tfizweb.elte.hu/download/fizikus-msc/anyagfizika/anyagfiz004.pdf · na source-\aa> y s^ 1.27 mev...

19
. . ""• * - - . T . . - .. . - - ,. ' -., 7-1. 'V i t- •• A H». f- ) .-. . ,\\ . i' «. ; - ' f Fig.10.8. Beispiel AgBr. Lender warden bei hoheren T auch anharmom'sche Effekte slchtbar, s.d. (10.20) nicht zuverlassig 1st. 35 30 20 Fig. 10.8. 15 101 300 Cp = 12 +0.035 F ' 400 500 600 Temperotur, K 700 me von Silberbromid bcl konstanlem Druck. Es zel£l sich ein zusSlz- licher Dcllraf: zur eperilischen Wkrme, der von der Bildung von Gitlerfehl- steJlen herruhrt. [Sach R.W. Christy und A. W. Larson, J. Chem. Phys.19. 517 (1951).]

Upload: hoangdung

Post on 19-May-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

. . ""• * - - .

T . . - ..

.- - ,.

'

-., •7-1. 'Vi t-

• ••

A H». f-

)

.-. . ,\\ .

i'

«. ; - '

f

Fig.10.8. Beispiel AgBr. Lender warden bei hoheren T auch anharmom'sche

Effekte slchtbar, s.d. (10.20) nicht zuverlassig 1st.

35

30

20

Fig. 10.8.

15

101300

Cp = 12 +0.035 F '

400 500 600T e m p e r o t u r , K

700

me von Silberbromid bcl k o n s t a n l e m Druck. Es zel£l s ich ein zusSlz-licher Dcllraf: zur eperilischen Wkrme , der von der Bi ldung von G i t l e r f e h l -steJlen herruhrt . [Sach R . W . Chris ty und A. W. Larson, J. Chem. P h y s . 1 9 .517 (1951).]

.

*-*Ts'*

•»*w*ir•r I

<0 It- 0)QJ -r-O. C/JE t/>0) :ia

••'

V

" *-..

-

•*sai » i

^ **J

\

\ N t. "i

c t. - LJ :

0)1•r-Ll.

QJ ra-c cO U

-C QJ

QJQD

Oo

QJCn +J

•r- W

Ll- I-cu

-^ QJO ,—13 i—<o a>

Q.Q) Q.

-C OQJ Q

I- 21

to UJV)

•I- 1-C QJ

-Q -oQJ01 t_I- O

LU XIfO

cn (^

ci ^QJ

01 j_ t.'»- 3 «3U_ 4-> JD

pump

Fig. 2.16. Field ion microscope with moveablc tip and massspectrometer attachment [2.15].

Fig. 2.18. Field ion micrograph of a tungsten tip [2.15].

0;oft

FTV)-l

o-

» i0 f>0 S"

p>-5

ij

CX^

i

•• •

V

,

"O

II

H-N0

fvj

O

r?

H

if

0

8

.

l«i -

OI I

rnIInr>

I!

nro

I)

NaSource

-\AA> y s^1.27 MeV

Scintillator

Fig. 1. Scheme of the positron lifetime experiment in fast-fast coincidence. The lifetime ismeasured as the time difference between the appearance of the start and stop "/-quanta(PM—photomultiplier, SCA—single-channel analyzer). The amplitude of the time-to-amplitude converter (TAC) analog output pulse is proportional to this time difference. The\vhole lifetime spectrum N(t) is stored in a multi-channel analyzer (MCA).

10eF

10-

cn

I 10*oO

1QJ r

As-grown CzSi

Plastically deformed Si

0 1 2 3 4 5

Time [ns|

Fig. 2. Experimental positron lifetime spectra obtained in as-grown and in plasticallydeformed Czochralski-grown (Cz) silicon (Htibner et al. 1997b). The curve of the deformedsample (3 % strain, deformation temperature 775 °C). is located significantly higher,indicating the occurrence of long-lived lifetime components. After the decomposition of theupper spectrum, the obtained lifetime components T^ and 13 are added as straight lines inthe semi-logarithmic plot for illustration. The TI component is not indicated as a straightline {TI = 120 ps). Only one lifetime component corresponding to the positron bulk lifetimeTb is found in the as-grown sample. The deviations from the straight line at higher times aredue to annihilations in the source and the background contribution. The Gaussian-like shapeof the left part of the curve is mainly caused by the resolution function.

* .

I; ,4 i ' - I •» ; * ' • * . . . » • • ..

• r

A

u

.'

! - ' . \' V ':S .

..4! .V l.i- U

,1 ,

•4,

u.

'

V

V *- ~M?

«lf»•3*

-w "5"^V

-^<=s

ii

-"'''W**^.

<;*"*. *1 i

,

-

w

<^

•*s-'

-

4'™ *•*i.4

^;

O

,v/.

