solution heat excercise

3
Solution exercise 6 Cold side (tap water) hot side (condensate) c m & = 30000 kg/h = 8.333 kg/s h m & = 50000 kg/h = 13.889 kg/s T c,in = 17 °C T h,in = 67 °C T c,out = 40 °C c p,h = 4184 J/kgK v c 1.5 m/s p h = 1.2 bar Geometry D S = 0.38735 m R fo = 0.000176 m²K/W d o = 0.019 m R fi = 0.000176 m²K/W d i = 0.016 m λ = 60 W/m²K L max = 5 m B = 0.25 m Parallel layout with P T = 0.024 m N t = 124/2 = 62 N p = 2 Solution Average temperature cold side: T c = 5 . 28 2 40 17 = °C Tap water (28.5°C) (in the tubes) c p,c = 4182.72 J/kg K λ c = 612.296.10 -3 W/mK ρ c = 995.80 kg/m³ μ c = 842.338.10 -6 kg/ms Pr c = 5.7738 ( 801656 , , = - = in c out c c p c T T c m Q & & W ( 2 . 53 , , , = - = out h out h in h h p h T T T c m Q & & °C Average temperature hot side: T h = 1 . 60 2 67 2 . 53 = °C Condensate (1.2 bar) c p,h = 4184 J/kgK λ h = 652.977.10 -3 W/mK ρ h = 982.72 kg/m³ μ h = 478.742.10 -6 kg/ms Pr h = 3.078 First estimate of the average wall temperature: T w = 3 . 44 2 5 . 28 1 . 60 = °C Viscosity at the wall: μ w = 625.37.10 -6 kg/ms

Upload: jeanpierre

Post on 21-Nov-2015

9 views

Category:

Documents


5 download

DESCRIPTION

The solution to one of the biggest questions of modern heating machine design, namely how to determine the dimensions of the shell and tubes

TRANSCRIPT

  • Solution exercise 6

    Cold side (tap water) hot side (condensate)

    cm& = 30000 kg/h = 8.333 kg/s hm& = 50000 kg/h = 13.889 kg/s Tc,in = 17 C Th,in = 67 C Tc,out = 40 C cp,h = 4184 J/kgK vc 1.5 m/s ph = 1.2 bar

    Geometry

    DS = 0.38735 m Rfo = 0.000176 mK/W do = 0.019 m Rfi = 0.000176 mK/W di = 0.016 m = 60 W/mK Lmax = 5 m B = 0.25 m Parallel layout with PT = 0.024 m Nt = 124/2 = 62 Np = 2

    Solution Average temperature cold side: Tc = 5.282

    4017=

    +C

    Tap water (28.5C) (in the tubes)

    cp,c = 4182.72 J/kg K c = 612.296.10-3 W/mK c = 995.80 kg/m c = 842.338.10-6 kg/ms Prc = 5.7738

    ( ) 801656,,

    == incoutccpcTTcmQ &&

    W

    ( ) 2.53,,,

    == outhouthinhhph TTTcmQ && C

    Average temperature hot side: Th = 1.602672.53

    =

    +C

    Condensate (1.2 bar)

    cp,h = 4184 J/kgK h = 652.977.10-3 W/mK h = 982.72 kg/m h = 478.742.10-6 kg/ms Prh = 3.078

    First estimate of the average wall temperature: Tw = 3.4425.281.60

    =

    +C

    Viscosity at the wall: w = 625.37.10-6 kg/ms

  • Calculation of the convection coeficient at the inside Hydraulic diameter: inner diameter di

    6713.0

    42

    =

    =

    ic

    t

    c

    c

    d

    Nm

    vpi

    &

    m/s < 1.5 m/s OK!

    12698Re ==c

    cicdi

    dv

    > 2300

    Flow in a tube: Turbulent: Gnielinski

    f = ( ) 0073683.028.3)ln(Re58.1 2 = di

    Nu = ( )

    82.9111Pr

    27.121

    Pr1000Re2 3

    2

    32

    =

    +

    +

    Ld

    f

    fi

    (when neglecting correction for di/L)

    Large temperature difference between the fluids: correction

    Nucorr = 363188.9411.0

    =

    ==

    i

    c

    ii

    w

    c hdhNu

    W/mK

    Calculation of the convection coefficient for the shell side (Kern)

    Equivalent diameter: 019599.04

    42

    2

    =

    =

    o

    o

    T

    e d

    dP

    Dpi

    pi

    m

    C = PT do = 0.005 m

    Area the fluid flows through: 02017.0==T

    s

    s PBCD

    A m

    Mass flux 6.688==s

    hs A

    mG&

    kg/ms

    28190Re ==h

    se

    s

    GD

    4705PrRe36.014.0

    3155.0

    =

    =

    u

    w

    hhs

    h

    eu hDh

    W/mK

  • uuu

    fui

    u

    i

    fi

    ii AhAR

    ldd

    AR

    AhUA1

    2

    ln11

    ++

    ++= pi

    with l = Ltube . Np (for 1 conduction path)

    Ai = pi.di.l

    Au = pi.du.l

    Hence u

    fuui

    u

    i

    u

    fii

    u

    i hRd

    dd

    dd

    Rdd

    hU1

    2

    ln11

    ++

    ++= pipi

    U = 1050.65 W/mK

    Q = U.A.F.LMTD

    Logaritmic mean temperature difference: ( ) ( ) 38.314067172.53ln

    4067172.53,

    =

    = tsLMT C

    F = 0.95 (1 shell pass and 2 tube passes, P= 0.46, R = 0.6) (fig 2.4)

    m 59.25=

    =

    LMTFUQA

    A = 46.3= tubetubetpo LLNNdpi m, rounded 3.5 m.

    The amount of baffles can now be calculated: Nb = Ltube/B 1 = 13 baffles

    Pressure loss

    pi?

    fcorr = 0068396.025.0

    =

    w

    cf

    44812

    142

    =

    += pcc

    i

    tubecorri N

    v

    dLfp

    Pa

    po? ( )( ) 253884.0Reln19.0576.0 == sef

    ( ) 175932

    114.0

    2

    =

    +=

    w

    heh

    sbso

    D

    DNGfp

    Pa