some%of%the%problems%below%are%taken/adapted%fromchapter%4%in% advanced( semiconductor...

17
Mark Lundstrom 2/10/2013 ECE606 Spring 2013 1 SOLUTIONS: ECE 606 Homework Week 5 Mark Lundstrom Purdue University (corrected 3/26/13) Some of the problems below are taken/adapted from Chapter 4 in Advanced Semiconductor Fundamentals,2 nd . Ed. By R.F. Pierret. 1) The conduction band minima in GaP occurs at the boundary of the first Brillouin zone along [100] directions. The constant energy surfaces are ellipsoidal with m * = 1.12m 0 and m t * = 0.22m 0 . Determine the densityofstates effective mass for electrons in GaP. Solution: The situation here is much like silicon – except that the minima occur at the BZ boundary. The result is that we can only include onehalf of each ellipsoid inside the BZ. The “6” in enq. (4.25a) of ASF (p. 95) is replaced by 3. We conclude: m n * ) DOS = 3 2/3 m * m t *2 ( ) 1/3 m n * ) DOS = 0.79m 0 2) Assuming that the Si valence bands are spherical with m hh * = 0.537 m 0 and m lh * = 0.153m 0 , determine the fraction of holes that are in the heavy hole band. You should assume nondegenerate conditions at T = 300 K. Also assume that the effective masses quoted above, which were measured by cyclotron resonance at 4K, can be used at room temperature. Solution: Begin with: p = N V F 1/2 η F ( ) m 3 N V = 1 4 2m * k B T π 2 3/2 m 3 where: η F = E V E F ( ) k B T This expression assumes a single, parabolic energy band (i.e. valley degeneracy is 1). For the heavy and light hole bands: p hh = N V hh F 1/2 η F ( ) p lh = N V lh F 1/2 η F ( )

Upload: others

Post on 11-Mar-2020

17 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Some%of%the%problems%below%are%taken/adapted%fromChapter%4%in% Advanced( Semiconductor ...Week5HW... · Mark%Lundstrom% % 2/10/2013% ECE5606% % 4% Spring2013% % dn(Eˆ) dE =0→k

Mark  Lundstrom     2/10/2013  

ECE-­‐606     Spring  2013  1  

SOLUTIONS:    ECE  606  Homework  Week  5    Mark  Lundstrom  Purdue  University  (corrected  3/26/13)  

 Some  of  the  problems  below  are  taken/adapted  from  Chapter  4  in  Advanced  Semiconductor  Fundamentals,  2nd.  Ed.  By  R.F.  Pierret.      1) The  conduction  band  minima  in  GaP  occurs  at  the  boundary  of  the  first  Brillouin  zone  

along  [100]  directions.    The  constant  energy  surfaces  are  ellipsoidal  with   m* = 1.12m0  

and   mt* = 0.22m0 .  Determine  the  density-­‐of-­‐states  effective  mass  for  electrons  in  GaP.  

 Solution:  The  situation  here  is  much  like  silicon  –  except  that  the  minima  occur  at  the  BZ  boundary.    The  result  is  that  we  can  only  include  one-­‐half  of  each  ellipsoid  inside  the  BZ.      The  “6”  in  enq.  (4.25a)  of  ASF  (p.  95)  is  replaced  by  3.    We  conclude:    

mn

* )DOS

= 32/3 m*mt

*2( )1/3    

 

mn

* )DOS

= 0.79m0  

   2) Assuming  that  the  Si  valence  bands  are  spherical  with   mhh

* = 0.537m0  and   mlh* = 0.153m0 ,  

determine  the  fraction  of  holes  that  are  in  the  heavy  hole  band.    You  should  assume  non-­‐degenerate  conditions  at   T = 300K.    Also  assume  that  the  effective  masses  quoted  above,  which  were  measured  by  cyclotron  resonance  at  4K,  can  be  used  at  room  temperature.  