-.

o

.-*V^

. « •

r

• :V

10-Tm 600 "C 500

(crnpcrnturc

400 300

[0

CH8 I0

'

i nI.I 1..1 1.5 1.7 1.9

Fig. 10.2. Experimental results of various authors fo r theT-dependence of cv = 3(A///~Aa/a) in a luminium. The experimentalerrors give rise to an unccr t r 'n ty Acv = ± lO""* shown as Tour errorbars. Measurements of the positron l i f e t ime at vacancies give theslope of the f u l l line in the range shown accurate to ±10"7. Themaximum sensitivity of this method is at Cy^S x IO"6 (arrow). Theopen triangles are derived from measurements of the specific heat.After A. Seeger [10.1].

.'•' ^ r ' " ' — ' » ' ' - ' , .- ' _ , . , • . . . • - < •

: .

'V

•' •;

,<•"• L ' - i / \

•^ \

* ••^y-*~* » - -n-i* o^*«&• • » •* * > v *»^

*

7 J

•-,

/

•-> ,*> -://; i/ 'y/ •. * / - . <'

V* Y3

•. A

O

.., o-e TiJL.

"*'*

Vv

V ,.;-*" -,-

J.

*4- ."

-V ,| , *j"

,,

' - ' ' I '

a - • i\s• t •

JUr

. - C;,? *•• v/Ja'J

K /V

-^A -t

A \

• • - *•• / > . , . « . - v -

•<

. .!^* f l

2a V«

. '. ' ' .

! aU i v /

')

6' AC j\V \7

\

*

i u '

-

'

-'

• ~*

T

A - 1

^L'v?^T^* 'V,'i;iQ*• . », - . -

* ' * * I r

- ! . *

, '•

• . - • • - . . ,• MI

/,----' °n

1v * ». • ••

' '.* '

-. & •*:

. ". \-

(* -

A • ; • A U-

f .

\* , - V,

120 h 160

Fig. 10.4. The frac t ion Apc;/Ap0 of the change in res idua l resis tanceremaining in gold wires quenched from 700 °C a f t e r t emper ing for /hours at 40 °C or 60 °C.'

" • *: «. - 1 ' ;- •••'

'

'

•M =F( 0

1 y^-f

• i;

">* wvi "'"ril 'I \

^-- • -• -

13*

- •

•w -»;\ :V^*K^JC^ i

-

-•'• '*

-•

Kristalyhibak ionos racsbanSchottky-hiba

e e

e e

e © e © e

e © ©

e ©

e © e

Frcnkcl-hiba

e © e

Szennyezo ionnal keltett vakancia

Na+

cr

Na+

cr

Na+

cr

Na+

cr

~Na+

cr

Na+

cr

cr

Na+

cr

Na+

cr

Na+

cr

Na*

cr

( ")

cr

Na+

Na*

cr

Na+

crX""Nocr

Na+

cr

Na*

cr

Na*

cr

cr

Na*

cr

Na*

cr

Na*

cr

Na+

crNa+

cr

Na+

Na+

cr

Na+

crNa+

cr

©cr

Na+

cr

Na*

cr

cr

Na*

cr

Na+

crNa*

cr

Na*

cr

Na*

cr

Na+

Na+

crNa*

crNa^

crNa+

cr

Na+

cr

Na+

cr

cr

©cr

Na+

cr

Na+

cr

Na+

crNa+

crNa+

Na+

cr

Na+

cr

Na+

cr

Na+

cr

Na+

cr

Na+

cr

cr

Na+

cr

Na*

cr

Na+

cr

Na+

cr

Na+

cr

Na*

Na*

cr

Na*

cr

Na*

cr

Na*

cr

Na*

cr

Na+

cr

Nem fuggetlen ponthibak

lonos kristalyoknal a lokalis tdltessemlegessegmegkdvetelese is szukseges.

Ezt Lagrange-multiplikatorokkal vehetjuk figyelembe aszabadenergiaban.

Legegyszerubb eset:

q es -q toltesu ionokbol allo racs. Vakanciak keltesienergiaja e- es £+, szamuk n- es n+.

s_ —

n+=Ne

Toltessemlegesseg feltetele: n = n

A Tn - Ne

Szincentrumok

F-centrum

/UUD.IU.iU.

Bonding in Materials

Point Defects in Ionic Solids

1. oldal, osszesen: 1

Vacancies are required in ionic solids, just like they are for other types, BUTThe vacancies must be formed:in such a way that the solid remains charge neutral.Single vacancies cannot be formed because they leave behind a charge center.Two main ways to create point defects in ionic solids without causing charge imbalance:

o Correlated vacancies: Schottky defectso Correlated vacancy-interstitial groups: Frenkel defects

Schottky Defects: [100) NaCI

Exercise: What is the most likely Schottky defect structure in Zr02?

00

httD://www.mse.uiuc.edu/info/msel82/tl42.html 2006.10.10.

Bonding in Materials

Point Defects in Ionic Solids

Frenkel Defects: [100] MgO

1. oldal, osszesen: 1

Exercise: What is the most likely Frenkel defect in ZrO2?

http://w\v\v.mse.uiuc.edu/info/msel82/tl43.html 2006.10.10.