorithm for finding the minimizer of f̃ .

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 38 / 55

Page 108: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Geometrical interpretation

The function f̃1(z; x) is a linear approximation of f1(z) around thepoint x ∈ Rn .

x

f1(z)

z

f̃1(z;x)

The iteration becomes

x[k + 1] � arg minz∈Rn

{f̃1(z; x) + f2(z) +

12γ ∥z − x∥2

2}

� proxγ f̃ (x[k])

where f̃ (z) � f̃1(z; x) + f2(z).This is a proximal algorithm for finding the minimizer of f̃ .

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 38 / 55

Page 109: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convergence analysis

TheoremAssume the gradient ∇ f1 is Lipschitz continuous over Rn withLipschitz constant L. Assume also that the step size γ satisfies

γ ≤ 1L.

Then the sequence {x[k]} generated by the proximal gradientalgorithm converges to an optimal solution x∗ at the rate of O(1/k).

The gradient ∇ f1 is Lipschitz continuous over Rn with Lipschitzconstant L if

∥∇ f1(x) − ∇ f1(y)∥2 ≤ L∥x − y∥2 , ∀x , y ∈ Rn .

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 39 / 55

Page 110: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convergence analysis

TheoremAssume the gradient ∇ f1 is Lipschitz continuous over Rn withLipschitz constant L. Assume also that the step size γ satisfies

γ ≤ 1L.

Then the sequence {x[k]} generated by the proximal gradientalgorithm converges to an optimal solution x∗ at the rate of O(1/k).

The gradient ∇ f1 is Lipschitz continuous over Rn with Lipschitzconstant L if

∥∇ f1(x) − ∇ f1(y)∥2 ≤ L∥x − y∥2 , ∀x , y ∈ Rn .

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 39 / 55

Page 111: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convergence analysis

TheoremAssume the gradient ∇ f1 is Lipschitz continuous over Rn withLipschitz constant L. Assume also that the step size γ satisfies

γ ≤ 1L.

Then the sequence {x[k]} generated by the proximal gradientalgorithm converges to an optimal solution x∗ at the rate of O(1/k).

The gradient ∇ f1 is Lipschitz continuous over Rn with Lipschitzconstant L if

∥∇ f1(x) − ∇ f1(y)∥2 ≤ L∥x − y∥2 , ∀x , y ∈ Rn .

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 39 / 55

Page 112: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convergence analysis

TheoremAssume the gradient ∇ f1 is Lipschitz continuous over Rn withLipschitz constant L. Assume also that the step size γ satisfies

γ ≤ 1L.

Then the sequence {x[k]} generated by the proximal gradientalgorithm converges to an optimal solution x∗ at the rate of O(1/k).

The gradient ∇ f1 is Lipschitz continuous over Rn with Lipschitzconstant L if

∥∇ f1(x) − ∇ f1(y)∥2 ≤ L∥x − y∥2 , ∀x , y ∈ Rn .

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 39 / 55

Page 113: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ℓ1 regularization (LASSO)

ℓ1 regularization problem (LASSO)

minimizex∈Rn

12 ∥Φx − y∥2

2 + λ∥x∥1.

Sum of two convex functions f � f1 + f2:

f1(x) �12 ∥Φx − y∥2

2 , f2(x) � λ∥x∥1

with∇ f1(x) � Φ⊤(Φx − y), proxγ f2(v) � Sγλ(v).

ISTA (Iterative Shrinkage Thresholding Algorithm)Initialization: give an initial vector x[0] and parameter γ > 0Iteration: for k � 0, 1, 2, . . . do

x[k + 1] � Sγλ(x[k] − γΦ⊤(Φx[k] − y)

).

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 40 / 55

Page 114: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ℓ1 regularization (LASSO)

ℓ1 regularization problem (LASSO)

minimizex∈Rn

12 ∥Φx − y∥2

2 + λ∥x∥1.

Sum of two convex functions f � f1 + f2:

f1(x) �12 ∥Φx − y∥2

2 , f2(x) � λ∥x∥1

with∇ f1(x) � Φ⊤(Φx − y), proxγ f2(v) � Sγλ(v).

ISTA (Iterative Shrinkage Thresholding Algorithm)Initialization: give an initial vector x[0] and parameter γ > 0Iteration: for k � 0, 1, 2, . . . do

x[k + 1] � Sγλ(x[k] − γΦ⊤(Φx[k] − y)

).