 Solution:    Begin  with:    

p = NVF 1/2 ηF( )    m-­‐3    

NV = 1

42m*kBTπ2

⎝⎜⎞

⎠⎟

3/2

m-­‐3    where:     ηF = EV − EF( ) kBT    

 This  expression  assumes  a  single,  parabolic  energy  band  (i.e.  valley  degeneracy  is  1).    For  the  heavy  and  light  hole  bands:    

phh = NVhhF 1/2 ηF( )   plh = NV

lhF 1/2 ηF( )  

Page 2: Some%of%the%problems%below%are%taken/adapted%fromChapter%4%in% Advanced( Semiconductor ...Week5HW... · Mark%Lundstrom% % 2/10/2013% ECE5606% % 4% Spring2013% % dn(Eˆ) dE =0→k

Mark  Lundstrom     2/10/2013  

ECE-­‐606     Spring  2013  2  

 The  fraction  of  holes  in  the  heavy  hole  band  becomes:    

phh

p=

phh

phh + plh

=NV

hh

NVhh + NV

lh =mhh

*( )3/2

mhh*( )3/2

+ mlh*( )3/2    

 Inserting  numbers,  we  find:    

phh

p= 0.5373/2

0.537( )3/2+ 0.153( )3/2  

 

phh

p= 0.868  

 Most  of  the  holes  are  in  the  heavy  hole  band.    This  should  be  expected,  because  the  heavy  hole  band  has  a  much  higher  density  of  states.    

NV

hh ∝ mhh*( )3/2

>> NVlh mlh

*( )3/2  

 Note  that  we  did  NOT  need  to  assume  MB  (non-­‐degenerate)  statistics.    

 3) In  a  Si  MOSFET,  the  source  and  drain  regions  are  heavily  doped.    Assuming  that  the  

dopants  are  fully  ionized  and  that   N D = 1020  cm-­‐3,  compute  the  location  of  the  Fermi  level.    Compare  the  answer  you  get  assuming  Maxwell-­‐Boltzmann  statistics  with  the  answer  from  Fermi-­‐Dirac  statistics.    You  may  assume  T  =  300K  and  that  the  effective  density  of  states  is  

NC = 1

42mD

* kBTπ2

⎝⎜⎞

⎠⎟

3/2

= 3.23×1019 cm-3  

 You  will  need  to  compute  an  inverse  Fermi-­‐Dirac  integral.    A  FD  integral  tool  is  available  on  nanoHUB.org  at:    nanohub.org/resources/fdical    You  can  also  find  an  iPhone  app  that  does  Fermi-­‐Dirac  integrals.  

 Solution:    

n = NCF 1/2 ηF( ) = 3.23×1019( )F 1/2 ηF( ) = 1020

 

Page 3: Some%of%the%problems%below%are%taken/adapted%fromChapter%4%in% Advanced( Semiconductor ...Week5HW... · Mark%Lundstrom% % 2/10/2013% ECE5606% % 4% Spring2013% % dn(Eˆ) dE =0→k

Mark  Lundstrom     2/10/2013  

ECE-­‐606     Spring  2013  3  

F 1/2 ηF( ) = 1020

3.23×1019 = 3.10  

ηF = F 1/2 3.10( )⎡⎣ ⎤⎦

−1

   Using  the  nanoHUB  tool  or  the  iPhone  app,  we  find:    

ηF = F 1/2 3.10( )⎡⎣ ⎤⎦

−1= 2.184 =

EF − EC

kBT    So  the  Fermi  level  is  2.184  kBT  above  EC  for  FD  statistics.    Now  repeat  for  Maxwell  Boltzmann  statistics:    

F 1/2 ηF( ) = 3.10⇒ eηF

   

ηF = ln 3.10( ) = 1.13=

EF − EC

kBTL  

 So  the  Fermi  level  is  1.13  kBT  above  EC  for  MB  statistics.    In  general,  we  find  that  the  Fermi  level  is  higher  when  we  use  FD  statistics.    This  occurs  because  as  states  are  filled,  we  need  to  go  higher  in  the  conduction  band  to  find  empty  state.    The  implicit  assumption  for  MB  statistics  is  that  all  states  are  nearly  empty.  

