solutions. a solution is a homogeneous mixture of 2 or more substances in a single phase. one...

61
Solutions

Upload: isaac-gash

Post on 14-Dec-2015

218 views

Category:

Documents


2 download

TRANSCRIPT

  • Slide 1

Solutions Slide 2 A solution is a homogeneous mixture of 2 or more substances in a single phase. One constituent is usually regarded as the SOLVENT and the others as SOLUTES. Slide 3 Parts of a Solution SOLUTE the part of a solution that is being dissolved (usually the lesser amount) SOLVENT the part of a solution that dissolves the solute (usually the greater amount) Solute + Solvent = Solution Solvent Solute Solution Slide 4 4 Nature of Solutes in Solutions Spread evenly throughout the solution Cannot be separated by filtration Can be separated by evaporation Not visible, solution appears transparent May give a color to the solution Slide 5 Gas in a Gas Air Gas in a Liquid Soda Liquid in a Liquid Gasoline Solid in a Liquid Sea Water Solids in Solids Brass saladsoil water Solutions Examples Non-Examples Slide 6 Water is the universal solvent because more substances dissolve in water than in any other chemical. This has to do with the polarity of each water molecule.polarity Slide 7 Molecular Polarity Nonpolar molecules: -- e are shared equally e.g., Polar molecules: -- e NOT shared equally fats and oils HCH H H water HH O Slide 8 Water Molecules Are polar because O is more electronegative than H Are polar because O is more electronegative than H Gives O a partial negative charge. Gives O a partial negative charge. Form strong intermolecular hydrogen bonds. Form strong intermolecular hydrogen bonds. Water molecules are attracted to one another better than other molecules its size. Water molecules are attracted to one another better than other molecules its size. Slide 9 9 Hydrogen bonding animation Hydrogen bonding occurs because of polarity One water molecule bonds to another. Slide 10 Surface Tension Because of the hydrogen bonds, water molecules are attracted to each other. Liquid water acts like it has a skin. Water forms round drops. Slide 11 Properties of Water Hydrogen bonding causes: High surface tension Low vapor pressure High specific heat capacity High heat of vaporization High boiling point Slide 12 Properties of Water Slide 13 Slide 14 What is, or is not, soluble in H 2 0? Polar solvents dissolve ionic compounds and polar molecules Water is polar therefore it can dissolve NaCl Copper (II) sulfate NaOH Nonpolar solvents dissolve nonpolar compounds Oil is nonpolar, which is why oil and water separate Like Dissolves Like Slide 15 Animations of the Solvation (Animation of a Solute Dissolving) While you watch each video clip, record your observations on your notes. Animation of Salt Dissolving in Water Animation of Sugar Dissolving in Water Slide 16 H H O H H O H H O H H O H H O H H O H H O H H O H H O Animation When Ionic Solids Dissolve Slide 17 How do we know ions are present in aqueous solutions? The solutions can conduct electricity They are called ELECTROLYTES HCl, MgCl 2, and NaCl are strong electrolytes. They dissociate completely (or nearly so) into ions. Aqueous Solutions Slide 18 Slide 19 Electrolyte vs. Non-Electrolyte Salt (Ionic Solids) Sugar (Molecular Solids) Both Water is the solvent. Broke apart into ions Broke apart into whole molecules Was able to light the light bulb an electrolyte An electrolyte is a substance when dissolved in water can conduct an electric current. Forms a solution Did not light the light bulb a non-electrolyte Cant Conduct an Electric Current Can Conduct an Electric Current A non-electrolyte is a substance when dissolved in water cant conduct an electric current. Slide 20 Rate of Solution = How Fast Exploration 1) To an empty 250mL beaker, add approximately 100mL of warm-hot water from a hot plate. 2) To an empty 250mL beaker, add approximately 100mL of ice water. Be sure to leave the ice behind! 