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 40 / 55

Page 115: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ℓ1 regularization (LASSO)

ℓ1 regularization problem (LASSO)

minimizex∈Rn

12 ∥Φx − y∥2

2 + λ∥x∥1.

Sum of two convex functions f � f1 + f2:

f1(x) �12 ∥Φx − y∥2

2 , f2(x) � λ∥x∥1

with∇ f1(x) � Φ⊤(Φx − y), proxγ f2(v) � Sγλ(v).

ISTA (Iterative Shrinkage Thresholding Algorithm)Initialization: give an initial vector x[0] and parameter γ > 0Iteration: for k � 0, 1, 2, . . . do

x[k + 1] � Sγλ(x[k] − γΦ⊤(Φx[k] − y)

).

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 40 / 55

Page 116: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ℓ1 regularization (LASSO)

ℓ1 regularization problem (LASSO)

minimizex∈Rn

12 ∥Φx − y∥2

2 + λ∥x∥1.

Sum of two convex functions f � f1 + f2:

f1(x) �12 ∥Φx − y∥2

2 , f2(x) � λ∥x∥1

with∇ f1(x) � Φ⊤(Φx − y), proxγ f2(v) � Sγλ(v).

ISTA (Iterative Shrinkage Thresholding Algorithm)Initialization: give an initial vector x[0] and parameter γ > 0Iteration: for k � 0, 1, 2, . . . do

x[k + 1] � Sγλ(x[k] − γΦ⊤(Φx[k] − y)

).

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 40 / 55

Page 117: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convergence of ISTA

Gradient∇ f1(x) � Φ⊤(Φx − y).

Lipschitz constant L of ∇ f1:

∥∇ f1(x1) − ∇ f1(x2)∥2 � ∥Φ⊤Φ(x1 − x2)∥2 ≤ λmax(Φ⊤Φ)∥x1 − x2∥2

where λmax(Φ⊤Φ) is the largest eigenvalue of Φ⊤Φ.We have L � λmax(Φ⊤Φ) � σmax(Φ)2 � ∥Φ∥2, where σmax(Φ) is thelargest singular value of Φ and ∥Φ∥ is a matrix norm.A sufficient condition for convergence:

γ ≤ 1L�

1∥Φ∥2

The convergence rate is O(1/k).

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 41 / 55

Page 118: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convergence of ISTA

Gradient∇ f1(x) � Φ⊤(Φx − y).

Lipschitz constant L of ∇ f1:

∥∇ f1(x1) − ∇ f1(x2)∥2 � ∥Φ⊤Φ(x1 − x2)∥2 ≤ λmax(Φ⊤Φ)∥x1 − x2∥2

where λmax(Φ⊤Φ) is the largest eigenvalue of Φ⊤Φ.We have L � λmax(Φ⊤Φ) � σmax(Φ)2 � ∥Φ∥2, where σmax(Φ) is thelargest singular value of Φ and ∥Φ∥ is a matrix norm.A sufficient condition for convergence:

γ ≤ 1L�

1∥Φ∥2

The convergence rate is O(1/k).

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 41 / 55

Page 119: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convergence of ISTA

Gradient∇ f1(x) � Φ⊤(Φx − y).

Lipschitz constant L of ∇ f1:

∥∇ f1(x1) − ∇ f1(x2)∥2 � ∥Φ⊤Φ(x1 − x2)∥2 ≤ λmax(Φ⊤Φ)∥x1 − x2∥2

where λmax(Φ⊤Φ) is the largest eigenvalue of Φ⊤Φ.We have L � λmax(Φ⊤Φ) � σmax(Φ)2 � ∥Φ∥2, where σmax(Φ) is thelargest singular value of Φ and ∥Φ∥ is a matrix norm.A sufficient condition for convergence:

γ ≤ 1L�

1∥Φ∥2

The convergence rate is O(1/k).

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 41 / 55

Page 120: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convergence of ISTA

Gradient∇ f1(x) � Φ⊤(Φx − y).

Lipschitz constant L of ∇ f1:

∥∇ f1(x1) − ∇ f1(x2)∥2 � ∥Φ⊤Φ(x1 − x2)∥2 ≤ λmax(Φ⊤Φ)∥x1 − x2∥2

where λmax(Φ⊤Φ) is the largest eigenvalue of Φ⊤Φ.We have L � λmax(Φ⊤Φ) � σmax(Φ)2 � ∥Φ∥2, where σmax(Φ) is thelargest singular value of Φ and ∥Φ∥ is a matrix norm.A sufficient condition for convergence:

γ ≤ 1L�

1∥Φ∥2

The convergence rate is O(1/k).