   

4) In  3D,  the  distribution  of  electrons  in  the  conduction  band,  n E( ) ,  is  peaked  at  an  energy,   E  that  is  very  near  the  bottom  of  the  conduction  band,  EC .    Assume  Maxwell-­‐

Boltzmann  carrier  statistics  and  derive  an  expression  for   E  for  the  following  cases:  4a)   3D  semiconductor  with  parabolic  energy  bands  4b)   2D  semiconductor  with  parabolic  energy  bands    

Solution:    4a)  

n E( ) = D E( ) f E( ) ≈ D E( )e− E−EF( ) kBT        

dn E( )dE

=dD E( )

dEe− E−EF( ) kBT −

D E( )kBT

e− E−EF( ) kBT  

Page 4: Some%of%the%problems%below%are%taken/adapted%fromChapter%4%in% Advanced( Semiconductor ...Week5HW... · Mark%Lundstrom% % 2/10/2013% ECE5606% % 4% Spring2013% % dn(Eˆ) dE =0→k

Mark  Lundstrom     2/10/2013  

ECE-­‐606     Spring  2013  4  

 

dn E( )dE

= 0→ kBTdD E( )

dEE

= D E( )  

in  3D,   D E( ) = K E − EC( )1/2

   (K  is  a  constant),  so    

kBT2

K E − EC( )−1/2= K E − EC( )1/2

 

 

E = EC +

kBT2

 

 4b)    Begin  with:    

kBT

dD E( )dE

E

= D E( )    in  2D,   D2 D E( ) = K ,  so    

kBT × 0 = K    nonsense.    There  is  no  peak  to   n E( ) .    

 5) Sometimes  we  need  to  know  the  average  kinetic  energy  for  electrons  in  the  

conduction  band  (or  for  holes  in  the  valence  band).    Answer  the  follow  questions:    

5a)   Derive  a  general  expressions  for  the  average  kinetic  energy  per  electron  in  the  conduction  band.  

 Solution:  

u =En

=

E − EC( )D E( ) f E( )dEEC

D E( ) f E( )dEEC

∫    

 5b)   Assume  parabolic  energy  bands  and  evaluate  the  general  expression  for  a  1D  

semiconductor.    Simplify  your  answer  for  Maxwell-­‐Boltzmann  carrier  statistics.  

 

Page 5: Some%of%the%problems%below%are%taken/adapted%fromChapter%4%in% Advanced( Semiconductor ...Week5HW... · Mark%Lundstrom% % 2/10/2013% ECE5606% % 4% Spring2013% % dn(Eˆ) dE =0→k

Mark  Lundstrom     2/10/2013  

ECE-­‐606     Spring  2013  5  

Solution:  

u =EnL

=

E − EC( )D1D E( ) f E( )dEEC

D1D E( ) f E( )dEEC

∫  

 

D1D (E) =

gV

π2mD

*

E − EC    You  should  be  able  to  show:  

nL = D1D E( ) f E( )dE

EC

∫ = N1DF −1/2 ηF( )    (*),    where:     N1D = 2mD

* kBT π .        Now,  lets  work  on  the  numerator:    

E = E − EC( ) 1

π2mD

*

E − EC

⎧⎨⎪

⎩⎪

⎫⎬⎪

⎭⎪

11+ e E−EF( ) kBT dE = 1

π2mD

* E − EC( )1/2dE

1+ e E−EF( ) kBTEC

∫EC

∫  

 

η ≡ E − EC( ) kBT     dE = kBTη    

ηF ≡ EF − EC( ) kBT    

E = 1

π2mD

* kBTη( )1/2kBTdη

1+ eη−ηFEC

∫  

   

E =

2mD* kBT

πkBT η1/2dη

1+ eη−ηF0

∫  

 

η1/2dη1+ eη−ηF

0

∫ = π2

F 1/2 ηF( )  (See  “Notes  on  FD  Integrals”)  

E =

2mD* kBT π

kBT2

⎛⎝⎜

⎞⎠⎟F 1/2 ηF( ) = N1D

kBT2

⎛⎝⎜

⎞⎠⎟F 1/2 ηF( )  (**)  

Page 6: Some%of%the%problems%below%are%taken/adapted%fromChapter%4%in% Advanced( Semiconductor ...Week5HW... · Mark%Lundstrom% % 2/10/2013% ECE5606% % 4% Spring2013% % dn(Eˆ) dE =0→k

Mark  Lundstrom     2/10/2013  

ECE-­‐606     Spring  2013  6  

Combine  (*)  and  (**)  to  find:    

u1D =EnL

=kBT

2⎛⎝⎜

⎞⎠⎟

F 1/2 ηF( )F −1/2 ηF( )  

   For  a  nondegenerate  semiconductor,  all  FD  integrals  reduce  to  exponentials,  so  we  find:    

u1D =

kBT2

⎛⎝⎜

⎞⎠⎟  

   5c)   Assume  circular,  parabolic    energy  bands  and  evaluate  the  general  expression  

for  a  2D  semiconductor.    Simplify  your  answer  for  Maxwell-­‐Boltzmann  carrier  statistics.  