3) Add a sugar cube to each of the 250mL beakers. Observe what happens. 4) Record your observations on your notes. 5) List other ways that you believe that you could make a solute dissolve more quickly. Slide 21 Electrolytes in the Body Carry messages to and from the brain as electrical signals Maintain cellular function with the correct concentrations electrolytes Make your own 50-70 g sugar One liter of warm water Pinch of salt 200ml of sugar free fruit squash Mix, cool and drink Slide 22 Rate of Solution What are ways that you make a solute dissolve faster? 1) Increase the temperature. 2) Crush or use smaller size solute particles. 3) Stir the solutions. Slide 23 Solubility = How Much Type of SoluteTemperaturePressure Solid Solute Gaseous Solute Solubility generally increases as temperature increases. Pressure has no effect on the solubility of a solid. Solubility generally decreases as temperature increases. Solubility generally increases as pressure increases. Slide 24 Types of Solutions There are three ways to classify a solution. 1) Unsaturated Solutions 2) Saturated Solutions 3) Supersaturated Solutions Slide 25 Types of Solutions Type of SolutionDescriptionPictureRelation to Solubility Curve Unsaturated Saturated Supersaturated A solution in which more solute can dissolve Below the Line A solution in which contains the maximum amount of solute On the Line A solution in which contains more than the maximum amount of solute Above the Line Slide 26 Supersaturated The solution is holding more solute than it should be able to. This is achieved by heating the solution and then cooling it slowly. Examples: rock candy, southern style sweet tea, chemical heat packs Supersaturated solutions are unstable. The supersaturation is only temporary Supersaturated solutions are unstable. The supersaturation is only temporary Slide 27 Solubility SATURATED SOLUTION no more solute dissolves UNSATURATED SOLUTION more solute dissolves SUPERSATURATED SOLUTION becomes unstable, crystals form increasing concentration Slide 28 Supersaturated Slide 29 Solubility Curves Solubility indicates the amount of solute that will dissolve in a given amount of solvent at a specific temperature. For this curve, X-Axis Temperature Y-Axis How Much Solute Dissolves in 100g of Water Various Lines Each line represents a different solute. Slide 30 Solubility Curves CO 2 Saturated Supersaturated Unsaturated Slide 31 Using an available solubility curve, classify as unsaturated, saturated, or supersaturated. 80 g NaNO 3 @ 30 o C 45 g KCl @ 60 o C 30 g KClO 3 @ 30 o C 70 g Pb(NO 3 ) 2 @ 60 o C per 100 g H 2 O unsaturated saturated supersaturated unsaturated Slide 32 Describe each situation below. (A) Per 100 g H 2 O, 100 g NaNO 3 @ 50 o C. (B) Cool solution (A) very slowly to 10 o C. (C) Quench solution (A) in an ice bath to 10 o C. unsaturated; all solute dissolves; clear solution. supersaturated; extra solute remains in solution; still clear saturated; extra solute (20 g) cant remain in solution and becomes visible Slide 33 How to use a solubility graph? A.IDENTIFYING A SUBSTANCE ( given the solubility in g/100 cm 3 of water and the temperature) Look for the intersection of the solubility and temperature. Slide 34 Using Solubility Curves 1) How much KNO 3 would dissolve in 100g of water at 50 o C? 2) How much NH 4 Cl would dissolve in 200g of water at 70 o C? 3) At what temperature would 22g of KCl be able to dissolve in 50g of water? 