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 41 / 55

Page 121: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convergence of ISTA

Gradient∇ f1(x) � Φ⊤(Φx − y).

Lipschitz constant L of ∇ f1:

∥∇ f1(x1) − ∇ f1(x2)∥2 � ∥Φ⊤Φ(x1 − x2)∥2 ≤ λmax(Φ⊤Φ)∥x1 − x2∥2

where λmax(Φ⊤Φ) is the largest eigenvalue of Φ⊤Φ.We have L � λmax(Φ⊤Φ) � σmax(Φ)2 � ∥Φ∥2, where σmax(Φ) is thelargest singular value of Φ and ∥Φ∥ is a matrix norm.A sufficient condition for convergence:

γ ≤ 1L�

1∥Φ∥2

The convergence rate is O(1/k).

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 41 / 55

Page 122: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Fast ISTA (FISTA)

Accelerated algorithm of ISTA � FISTA (Fast ISTA)The convergence rate is O(1/k2).

FISTAInitialization: give initial vectors x[0], z[0], initial number t[0], andparameter γ > 0Iteration: for k � 0, 1, 2, . . . do

x[k + 1] � Sγλ(z[k] − γΦ⊤(Φz[k] − y)

),

t[k + 1] � 1 +√

1 + 4t[k]22 ,

z[k + 1] � x[k + 1] + t[k] − 1t[k + 1] (x[k + 1] − x[k]).

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 42 / 55

Page 123: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Fast ISTA (FISTA)

Accelerated algorithm of ISTA � FISTA (Fast ISTA)The convergence rate is O(1/k2).

FISTAInitialization: give initial vectors x[0], z[0], initial number t[0], andparameter γ > 0Iteration: for k � 0, 1, 2, . . . do

x[k + 1] � Sγλ(z[k] − γΦ⊤(Φz[k] − y)

),

t[k + 1] � 1 +√

1 + 4t[k]22 ,

z[k + 1] � x[k + 1] + t[k] − 1t[k + 1] (x[k + 1] − x[k]).

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 42 / 55

Page 124: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Fast ISTA (FISTA)

Accelerated algorithm of ISTA � FISTA (Fast ISTA)The convergence rate is O(1/k2).

FISTAInitialization: give initial vectors x[0], z[0], initial number t[0], andparameter γ > 0Iteration: for k � 0, 1, 2, . . . do

x[k + 1] � Sγλ(z[k] − γΦ⊤(Φz[k] − y)

),

t[k + 1] � 1 +√

1 + 4t[k]22 ,

z[k + 1] � x[k + 1] + t[k] − 1t[k + 1] (x[k + 1] − x[k]).

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 42 / 55

Page 125: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Table of Contents

1 Basics of convex optimization

2 Proximal Operator

3 Proximal splitting methods for ℓ1 optimization

4 Proximal gradient method for ℓ1 regularization

5 Generalized LASSO and ADMM

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 43 / 55

Page 126: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Generalized LASSO and ADMM

A generalized regularization problem:

minimizex∈Rn

12 ∥Φx − y∥2

2 + λ∥Ψx∥1 ,

Ψ is a matrix.We call this the generalized LASSO.IfΨ � I, then this is LASSO.∥Ψx∥1 is not proximable in general.

No closed-form expression for its proximal operator.

We need yet another algorithm.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 44 / 55

Page 127: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Generalized LASSO and ADMM

A generalized regularization problem:

minimizex∈Rn

12 ∥Φx − y∥2

2 + λ∥Ψx∥1 ,

Ψ is a matrix.We call this the generalized LASSO.IfΨ � I, then this is LASSO.∥Ψx∥1 is not proximable in general.

No closed-form expression for its proximal operator.

We need yet another algorithm.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 44 / 55

Page 128: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Generalized LASSO and ADMM

A generalized regularization problem:

minimizex∈Rn

12 ∥Φx − y∥2

2 + λ∥Ψx∥1 ,

Ψ is a matrix.We call this the generalized LASSO.IfΨ � I, then this is LASSO.∥Ψx∥1 is not proximable in general.

No closed-form expression for its proximal operator.

We need yet another algorithm.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 44 / 55

Page 129: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Generalized LASSO and ADMM

A generalized regularization problem:

minimizex∈Rn

12 ∥Φx − y∥2

2 + λ∥Ψx∥1 ,

Ψ is a matrix.We call this the generalized LASSO.IfΨ � I, then this is LASSO.∥Ψx∥1 is not proximable in general.