 Solution:    We  begin  the  same  way…    

u2 D =EnS

=

E − EC( )D2 D E( ) f E( )dEEC

D2 D E( ) f E( )dEEC

∫  

 Use  the  2D  DOS:  

D2 D (E) =

mD*

π2    and  eventually  find:    

u2 D =EnS

= kBT( )F 1 ηF( )F 0 ηF( )  

 For  a  nondegenerate  semiconductor,  all  FD  integrals  reduce  to  exponentials  and  we  find:    

u2 D = kBT  

Page 7: Some%of%the%problems%below%are%taken/adapted%fromChapter%4%in% Advanced( Semiconductor ...Week5HW... · Mark%Lundstrom% % 2/10/2013% ECE5606% % 4% Spring2013% % dn(Eˆ) dE =0→k

Mark  Lundstrom     2/10/2013  

ECE-­‐606     Spring  2013  7  

   5d)   Assume  spherical,  parabolic  energy  bands  and  evaluate  the  general  

expression  for  a  3D  semiconductor.    Simplify  your  answer  for  Maxwell-­‐Boltzmann  carrier  statistics.  

 Solution:    We  begin  the  same  way…    

u3D =En

=

E − EC( )D3D E( ) f E( )dEEC

D3D E( ) f E( )dEEC

∫  

 Use  the  3D  DOS:    

D3D E( ) = mD

3/2( ) 2 E − EC( )π 23  

 and  eventually  find:    

u3D =En

=3kBT

2⎛⎝⎜

⎞⎠⎟F 3/2 ηF( )F 1/2 ηF( )  

 For  a  nondegenerate  semiconductor,  all  FD  integrals  reduce  to  exponentials  and  we  find:    

u3D =

3kBT2

 

 6) Assume  Si  at  T  =  300  K,  doped  with  arsenic  at   N D = 1016  cm-­‐3.    Make  reasonable  

assumptions  and  answer  the  following  questions.    6a)    Compute  the  density  of  electrons  in  the  conduction  band.  6b)    Compute  the  location  of  the  Fermi  level.  6c)      Compute  the  fraction  of  the  dopants  that  are  ionized.  6d)    Compute  the  density  of  holes  in  the  valence  band.  

   Solution:  

Page 8: Some%of%the%problems%below%are%taken/adapted%fromChapter%4%in% Advanced( Semiconductor ...Week5HW... · Mark%Lundstrom% % 2/10/2013% ECE5606% % 4% Spring2013% % dn(Eˆ) dE =0→k

Mark  Lundstrom     2/10/2013  

ECE-­‐606     Spring  2013  8  

 For  problems  6)  -­‐  10),  let’s  assume    at  T  =  300  K  (from  Pierret,  ASF,  2nd  Ed.,  p.  113)    

NC = 1

42mn

*kBTπ2

⎝⎜⎞

⎠⎟

3/2

= 3.23×1019 cm-3

 

NV = 1

42mp

* kBTπ2

⎝⎜

⎠⎟

3/2

= 1.83×1019 cm-3

 It  should  be  understood  that  the  effective  masses  in  these  expression  are  the  density-­‐of-­‐states  effective  masses.    For  problems  6)  –  10),  the  starting  point  is  space  charge  neutrality:    p − n + ND

+ − NA− = 0

   

NV F 1/2

EV − EF

kBT⎛⎝⎜

⎞⎠⎟− NC F 1/2

EF − EC

kBT⎛⎝⎜

⎞⎠⎟+ ND

1+ gDeEF−ED( ) kBT − NA

1+ gAeEA−EF( ) kBT = 0

   

 For  this  problem,  we  can  assume  that   N A = 0 .    Since  the  doping  is  moderate,  we  assume  non-­‐degenerate  carrier  statistics.    Because  Arsenic  is  a  shallow  dopant  and  we  expect  the  Fermi  level  to  be  well  below  ED,  we  can  assume  that  the  dopants  are  fully  ionized.    Because  the  semiconductor  is  extrinsic,   n >> p .    We  conclude  that  

n = N D  to  a  very  good  approximation.    All  these  assumptions  can  be  checked  as  we  proceed.    6a)    

n = N D = 1016 cm-3    

 6b)    Determine  EF  from  the  electron  density:    

n = NCe EF −EC( ) kBT → EF − EC = kBT ln n NC( )      