4) Which is more soluble (has a higher solubility) at 40 o C? NH 3 KClO 3 84g 120g 68 o C Slide 35 Learning Check : What substance has a solubility of 90 g/100 cm 3 in water at a temperature of 25C ? Slide 36 Slide 37 Learning Check : What substance has a solubility of 200 g/100 cm 3 of water at a temperature of 90C ? Slide 38 Slide 39 Look for the temperature or solubility Locate the solubility curve needed and see for a given temperature, which solubility it lines up with and visa versa. Slide 40 Learning Check: What is the solubility of potassium nitrate at 80C ? Slide 41 Slide 42 Learning Check : At what temperature will sodium nitrate have a solubility of 95 g/100 cm 3 ? Slide 43 Learning Check: At what temperature will sodium nitrate have a solubility of 95 g/100 cm 3 ? Slide 44 Learning Check: At what temperature will potassium iodide have a solubility of 230 g/100 cm 3 ? Slide 45 Learning Check: At what temperature will potassium iodide have a solubility of 130 g/100 cm 3 ? Slide 46 Using Solubility Curves: What is the solubility of sodium chloride at 25C in 100 cm 3 of water ? From the solubility graph we see that sodium chlorides solubility is 36 g. Slide 47 SOLUBLE OR INSOLUBLE? Soluble : able to be dissolved Insoluble: does not dissolve in solution (or water) Precipitate: an insoluble solid formed when two solutions are mixed Slide 48 Soluble compounds contain Insoluble compounds contain For these compounds, common exceptions are INSOLUBLE. For these compounds, common exceptions are SOLUBLE. Slide 49 Double Replacement reactions AB + CD AD + CB NaCl + AgNO 3 NaNO 3 + AgCl Slide 50 Concentration of Solute The amount of solute in a solution is given by its concentration The amount of solute in a solution is given by its concentration. Molarity (M) = moles solute liters of solution Slide 51 PROBLEM: Dissolve 5.00 g of NiCl 2 6 H 2 O in enough water to make 250 mL of solution. Calculate the Molarity. Step 1: Calculate moles of NiCl 2 6H 2 O Step 2: Calculate Molarity NiCl 2 6 H 2 O [NiCl 2 6 H 2 O ] = 0.0841 M Known Mass=5 g Volume = 0.250 L Unknown Molarity of NiCl 2 6 H 2 O NiCl 2 6 H 2 O ? Analysis molar mass = 237.7 g M= n/ V; Slide 52 0.0125 mol H 2 C 2 O 4 x (90.00 g/mol) = 1.13 g H 2 C 2 O 4 H 2 C 2 O 4 1 mol H 2 C 2 O 4 MOLARITY PROBLEM What mass of oxalic acid, H 2 C 2 O 4, is required to make 250. mL of a 0.0500 M solution? Known Volume = 0.250 L M = 0.0500 moles/L Unknown H 2 C 2 O 4, g of H 2 C 2 O 4, ? Analysis molar mass = 90.00 g M= mol/ V; Step 1: Calculate moles of H 2 C 2 O 4 (0.0500 mol/L) x (0.250 L) = 0.0125 moles (0.0500 mol/L) x (0.250 L) = 0.0125 moles Step 2: Convert moles to grams Slide 53 Learning Check How many grams of NaOH are required to prepare 400. mL of 3.0 M NaOH solution? 1)12 g 2)48 g 3) 300 g Slide 54 Making Molar Solutions from liquids (More accurately, from stock solutions) Slide 55 Dilution is the procedure for preparing a less concentrated solution from a more concentrated solution. Dilution Add Solvent Moles of solute before dilution (i) Moles of solute after dilution (f) = MiViMiVi MfVfMfVf = 4.5 Slide 56 Making a Dilute Solution Timberlake, Chemistry 7 th Edition, page 344 initial solution remove sample diluted solution same number of moles of solute in a larger volume mix moles of solute Slide 57 Dilution Preparation of a desired solution by adding water to a concentrate. Moles of solute remain the same. Slide 58 Dilution Practice Problem What volume of 15.8M HNO 3 is required to make 250 mL of a 6.0M solution? Known Molarity 1 = 15.8 mol/L of HNO 3 Volume 2 = 250 mL Molarity 2 = 6.0 mol/L of HNO 3 Unknown Volume of HNO 3 ? Equation M 1 V 1 = M 2 V 2 Solution : V 1 = (6.0 mol/L x 0.250 L) / 15.8 M = 0.095 L Slide 59 If we have 1 L of 3 M HCl, what is M if we dilute acid to 6 L? Known Molarity 1 = 3 mol/L Volume 1 = 1 L of HCl Volume 2 = 6L of HCl Unknown Molarity of HCl? Equation M 1 V 1 = M 2 V 2 ; Solution : M 2 = (3 mol/L x 1 L) / (6 L) = 0.5 M Dilution Practice Problem Slide 60 What volume of 0.5 M HCl can be prepared from 1 L of 12 M HCl? Solution : V 2 = (12 mol/L x 1 L) / (0.5 L) = 24 L Known Volume 1 = 1 L of HCl Molarity 1 = 12 mol/L of HCl Molarity 2 = 0.5 mol/L of HCl Unknown Volume of HCl? Equation M 1 V 1 = M 2 V 2 Dilution Practice Problem Slide 61