No closed-form expression for its proximal operator.

We need yet another algorithm.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 44 / 55

Page 130: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Generalized LASSO and ADMM

A generalized regularization problem:

minimizex∈Rn

12 ∥Φx − y∥2

2 + λ∥Ψx∥1 ,

Ψ is a matrix.We call this the generalized LASSO.IfΨ � I, then this is LASSO.∥Ψx∥1 is not proximable in general.

No closed-form expression for its proximal operator.

We need yet another algorithm.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 44 / 55

Page 131: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Generalized LASSO and ADMM

A generalized regularization problem:

minimizex∈Rn

12 ∥Φx − y∥2

2 + λ∥Ψx∥1 ,

Ψ is a matrix.We call this the generalized LASSO.IfΨ � I, then this is LASSO.∥Ψx∥1 is not proximable in general.

No closed-form expression for its proximal operator.

We need yet another algorithm.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 44 / 55

Page 132: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Generalized LASSO and ADMM

A generalized regularization problem:

minimizex∈Rn

12 ∥Φx − y∥2

2 + λ∥Ψx∥1 ,

Ψ is a matrix.We call this the generalized LASSO.IfΨ � I, then this is LASSO.∥Ψx∥1 is not proximable in general.

No closed-form expression for its proximal operator.

We need yet another algorithm.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 44 / 55

Page 133: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ADMM

Optimization problemminimizex∈Rn ,z∈Rp

f1(x) + f2(z) subject to z � Ψx ,

f1, f2: proper, closed, and convexΨ ∈ Rp×n

Alternating Direction Method of Multipliers (ADMM)

ADMMInitialization: give initial vectors z[0], v[0] ∈ Rp , and real numberγ > 0Iteration: for k � 0, 1, 2, . . . do

x[k + 1] :� arg minx∈Rn

{f1(x) +

12γ

Ψx − z[k] + v[k] 2},

z[k + 1] :� proxγ f2

(Ψx[k + 1] + v[k]

),

v[k + 1] :� v[k] +Ψx[k + 1] − z[k + 1].M. Nagahara (Univ of Kitakyushu) Sparsity Methods 45 / 55

Page 134: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ADMM

Optimization problemminimizex∈Rn ,z∈Rp

f1(x) + f2(z) subject to z � Ψx ,

f1, f2: proper, closed, and convexΨ ∈ Rp×n

Alternating Direction Method of Multipliers (ADMM)

ADMMInitialization: give initial vectors z[0], v[0] ∈ Rp , and real numberγ > 0Iteration: for k � 0, 1, 2, . . . do

x[k + 1] :� arg minx∈Rn

{f1(x) +

12γ

Ψx − z[k] + v[k] 2},

z[k + 1] :� proxγ f2

(Ψx[k + 1] + v[k]

),

v[k + 1] :� v[k] +Ψx[k + 1] − z[k + 1].M. Nagahara (Univ of Kitakyushu) Sparsity Methods 45 / 55

Page 135: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ADMM

Optimization problemminimizex∈Rn ,z∈Rp

f1(x) + f2(z) subject to z � Ψx ,

f1, f2: proper, closed, and convexΨ ∈ Rp×n

Alternating Direction Method of Multipliers (ADMM)

ADMMInitialization: give initial vectors z[0], v[0] ∈ Rp , and real numberγ > 0Iteration: for k � 0, 1, 2, . . . do

x[k + 1] :� arg minx∈Rn

{f1(x) +

12γ

Ψx − z[k] + v[k] 2},

z[k + 1] :� proxγ f2

(Ψx[k + 1] + v[k]

),

v[k + 1] :� v[k] +Ψx[k + 1] − z[k + 1].M. Nagahara (Univ of Kitakyushu) Sparsity Methods 45 / 55

Page 136: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ADMM

Optimization problemminimizex∈Rn ,z∈Rp

f1(x) + f2(z) subject to z � Ψx ,

f1, f2: proper, closed, and convexΨ ∈ Rp×n

Alternating Direction Method of Multipliers (ADMM)

ADMMInitialization: give initial vectors z[0], v[0] ∈ Rp , and real numberγ > 0Iteration: for k � 0, 1, 2, . . . do

x[k + 1] :� arg minx∈Rn

{f1(x) +

12γ

Ψx − z[k] + v[k] 2},

z[k + 1] :� proxγ f2

(Ψx[k + 1] + v[k]