EF = EC + kBT ln 1016 3.23×1019( ) = EC −8.1kBT  

EF = EC −8.1kBT  

 So  the  assumptions  that  the  semiconductor  is  non-­‐degenerate  is  good.    6c)    Begin  with:    

Page 9: Some%of%the%problems%below%are%taken/adapted%fromChapter%4%in% Advanced( Semiconductor ...Week5HW... · Mark%Lundstrom% % 2/10/2013% ECE5606% % 4% Spring2013% % dn(Eˆ) dE =0→k

Mark  Lundstrom     2/10/2013  

ECE-­‐606     Spring  2013  9  

ND+

ND

= 11+ gDe

EF−ED( ) kBT = 11+ gDe

EF−EC+EC−ED( ) kBT  

 According  to  Fig.  4.14,  p.  111  of  Pierret,  ASF:     EC − ED = 0.054 eV = 2.08kBT    and  we  also  know  that  for  donors,   gD = 2 .    ND

+

ND

= 11+ 2e −8.1kBT +2.08kBT( ) kBT = 1

1+ 2e−6.02= 0.995

 

ND+

ND

= 0.995  

 So  our  assumptions  that  the  dopants  are  fully  ionized  is  good.    6d)    Use  the  Law  of  Mass  action: np = ni

2      

p =

ni2

n=

1010( )2

1016 = 104      

p = 104 cm-3  

 So  our  assumption  that   n >> p  is  good.      

 7) Assume  Si  at  T  =  640  K,  doped  with  arsenic  at   N D = 1016  cm-­‐3.    Make  reasonable  

assumptions  and  answer  the  following  questions.    7a)    Compute  the  density  of  electrons  in  the  conduction  band.  7b)    Compute  the  location  of  the  Fermi  level.  7c)      Compute  the  fraction  of  the  dopants  that  are  ionized.  7d)    Compute  the  density  of  holes  in  the  valence  band.        Solution:    Dopants  should  be  fully  ionized  and  semiconductor  should  be  nondegenerate,  but  

ni  may  be  large,  which  means  that  p  may  not  be  negligible.    From  Fig.  4.17,  p.  117  of  Pierret,  ASF  we  find:    

ni 640 K( ) ≈1016cm-3    The  space  charge  neutrality  condition  becomes:  

Page 10: Some%of%the%problems%below%are%taken/adapted%fromChapter%4%in% Advanced( Semiconductor ...Week5HW... · Mark%Lundstrom% % 2/10/2013% ECE5606% % 4% Spring2013% % dn(Eˆ) dE =0→k

Mark  Lundstrom     2/10/2013  

ECE-­‐606     Spring  2013  10  

 p − n + ND

+ − NA− = 0 = p − n + ND = ni

2 n − n + ND = 0    which  can  be  solved  for      

n = ND

2+ ND

2⎛⎝⎜

⎞⎠⎟2

+ ni2⎡

⎣⎢

⎦⎥

1/2

 

 7a)    Solve  for  n:    

n = ND

2+ ND

2⎛⎝⎜

⎞⎠⎟2

+ ni2⎡

⎣⎢

⎦⎥

1/2

= 5 ×1015 + 5 ×1015( )2 + 1016( )2⎡⎣

⎤⎦1/2

 

 n = 5 ×1015 +1.12 ×1016     n = 1.62 ×1016 cm-3

   7b)    Determine  EF  from  the  electron  density:    

n = NCe EF −EC( ) kBT → EF − EC = kBT ln n NC( )  but  NC  is  temperature  dependent.    