),

v[k + 1] :� v[k] +Ψx[k + 1] − z[k + 1].M. Nagahara (Univ of Kitakyushu) Sparsity Methods 45 / 55

Page 137: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ADMM

Optimization problemminimizex∈Rn ,z∈Rp

f1(x) + f2(z) subject to z � Ψx ,

f1, f2: proper, closed, and convexΨ ∈ Rp×n

Alternating Direction Method of Multipliers (ADMM)

ADMMInitialization: give initial vectors z[0], v[0] ∈ Rp , and real numberγ > 0Iteration: for k � 0, 1, 2, . . . do

x[k + 1] :� arg minx∈Rn

{f1(x) +

12γ

Ψx − z[k] + v[k] 2},

z[k + 1] :� proxγ f2

(Ψx[k + 1] + v[k]

),

v[k + 1] :� v[k] +Ψx[k + 1] − z[k + 1].M. Nagahara (Univ of Kitakyushu) Sparsity Methods 45 / 55

Page 138: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convergence of ADMM

Assume f1 and f2 are proper, closed, and convex functions.Assume also that the Lagrangian

L(x , z , λ) � f1(x) + f2(z) + λ⊤(Ψx − z).has a saddle point, that is, there exist x∗, z∗, and λ∗ such that

L(x∗ , z∗ , λ) ≤ L(x∗ , z∗ , λ∗) ≤ L(x , z , λ∗), ∀x , z , λ.

Then,The residual

r[k] ≜ Ψx[k] − z[k] → 0 as k → ∞.The objective value

f1(x[k]) + f2(z[k]) → f ∗ ≜ infx∈Rn ,z∈Rp

Ψx�z

{f1(x) + f2(z)

}as k → ∞.

IfΨ⊤Ψ is invertible, then the sequence(x[k], z[k]) → (x∗ , z∗) as k → ∞.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 46 / 55

Page 139: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convergence of ADMM

Assume f1 and f2 are proper, closed, and convex functions.Assume also that the Lagrangian

L(x , z , λ) � f1(x) + f2(z) + λ⊤(Ψx − z).has a saddle point, that is, there exist x∗, z∗, and λ∗ such that

L(x∗ , z∗ , λ) ≤ L(x∗ , z∗ , λ∗) ≤ L(x , z , λ∗), ∀x , z , λ.

Then,The residual

r[k] ≜ Ψx[k] − z[k] → 0 as k → ∞.The objective value

f1(x[k]) + f2(z[k]) → f ∗ ≜ infx∈Rn ,z∈Rp

Ψx�z

{f1(x) + f2(z)

}as k → ∞.

IfΨ⊤Ψ is invertible, then the sequence(x[k], z[k]) → (x∗ , z∗) as k → ∞.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 46 / 55

Page 140: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convergence of ADMM

Assume f1 and f2 are proper, closed, and convex functions.Assume also that the Lagrangian

L(x , z , λ) � f1(x) + f2(z) + λ⊤(Ψx − z).has a saddle point, that is, there exist x∗, z∗, and λ∗ such that

L(x∗ , z∗ , λ) ≤ L(x∗ , z∗ , λ∗) ≤ L(x , z , λ∗), ∀x , z , λ.

Then,The residual

r[k] ≜ Ψx[k] − z[k] → 0 as k → ∞.The objective value

f1(x[k]) + f2(z[k]) → f ∗ ≜ infx∈Rn ,z∈Rp

Ψx�z

{f1(x) + f2(z)

}as k → ∞.

IfΨ⊤Ψ is invertible, then the sequence(x[k], z[k]) → (x∗ , z∗) as k → ∞.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 46 / 55

Page 141: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convergence of ADMM

Assume f1 and f2 are proper, closed, and convex functions.Assume also that the Lagrangian

L(x , z , λ) � f1(x) + f2(z) + λ⊤(Ψx − z).has a saddle point, that is, there exist x∗, z∗, and λ∗ such that

L(x∗ , z∗ , λ) ≤ L(x∗ , z∗ , λ∗) ≤ L(x , z , λ∗), ∀x , z , λ.

Then,The residual

r[k] ≜ Ψx[k] − z[k] → 0 as k → ∞.The objective value

f1(x[k]) + f2(z[k]) → f ∗ ≜ infx∈Rn ,z∈Rp

Ψx�z

{f1(x) + f2(z)

}as k → ∞.

IfΨ⊤Ψ is invertible, then the sequence(x[k], z[k]) → (x∗ , z∗) as k → ∞.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 46 / 55

Page 142: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convergence of ADMM

Assume f1 and f2 are proper, closed, and convex functions.Assume also that the Lagrangian

L(x , z , λ) � f1(x) + f2(z) + λ⊤(Ψx − z).has a saddle point, that is, there exist x∗, z∗, and λ∗ such that

L(x∗ , z∗ , λ) ≤ L(x∗ , z∗ , λ∗) ≤ L(x , z , λ∗), ∀x , z , λ.

Then,The residual

r[k] ≜ Ψx[k] − z[k] → 0 as k → ∞.The objective value

f1(x[k]) + f2(z[k]) → f ∗ ≜ infx∈Rn ,z∈Rp

Ψx�z

{f1(x) + f2(z)

}as k → ∞.

IfΨ⊤Ψ is invertible, then the sequence(x[k], z[k]) → (x∗ , z∗) as k → ∞.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 46 / 55

Page 143: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convergence of ADMM

Assume f1 and f2 are proper, closed, and convex functions.Assume also that the Lagrangian

L(x , z , λ) � f1(x) + f2(z) + λ⊤(Ψx − z).has a saddle point, that is, there exist x∗, z∗, and λ∗ such that

L(x∗ , z∗ , λ) ≤ L(x∗ , z∗ , λ∗) ≤ L(x , z , λ∗), ∀x , z , λ.

Then,The residual

r[k] ≜ Ψx[k] − z[k] → 0 as k → ∞.The objective value

f1(x[k]) + f2(z[k]) → f ∗ ≜ infx∈Rn ,z∈Rp

Ψx�z

{f1(x) + f2(z)

}as k → ∞.

IfΨ⊤Ψ is invertible, then the sequence(x[k], z[k]) → (x∗ , z∗) as k → ∞.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 46 / 55

Page 144: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ADMM for generalized LASSO

Generalized LASSO

minimizex∈Rn

12 ∥Φx − y∥2

2 + λ∥Ψx∥1 ,

The first update in ADMM:

arg minx∈Rn

{12 ∥Φx − y∥2

2 +1

2γ ∥Ψx − z[k] + v[k]∥22}

�(Φ⊤Φ + γ−1Ψ⊤Ψ

)−1 (Φ⊤y + γ−1Ψ⊤(z[k] − v[k])

).

The proximal operator in the second update is thesoft-thresholding operator:

proxγ f2(v) � Sγλ(v)

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 47 / 55

Page 145: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ADMM for generalized LASSO

Generalized LASSO

minimizex∈Rn

12 ∥Φx − y∥2

2 + λ∥Ψx∥1 ,

The first update in ADMM:

arg minx∈Rn

{12 ∥Φx − y∥2

2 +1

2γ ∥Ψx − z[k] + v[k]∥22}

�(Φ⊤Φ + γ−1Ψ⊤Ψ

)−1 (Φ⊤y + γ−1Ψ⊤(z[k] − v[k])

).

The proximal operator in the second update is thesoft-thresholding operator:

proxγ f2(v) � Sγλ(v)

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 47 / 55

Page 146: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ADMM for generalized LASSO

Generalized LASSO

minimizex∈Rn

12 ∥Φx − y∥2

2 + λ∥Ψx∥1 ,

The first update in ADMM:

arg minx∈Rn

{12 ∥Φx − y∥2

2 +1

2γ ∥Ψx − z[k] + v[k]∥22}

�(Φ⊤Φ + γ−1Ψ⊤Ψ

)−1 (Φ⊤y + γ−1Ψ⊤(z[k] − v[k])

).

The proximal operator in the second update is thesoft-thresholding operator:

proxγ f2(v) � Sγλ(v)

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 47 / 55

Page 147: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ADMM for generalized LASSO

ADMM for generalized LASSOInitialization: give initial vectors z[0], v[0] ∈ Rp , and real numberγ > 0Iteration: for k � 0, 1, 2, . . . do

x[k + 1] �(Φ⊤Φ + γ−1Ψ⊤Ψ

)−1 (Φ⊤y + γ−1Ψ⊤(z[k] − v[k])

)z[k + 1] � Sγλ

(Ψx[k + 1] + v[k]

)v[k + 1] � v[k] +Ψx[k + 1] − z[k + 1].