NC = 1

42mn

*kBTπ2

⎝⎜⎞

⎠⎟

3/2

= NC 300K( ) T300

⎛⎝⎜

⎞⎠⎟

3/2

= 3.23×1019 640300

⎛⎝⎜

⎞⎠⎟

3/2

= 1.01×1020 cm-3

   

EF − EC = kBT ln 1.62×1016 1.01×1020( ) = −8.74kBT    

EF = EC −8.74kBT    (but  realize  that  kBT  is  bigger  now).    7c)    Proceeding  as  in  6c),  we  find:    

EC − ED = 0.054 eV = 0.98kBT    and      ND

+

ND

= 11+ 2e −8.74 kBT +0.98kBT( ) kBT = 1

1+ 2e−6.02= 0.999

 

ND+

ND

= 0.999  

 Dopants  are  fully  ionized  as  assumed.    7d)    Use  the  Law  of  Mass  Action: np = ni

2      

Page 11: Some%of%the%problems%below%are%taken/adapted%fromChapter%4%in% Advanced( Semiconductor ...Week5HW... · Mark%Lundstrom% % 2/10/2013% ECE5606% % 4% Spring2013% % dn(Eˆ) dE =0→k

Mark  Lundstrom     2/10/2013  

ECE-­‐606     Spring  2013  11  

p =

ni2

n=

1016( )2

1.62×1016 = 6.2×1015      

p = 6.2×1015 cm-3  

 So  in  this  case,  the  hole  concentration  is  not  negligible.    The  semiconductor  is  nearly  intrinsic.      

8) Assume  Si  at  T  =  77  K,  doped  with  arsenic  at   N D = 1016  cm-­‐3.    Make  reasonable  assumptions  and  answer  the  following  questions.    8a)    Compute  the  density  of  electrons  in  the  conduction  band.  8b)    Compute  the  location  of  the  Fermi  level.  8c)      Compute  the  fraction  of  the  dopants  that  are  ionized.  8d)    Compute  the  density  of  holes  in  the  valence  band.    Solution:  In  this  case,  we  worry  that  there  may  not  be  enough  thermal  energy  to  ionize  the  donors.    The  intrinsic  concentration  should  be  very  small,  so  holes  can  be  ignored.    The  space  charge  neutrality  condition  becomes:    

p − n + ND+ − NA

− = 0 = −n + ND+  

−NC F 1/2

EF − EC

kBT⎛⎝⎜

⎞⎠⎟+ ND

1+ gDeEF−ED( ) kBT = 0

 Assume  non-­‐degenerate  carrier  statistics  (check  later):    

−NC expEF − EC

kBT⎛⎝⎜

⎞⎠⎟+ ND

1+ gDeEF−ED( ) kBT = 0

   This  equation  can  be  solved.    The  answer  is  eqn.  (4.88)  in  Pierret,  ASF    

EF = EC + kBT ln Nζ 2NC( ) 1+ 4ND Nζ( )1/2 −1⎡⎣⎢

⎤⎦⎥{ }  

where    

Nζ = NC gD( )e− EC−ED( ) kBT

     Now  lets  put  numbers  in:    

Page 12: Some%of%the%problems%below%are%taken/adapted%fromChapter%4%in% Advanced( Semiconductor ...Week5HW... · Mark%Lundstrom% % 2/10/2013% ECE5606% % 4% Spring2013% % dn(Eˆ) dE =0→k

Mark  Lundstrom     2/10/2013  

ECE-­‐606     Spring  2013  12  

NC = NC 300K( ) T

300⎛⎝⎜

⎞⎠⎟

3/2

= 3.23×1019 77300

⎛⎝⎜

⎞⎠⎟

3/2

= 4.20×1018 cm-3

   

kBT = 6.64×10−3 eV      

Nζ = NC gD( )e− EC−ED( ) kBT = 4.20×1018 2( )e− 54( ) 6.64 = 6.17 ×1014  

 

EF = EC + kBT ln 6.17 ×1014 2 × 4.20 ×1018( ) 1+ 4 ×1016 6.17 ×1014( )1/2 −1⎡⎣

⎤⎦{ }  

 EF = EC + kBT ln 7.35 ×10−5( ) 65.8( )1/2 −1⎡⎣ ⎤⎦{ }  

EF = EC − 7.65kBT    

   Note  that   ED = EC −8.13kBT      So  the  Fermi  level  is  above  the  donor  level,  but  far  enough  below  EC  that  we  can  use  non-­‐degenerate  carrier  statistics.    8a)    Since  we  know  the  Fermi  level,  we  can  get  the  electron  density:    

n = NC expEF − EC

kBT⎛⎝⎜

⎞⎠⎟= 4.20 ×1018 exp −7.65( )

   n = 2.00 ×1015 cm-3  

8b)    We  already  solved  this  problem.    