The inverse matrix (Φ⊤Φ + γ−1Ψ⊤Ψ)−1 is computed offline.If the matrix Φ⊤Φ + γ−1Ψ⊤Ψ is a tridiagonal matrix, the linearequation (

Φ⊤Φ + γ−1Ψ⊤Ψ)x � v

with unknown x can be solved in O(n).M. Nagahara (Univ of Kitakyushu) Sparsity Methods 48 / 55

Page 148: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ADMM for generalized LASSO

ADMM for generalized LASSOInitialization: give initial vectors z[0], v[0] ∈ Rp , and real numberγ > 0Iteration: for k � 0, 1, 2, . . . do

x[k + 1] �(Φ⊤Φ + γ−1Ψ⊤Ψ

)−1 (Φ⊤y + γ−1Ψ⊤(z[k] − v[k])

)z[k + 1] � Sγλ

(Ψx[k + 1] + v[k]

)v[k + 1] � v[k] +Ψx[k + 1] − z[k + 1].

The inverse matrix (Φ⊤Φ + γ−1Ψ⊤Ψ)−1 is computed offline.If the matrix Φ⊤Φ + γ−1Ψ⊤Ψ is a tridiagonal matrix, the linearequation (

Φ⊤Φ + γ−1Ψ⊤Ψ)x � v

with unknown x can be solved in O(n).M. Nagahara (Univ of Kitakyushu) Sparsity Methods 48 / 55

Page 149: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ADMM for generalized LASSO

ADMM for generalized LASSOInitialization: give initial vectors z[0], v[0] ∈ Rp , and real numberγ > 0Iteration: for k � 0, 1, 2, . . . do

x[k + 1] �(Φ⊤Φ + γ−1Ψ⊤Ψ

)−1 (Φ⊤y + γ−1Ψ⊤(z[k] − v[k])

)z[k + 1] � Sγλ

(Ψx[k + 1] + v[k]

)v[k + 1] � v[k] +Ψx[k + 1] − z[k + 1].

The inverse matrix (Φ⊤Φ + γ−1Ψ⊤Ψ)−1 is computed offline.If the matrix Φ⊤Φ + γ−1Ψ⊤Ψ is a tridiagonal matrix, the linearequation (

Φ⊤Φ + γ−1Ψ⊤Ψ)x � v

with unknown x can be solved in O(n).M. Nagahara (Univ of Kitakyushu) Sparsity Methods 48 / 55

Page 150: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Application: Image denoising

Remove noise from an image.Preserve edges at the same time.

Applying a low-pass filter does not work very well.

Original image Noisy image

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 49 / 55

Page 151: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Application: Image denoising

Remove noise from an image.Preserve edges at the same time.

Applying a low-pass filter does not work very well.

Original image Noisy image

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 49 / 55

Page 152: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Application: Image denoising

Remove noise from an image.Preserve edges at the same time.

Applying a low-pass filter does not work very well.

Original image Noisy image

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 49 / 55

Page 153: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Total variation denoising

Y ∈ Rn×m : a noisy imagePull out each column vector, say y ∈ Rn , and solve the followingoptimization problem, one by one:

minimizex∈Rn

∥x − y∥22 + λ

n∑i�1

|xi+1 − xi |.

∥x − y∥22 : proximity to the data∑n

i�1 |xi+1 − xi |: total variation to preserve edgesλ > 0: weight

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 50 / 55

Page 154: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Total variation denoising

Y ∈ Rn×m : a noisy imagePull out each column vector, say y ∈ Rn , and solve the followingoptimization problem, one by one:

minimizex∈Rn

∥x − y∥22 + λ

n∑i�1

|xi+1 − xi |.

∥x − y∥22 : proximity to the data∑n

i�1 |xi+1 − xi |: total variation to preserve edgesλ > 0: weight

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 50 / 55

Page 155: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Total variation denoising

Y ∈ Rn×m : a noisy imagePull out each column vector, say y ∈ Rn , and solve the followingoptimization problem, one by one:

minimizex∈Rn

∥x − y∥22 + λ

n∑i�1

|xi+1 − xi |.

∥x − y∥22 : proximity to the data∑n

i�1 |xi+1 − xi |: total variation to preserve edgesλ > 0: weight

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 50 / 55

Page 156: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Total variation denoising

Y ∈ Rn×m : a noisy imagePull out each column vector, say y ∈ Rn , and solve the followingoptimization problem, one by one:

minimizex∈Rn

∥x − y∥22 + λ

n∑i�1

|xi+1 − xi |.

∥x − y∥22 : proximity to the data∑n

i�1 |xi+1 − xi |: total variation to preserve edgesλ > 0: weight

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 50 / 55

Page 157: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Total variation denoising

Y ∈ Rn×m : a noisy imagePull out each column vector, say y ∈ Rn , and solve the followingoptimization problem, one by one:

minimizex∈Rn

∥x − y∥22 + λ

n∑i�1

|xi+1 − xi |.

∥x − y∥22 : proximity to the data∑n

i�1 |xi+1 − xi |: total variation to preserve edgesλ > 0: weight

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 50 / 55

Page 158: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ADMM for total variation denoising

Total variation denoising:

minimizex∈Rn

∥x − y∥22 + λ

n∑i�1

|xi+1 − xi |.

Define Φ � I and

Ψ �

−1 1 0 . . . 0

0 −1 1 . . ....

.... . .

. . .. . . 0

0 . . . 0 −1 10 . . . 0 0 −1

.

Generalized LASSO

minimizex∈Rn

∥Φx − y∥22 + λ∥Ψx∥1 ,

We can use ADMM!M. Nagahara (Univ of Kitakyushu) Sparsity Methods 51 / 55

Page 159: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ADMM for total variation denoising

Total variation denoising:

minimizex∈Rn

∥x − y∥22 + λ

n∑i�1

|xi+1 − xi |.

Define Φ � I and

Ψ �

−1 1 0 . . . 0

0 −1 1 . . ....

.... . .

. . .. . . 0

0 . . . 0 −1 10 . . . 0 0 −1

.

Generalized LASSO

minimizex∈Rn

∥Φx − y∥22 + λ∥Ψx∥1 ,

We can use ADMM!M. Nagahara (Univ of Kitakyushu) Sparsity Methods 51 / 55

Page 160: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ADMM for total variation denoising

Total variation denoising:

minimizex∈Rn

∥x − y∥22 + λ

n∑i�1

|xi+1 − xi |.

Define Φ � I and

Ψ �

−1 1 0 . . . 0

0 −1 1 . . ....

.... . .

. . .. . . 0

0 . . . 0 −1 10 . . . 0 0 −1

.

Generalized LASSO

minimizex∈Rn

∥Φx − y∥22 + λ∥Ψx∥1 ,

We can use ADMM!M. Nagahara (Univ of Kitakyushu) Sparsity Methods 51 / 55

Page 161: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ADMM for total variation denoising

Total variation denoising:

minimizex∈Rn

∥x − y∥22 + λ

n∑i�1

|xi+1 − xi |.

Define Φ � I and

Ψ �

−1 1 0 . . . 0

0 −1 1 . . ....

.... . .

. . .. . . 0

0 . . . 0 −1 10 . . . 0 0 −1

.

Generalized LASSO

minimizex∈Rn

∥Φx − y∥22 + λ∥Ψx∥1 ,

We can use ADMM!M. Nagahara (Univ of Kitakyushu) Sparsity Methods 51 / 55

Page 162: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ADMM for total variation denoising

The weight λ should be carefully chosen.λ � 50

Restored image

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 52 / 55

Page 163: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ADMM for total variation denoising

The weight λ should be carefully chosen.λ � 100

Restored image

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 53 / 55

Page 164: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ADMM for total variation denoising

The weight λ should be carefully chosen.λ � 200

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 54 / 55

Page 165: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Summary

In convex optimization, a local minimum is a global minimum.ℓ1 optimization problems appeared in this course are convexoptimization.Proximal operators are used to derive fast algorithms for convexoptimization with non-differentiable ℓ1 norm and constraints

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 55 / 55

Page 166: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Summary

In convex optimization, a local minimum is a global minimum.ℓ1 optimization problems appeared in this course are convexoptimization.Proximal operators are used to derive fast algorithms for convexoptimization with non-differentiable ℓ1 norm and constraints

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 55 / 55

Page 167: Sparsity Methods for Systems and Control - Algorithms for ... · Convexoptimizationproblem Convexoptimizationproblem Let 5: R=! [f1gbeaproper,closed,andconvexfunction,and CˆR=beaclosedconvexset.Then,aconvexoptimizationproblemis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Summary

In convex optimization, a local minimum is a global minimum.ℓ1 optimization problems appeared in this course are convexoptimization.Proximal operators are used to derive fast algorithms for convexoptimization with non-differentiable ℓ1 norm and constraints

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 55 / 55