EF = EC − 7.65kBT  

 8c)   Since   n = N D

+ = 2.00×1015 ,  we  deduce    

 

N D+

N D

= 0.2    

We  could  also  get  this  directly  from  ND

+

ND

= 11+ gDe

EF−ED( ) kBT  

 8d)    The  number  of  holes  is  essentially  zero.    We  could  get  this  from  the  law  of  mass  

action,  but  then  we  need  to  figure  out  ni  at  77  K.    Another  way  is:    

Page 13: Some%of%the%problems%below%are%taken/adapted%fromChapter%4%in% Advanced( Semiconductor ...Week5HW... · Mark%Lundstrom% % 2/10/2013% ECE5606% % 4% Spring2013% % dn(Eˆ) dE =0→k

Mark  Lundstrom     2/10/2013  

ECE-­‐606     Spring  2013  13  

p = NV expEV − EF

kBT⎛⎝⎜

⎞⎠⎟= NV exp

EV − EC + EC − EF

kBT⎛⎝⎜

⎞⎠⎟= NV exp − EG

kBT⎛⎝⎜

⎞⎠⎟exp EC − EF

kBT⎛⎝⎜

⎞⎠⎟  

NV = 1

42mp

* kBTπ2

⎝⎜

⎠⎟

3/2

= NV 300K( ) T300

⎛⎝⎜

⎞⎠⎟

3/2

= 1.83×1019 77300

⎛⎝⎜

⎞⎠⎟

3/2

= 2.38×1018 cm-3

   Also  need  the  bandgap  of  Si  at  77  K.  From  pp.  82-­‐83  of  Pierret,  ASF,  we  have    

EG T( ) = EG 0( )− αT 2

T + β    

 For  Si:    

EG T( ) = 1.170−

4.730×10−4 77( )2

77 + 636= 1.166 eV  

 so    

p = 2.38 ×1018 exp −11666.64

⎛⎝⎜

⎞⎠⎟ exp 7.65( ) = 2.38 ×1018 5.46 ×1077( ) 2.10 ×103( )  

 p = 2.73×10−55 cm-3  

 This  is  essentially  zero…  hardly  worth  the  effort  of  computing  it.    Since  we  have  n  and  p,  we  can  deduce   ni = 2.34 ×10

−20 cm-3          

9) Assume  Si  at  T  =  300  K,  doped  with  arsenic  at  ND =1018  cm-­‐3.    Make  reasonable  assumptions  and  answer  the  following  questions.  

 9a)    Compute  the  density  of  electrons  in  the  conduction  band.  9b)    Compute  the  location  of  the  Fermi  level.  9c)      Compute  the  fraction  of  the  dopants  that  are  ionized.  9d)    Compute  the  density  of  holes  in  the  valence  band.          Solution:  

Page 14: Some%of%the%problems%below%are%taken/adapted%fromChapter%4%in% Advanced( Semiconductor ...Week5HW... · Mark%Lundstrom% % 2/10/2013% ECE5606% % 4% Spring2013% % dn(Eˆ) dE =0→k

Mark  Lundstrom     2/10/2013  

ECE-­‐606     Spring  2013  14  

 This  requires  a  little  thought…  the  temperature  is  high  enough  so  the  donors  may  be  fully  ionized,  but  the  number  of  dopants  is  high,  so  the  Fermi  level  might  be  too  close  to  the  donor  level  to  assume  complete  ionization.    It  might  also  be  too  close  to  the  conduction  band  to  assume  non-­‐degenerate  carrier  statistics.    Let  assume  full  ionization  and  nondegenerate  carrier  statistics  and  see  where  it  leads.      9a)    Assume  complete  ionization:    

n = N D = 1018 cm-3    

 9b)    Determine  EF  from  the  electron  density:    

n = NCe EF −EC( ) kBT → EF − EC = kBT ln n NC( )      

EF = EC + kBT ln 1018 3.23×1019( ) = EC − 3.48kBT  

EF = EC − 3.48kBT  

 So  the  assumptions  that  the  semiconductor  is  non-­‐degenerate  is  OK.    9c)    As  in  problem  6c):  

 ND

+

ND

= 11+ 2e −3.48kBT +2.08kBT( ) kBT = 1

1+ 2e−1.40= 0.67

 

ND+

ND

= 0.67  

 So  our  assumptions  that  the  dopants  are  fully  ionized  is  not  justified.    We  need  to  start  over  and  solve  the  problem  using  the  procedure  of  problem  8).    The  rest  of  this  problem  is  left  as  an  exercise  for  the  interested  student!      

10)    Assume  Si  at  T  =  300  K,  doped  with  arsenic  at   N D = 1020  cm-­‐3.    Make  reasonable  assumptions  and  answer  the  following  questions.    (In  this  case,  you  should  assume  that  “heavy  doping  effects”  cause  the  dopants  to  be  fully  ionized  and  the  bandgap  to  shrink  by  0.1  eV.)  

 10a)    Compute  the  density  of  electrons  in  the  conduction  band.  10b)    Compute  the  location  of  the  Fermi  level.  10c)    Compute  the  fraction  of  the  dopants  that  are  ionized.  10d)    Compute  the  density  of  holes  in  the  valence  band.    

     Solution:  

Page 15: Some%of%the%problems%below%are%taken/adapted%fromChapter%4%in% Advanced( Semiconductor ...Week5HW... · Mark%Lundstrom% % 2/10/2013% ECE5606% % 4% Spring2013% % dn(Eˆ) dE =0→k

Mark  Lundstrom     2/10/2013  

ECE-­‐606     Spring  2013  15  

 We  expect  the  Fermi  level  to  be  inside  the  conduction  band.    We  can  assume  full  ionization  and  ignore  holes,  but  we  cannot  use  nondegenerate  statistics.    

n = N D  to  a  very  good  approximation.    10a)    

n = N D = 1020 cm-3    

 10b)    Determine  EF  from  the  electron  density:    

n = NC F 1/2

EF − EC

kBT⎛⎝⎜

⎞⎠⎟     NC = 3.23×1019 cm-3  

 

EF − EC

kBT= F 1/2

nNC

⎛⎝⎜

⎞⎠⎟

⎣⎢

⎦⎥

−1

= F 1/21020

3.23×1019⎛⎝⎜

⎞⎠⎟

⎣⎢

⎦⎥

−1

= F 1/2 3.10( )⎡⎣ ⎤⎦−1= 2.184

   (from  Fermi  Dirac  Integral  Calculator  on  nanoHUB.org    https://nanohub.org/tools/fdical)    

EF = EC + 2.184kBT  

 So  the  semiconductor  is,  indeed  degenerate  with  EF  inside  the  conduction  band.      10c)    By  assumption,  we  are  above  the  metal-­‐insulator  transition  and    ND

+

ND

= 1  

 10d)    Use  the  Law  of  Mass  Action: np = ni

2      But  bandgap  narrowing  increases  ni.    

ni

2 = 1020 exp ΔEG / kBT( ) = 1020 exp 100 / 26( ) = 4.68×1021    

ni = 6.84×1010  

p =

ni2

n=

4.68×1021( )1018 = 4.68×103      

p = 4.68×103 cm-3  

 So  our  assumption  that   n >> p  is  good.  

Page 16: Some%of%the%problems%below%are%taken/adapted%fromChapter%4%in% Advanced( Semiconductor ...Week5HW... · Mark%Lundstrom% % 2/10/2013% ECE5606% % 4% Spring2013% % dn(Eˆ) dE =0→k

Mark  Lundstrom     2/10/2013  

ECE-­‐606     Spring  2013  16  

 11)    For  the  energy  band  sketched  below,  provide  sketches  of  the  following:  

 

   11a)    the  carrier  densities,  n(x),  and  p(x)  vs.  position.    Solution:    

       

 11b)    the  electrostatic  potential,  ψ x( ) ,  vs.  position.    Solution:  

Page 17: Some%of%the%problems%below%are%taken/adapted%fromChapter%4%in% Advanced( Semiconductor ...Week5HW... · Mark%Lundstrom% % 2/10/2013% ECE5606% % 4% Spring2013% % dn(Eˆ) dE =0→k

Mark  Lundstrom     2/10/2013  

ECE-­‐606     Spring  2013  17  

       

11c)    the  electric  field  E  vs.  position.    

         11d)    the  space  charge  density,   ρ x( )    vs.  position    Solution: