solid works model for the pressure vessel

16

Click here to load reader

Upload: karthikeashwar

Post on 10-Apr-2015

403 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Solid works model for the pressure vessel

Tank1120

Pressure Vessel Calculations

May 26, 2005

Pressure Vessel Engineering155 Frobisher Drive

Waterloo, ON, N2V 2E1

Steve MunnLaurence Brundrett P. Eng.

Pressure Vessel Engineering Ltd.PVE-1120

1 of 16

Page 2: Solid works model for the pressure vessel

Table of Contents 26-May-05 Page 2 of 16

Contents PageCover 1Table of Contents 2Summary 3Material Properties 416" OD Shell 5Heads 6Nozzle A & B 7Inlet & Outlet Flanges A&B 8 - 9Coupling D 10Coupling E In Shell 11Body Flange 12 - 13Weight and Volume 14Zick 15

Page 3: Solid works model for the pressure vessel

Pressure Vessel Design Summary 26-May-05 Page 3 of 16

CustomerVesselPart NumberDrawingJob

16 Outside Diameter [inch]5.9 Volume [cuft]

Hydrocarbon Fluid (value from Material Properties)304 Weight Empty [lbs.]669 Weight Full669 Weight Under Test

Maximum Internal pressure, psi Maximum External Pressure, psi At Temperature, ºF

100 0 250Maximum Temperature, ºF Minimum Temperature, ºF At Pressure, psi

250 -20 100Test Pressure, psi At a Minimum Temperature of: ºF For a Minimum Duration of:

130 55°F 1/2 hr

SB-209 6061-T651 Primary Material of Construction5,900 Allowable Stress

0.0625 Minimum allowed thickness per UG-16(b)no Material Normalizedno Material Impact Tested (not required per UNF-65 )

none Radiography required0 Corrosion Allowance

ASME VIII-1 Code2004 Editionnone Addenda

IID Materialsnone Code Cases Required

UG-22 Loadings ConsideredYes (a) Internal pressure - (a) External pressure

Yes (b) Vessel weight full, empty and at hydro test - (c) Weight of attached equipment and piping - (d)(1) Attachment of internals

Yes (d)(2) Attachment of vessel supports - (d) Cyclic or dynamic reactions - (f) Wind - (f) Snow - (f) Seismic - (g) Fluid impact shock reactions - (h) Temperature gradients - (h) Differential thermal expansion - (i) Abnormal pressures like deflagration

Hydrostatic Test

Maximum Allowed Working Pressure

Pressure Vessel Engineering

PVE-112011201120Tank

Maximum Design Metal Temperature

Page 4: Solid works model for the pressure vessel

1 Material Properties ver 2.01 www.pveng.com 26-May-05 Page 4 of 162 ASME VIII, IID 2004 Edition no Addenda3 <- Vessel4

5 Design Pressure UG-22(a)6 100.0 <- P, internal operating pressure at top of vessel (psig)7 0.0 <- mPa, external operation pressure8 Hydrocarbon <- Operating Fluid Source - Machinery's handbook - 26th edition9 1.5 <- h, fluid height (ft) 10 1.000 <- rho, fluid density (1.0 for water) 11 Design Pressure = P + 0.4331*rho*h = 100 + 0.4331 * 1 * 1.5 mDp = 100.612

13 Hydro Test (UG-99(b)) pressure measured at top of vessel, rounded up

14 Test Press = P * 1.3 * MR = 100 * 1.3 * 1 mTp = 13015

16 Material Properties (ASME IID)17 250 <- mTemp, design temp ºF Test at ambient temp

18

Where Used Ambient Strength

Design Strength

Strength Ratio

Max ºF Ext Graph

19 shell, flanges 6000 5900 1.017 400 NFA-1220 pipes 6000 5900 1.017 400 NFA12-1321 couplings 6000 5900 1.017 400 NFA12-1322

23

24

25 bolts 25000 25000 1.000 1000 26

27

28

29

30

31

32

33 34 35 36 37 38 39 40 41 42 43 44 Min Ratio (MR) = 1.00045

46

47

48

SB-247 A96061-T6 forging, wld

SA-193 B7 Bolts <= 2.5"

SB-210 A96061-T6 tube 0.025-0.500", wld

Material

SB-209 6061-T651 plate 0.25-5", wld

Tank

Page 5: Solid works model for the pressure vessel

1 Pipe and Shell ver 2.38 26-May-05 Page 5 of 162 ASME Code VIII Div I 2004 Edition No Addenda 3 <- Vessel4 <- Description5

6 Dimensions:7 16.000 <- Do - Outside Diameter8 0.375 <- t - Nominal Wall Thickness9 0.063 <- tminUG16(b) - Minimum Wall Thickness Per UG-16(b)11 44.190 <- Length for volume and weight12 0.000 <- Corr, Corrosion Allowance13

14 Material and Conditions:15 SB-209 6061-T651 <- Material16 5,900 <- S, Allowable Stress Level (psi)17 0.7 <- El - Longitudinal Efficiency (circ. stress)18 0.7 <- Ec - Circ. Connecting Efficiency (longitudinal stress)19 0.0% <- UTP, Undertolerance allowance (%) 4.67 <- Volume (cubic ft)20 0.000 <- UTI, Undertolerance allowance (inch) 76.9 <- Material Weight (lbs cs)21

22 100.6 <- P, Interior Pressure23 0.0 <- Pa, Exterior Pressure26

27 Variables:28 UT = t*UTP+UTI = 0.375*0+0 undertollerance UT = 0.00029 nt = t-Corr-UT = 0.375-0-0 nominal thick nt = 0.37530 Ri = Do/2-nt = 16/2-0.375 effective inside radius Ri = 7.62531 LDo = Le/Do = 0/16 LDo = 0.00032

33 Interior Pressure UG-27 (c) (1,2)34 ta = P*Ri/(S*El-0.6*P) = 100.65*7.625/(5900*0.7-0.6*100.65) ta = 0.18935 tb = P*Ri/(2*S*Ec+0.4*P) = 100.65*7.625/(2*5900*0.7+0.4*100.65) tb = 0.09236 tmin = Max(ta,tb,tminUG16b) <= t-Corr-UT Acceptable tmin = 0.18937 PMaxA = PMaxA = 197.338 PMaxB = PMaxB = 414.439 PMax = Min(PMaxA,PMaxB) Acceptable PMax = 197.340 tr1 = P*Ri/(S*1-0.6*P) = 100.65*7.625/(5900*1-0.6*100.65) tr1 = 0.1314151

(2*S*Ec*nt)/(Ri-0.4*nt) = (2*5900*0.7*0.375)/(7.625-0.4*0.375)

www.pveng.comTank

16" OD Shell

(S*El*nt)/(Ri+0.6*nt) = (5900*0.7*0.375)/(7.625+0.6*0.375)

Page 6: Solid works model for the pressure vessel

39 Heads ver 4.15 Ellipsoidal www.pveng.com 26-May-05 Page 6 of 1640 ASME Code VIII Div I 2004 Edition No Addenda NO Appendix 1-4(f)22 <- Vessel42 <- Desc43

44 Dimensions:45 16.000 <- Do, outside diameter50 3.829 <- h 4.17 <- ho51 0.375 <- tb, thickness before forming53 0.343 <- tf, thickness after forming54 0.063 <- tminUG16(b) - Min.t. Per UG-16(b)55 0.000 <- Corr, corrosion allowance56 1.750 <- Skirt, straight skirt length57

58 Material and Conditions:59 SB-209 6061-T651 <- material60 5,900 <- S, allowable stress level (psi)61 0.85 <- E, efficiency65 100.6 <- P, interior pressure66 0.0 <- Pa, exterior pressure69

70 Calculated Properties:71 22.168 <- Approximate blank diameter 0.46 <- Volume (cuft, includes skirt)72 13.7 <- Approximate weight for steel, (lbs) 12.25 <- Spherical Limit (0.8 * D)78

115 Variables:116 D = Do-2*t = 16-2*0.343 D = 15.31117 ho = h+t = 3.829+0.343 ho = 4.17118 D/2h = D/(2*h) UG-37 & Ap 1-4(c) = 15.314/(2*3.829) D/2h = 2.000119 Do/2ho = Do/(2*ho) UG-37 & Ap 1-4(c) = 16/(2*4.172) Do/2ho = 1.918120 K = Interpolated value from table 1-4.1 D/2h interior K = 1.000121 Kone = Interpolated value from table UG-37 D/2h spherical Kone = 0.900122 Kzero = Interpolated value from table UG-33.1 Do/2ho exterior Kzero = 0.863123 t = tf-corr = 0.343-0 t = 0.343127 Ro = Ko*Do UG-33(d) = 0.863*16 Ro = 13.808131

133 Interior Pressure App 1-4(a), App 1-4(c), UG-37(a)(1):135 App. 1-4(a) check: 0.0005 <= tf/(Kone*D) < 0.002 tf/(Kone*D) = 0.0249136 = 0.0005<=0.343/(0.9*15.314)<0.002 App. 1-4(f) calculation not needed139 TMinI = (P*D*K)/(2*S*E-0.2*P) <= t TMinI (min thickness) = 0.154140 = (100.65*15.314*1)/(2*5900*0.85-0.2*100.65) <= 0.343146 TMin = Max(Tminl,tminUG16(b))<=tf-corr Acceptable TMin = 0.154147 PMax = (2*S*E*t)/(K*D+0.2*t) >= P Acceptable PMax = 223.6148 = (2*5900*0.85*0.343)/(1*15.314+0.2*0.343) >= 101153

160 Interior Pressure for Nozzles App 1-4(a), App 1-4(c), UG-37(a)(1):161 TMinE1 = (P*D*K)/(2*S*1-0.2*P) <= t (Nozzle in Knuckle) TMinE1 = 0.131162 = (100.65*15.314*1)/(2*5900*1-0.2*100.65) <= 0.343163 TSpI = (P*D*Kone)/(2*S*E-0.2*P) (Nozzle in Crown) TSpI = 0.118164 = (100.65*15.314*0.9)/(2*5900*1-0.2*100.65)167

177 Head stress relief UCS-79(d), UNF-79(d), UHA-44(d)182 % elong = ((75*t)/h)*(1-0) = ((75*0.343)/3.829)*(1-0) % elong = 7.3184 20.0% <- Max Elongation185 Yes <- Cold Formed 7.3% <- Elongation Required no186 no <- Vessel carries lethal substances(Yes/no) no no187 no <- Impact testing is required (Yes/no) no no188 no <- Formed between 250 and 900 Degrees F no no189 no <- Greater than 10% reduction in thickness no no190 no <- Head is greater than 5/8" thick before forming no no191 Stress Relieve ? no

TankHeads

Page 7: Solid works model for the pressure vessel

28 Nozzle Reinforcement ver 3.81 UW16(c) <- SavedDesign 26-May-05 Page 7 of 1629 ASME Code VIII Div I 2004 Edition No Addenda Automatic dh - not hillside22 <- Vessel Automatic Limit Diameter31 <- Description Flat Plate32 Shell:33 SB-209 6061-T651 <- Shell Material34 5,900 <- Sv, shell allowable stress level, PSI35 1.00 <- Eone, efficiency of shell at nozzle36 0.343 <- Vt, shell wall thick, uncorroded, UT removed37 0.118 <- tr, required shell wall thickness int. press.(E=1)38 0.000 <- trE, required shell wall thickness ext. press.(E=1)40 0.063 <- tmin16b, Min allowed wall per UG-16(b)41 Nozzle:42 SB-210 6061-T6 <- Nozzle Material43 5,900 <- Sn, allowable stress level (Sn)45 1.00 <- E nozzle46 100.6 <- P, internal design pressure47 0.0 <- Pa, external design pressure48 3.500 <- Do, outside diameter51 0.216 <- Nt, wall thick, uncorroded52 12.5% <- UTp, undertolerance (%)55 2.000 <- L, exterior Projection58 Reinforcing:68 0.250 <- Leg41, size of weld fillet71 1.000 <- F84 Variables:85 UT = Nt*UTp = 0.216 * 0.125 Undertolerance UT = 0.02787 Rn = Do/2 - (Nt-nca) + UT = 3.5/2 - (0.216-0) + 0.027 Effective Radius Rn = 1.56192 t = Vt-sca = 0.343 - 0 Effective Shell Thickness t = 0.34398 tn = Nt-nca = 0.216-0 Avail. Nozzle Thick. No UT tn = 0.216101 d = Do-2*tn = 3.5 - 2*0.216 Opening Dia. d = 3.068107 fr1 = MIN(Sn/Sv,1) = MIN(5900/5900, 1) fr1 = 1.000110 fr2 = MIN(Sn/Sv,1) = MIN(5900/5900, 1) fr2 = 1.000126 tcLeg41 = Min(0.25,0.7*Min(0.75,tn,t)) = Min(0.25,0.7*Min(0.75,0.216,0.343)) tc41 = 0.151132 F = Min(Fenterered, 1) F = 1.000140 Pipe Required Wall Thickness - trn from internal, trnE from external pressure141 LDo = L/Do LDo = 0.571 Dot = Do/trnE Dot = 0.000142 trn = (P*Rn)/(Sn*E - 0.6*P) <= tn-UT = (100.6*1.561)/(5900*1 - 0.6*100.6) trn = 0.027 Acceptable143 trnR = (P*Rn)/(Sn*1 - 0.6*P) = (100.6*1.561)/(5900*1 - 0.6*100.6) E=1 trnR = 0.027144 trnE = (3*Do*Pa)/(4*B) <= tn-ut trnE = 0.000 Acceptable145 Geometry Constraints:146 0.7*Leg41 >= tc41 0.7*0.25 >= 0.151 0.175 >= 0.151 Acceptable201 Area Replacement: Fig UG-37.1 Pressure From: Internal External202 A = 0.5*d*tr*F + 1*tn*tr*F*(1-frone) A Required (internal) = 0.181203 = 0.5*3.068*0.118*1 + 1*0.216*0.118*1*(1-1)206 Ae = 0.5*(d*trE*1 + 2*tn*trE*1*(1-frone)) = 0.5*(3.068*0*1 + 2*0.216*0*1*(1-1)) A Required (external) = 0.000209 A1 = max(d, 2*(t+tn)) * (E1*t-F*tr)-2*tn*(E1*t-F*tr)*(1-fr1) A1 = 0.691210 = 213 A1e = max(d, 2*(t+tn)) * (Eone*t-F*trE)-2*tn*(Eone*t-F*trE)*(1-frone) A1e = 1.052214 = 219 A2 = min((tn-trnR)*fr2*Min(5*t,2*L) , (tn-trnR)*fr2*Min(5*tn,2*L)) A2 = 0.204220 = 224 A2e = min((tn-trnE)*frtwo*Min(5*t,2*L) , (tn-trnE)*frtwo*Min(5*tn,2*L)) A2e = 0.233225 = 234 A41 = Leg41^2*frTwo = 0.25^2*1 A41 = 0.063 0.063243 Actual Area = 0.958 1.348244 Acceptable Actual-Required = 0.777 1.348324

325 Tstd = Standard pipe wall thickness from chart Tstd = 0.216326 Swre = tr * Pa / P = 0.118 * 0 / 100.65 Req. Exterior pressure Swre = 0.000327 Nact = Nt * (1-UTp) = 0.216 * (1-0.125) Actual Wall Thick. Nact = 0.189328 Tt = 0.8/Nth = 0.8/0 Ug-31(c)(2) threads Tt = 0.000329 UG-45 Acceptable330 UG45 = Max(UG45a, UG45b) <= Nact = Max(0.027, 0.118) <= 0.189 UG45 = 0.118331 UG45a = Max(trn,trnE) + Nca + Tt = Max(0.027,0) + 0 + 0 UG45a = 0.027332 UB45b = Min(UG45b,UG45b4) 0.117761 UB45b = 0.118333 UG45b1 = Max(tr + Sca, Tmin16b + Sca) = Max(0.118 + 0, 0.063 + 0) UG45b1 = 0.118334 UG45b2 = Max(Swre + Sca,Tmin + Sca) = Max(0 + 0,0.063 + 0) UG45b2 = 335 UG45b3 = Max(UG45b1,UG45b2) = Max(0.118,) UG45b3 = 0.118336 UG45b4 = Tstd*0.875 + Nca = 0.216*0.875 + 0 UG45b4 = 0.189

= Min(0.118, 0.189)

min((0.216-0.027)*1*Min(5*0.343,2*2) , (0.216-0.027)*1*Min(5*0.216,2*2))

min((0.216-0)*1*Min(5*0.343,2*2) , (0.216-0)*1*Min(5*0.216,2*2))

max(3.068, 2*(0.343+0.216)) * (1*0.343-1*0.118)-2*0.216*(1*0.343-1*0.118)*(1-1)

max(3.068, 2*(0.343+0.216)) * (1*0.343-1*0)-2*0.216*(1*0.343-1*0)*(1-1)

TankNozzle A & B - 3" SCH 40

= (3*3.5*0)/(4*1)

www.pveng.com

UW-16.1 (c)

Leg41

Noz

zle

Shell

Leg41t

Nt

Vt

Do

Page 8: Solid works model for the pressure vessel

18 Flanges ver 2.38 www.pveng.com 26-May-05 Page 8 of 1619

20 <- Vessel21 <- Description22

23 Dimensions and Conditions:24 7.500 <- A - flange OD25 3.500 <- B - ID, uncorroded31 1.750 <- t, flange thickness32 0.216 <- tn, nozzle wall thickness34 0.027 <- treq - required nozzle wall43 0.000 <- Corr - corrosion allowance44 100.6 <- P, internal operating pressure

0.0 <- Pe, external operating pressure46

47 5.000 <- GOD - gasket OD48 3.500 <- GID - gasket ID49 0.50 <- m - gasket factor50 0 <- gy - gasket factor y51

52 6.000 <- varC - bolt circle dia53 0.625 <- BoltOD, bolt size54 4.0 <- Nbolt, number of bolts55 0.250 <- Leg157 0.216 <- Leg361 0.216 <- Setback63

64 Material Properties:65 SB-209 6061-T651 <- Flange Material 66 5,900 <- Sf - allowable flange stress at DESIGN temp.67 5,900 <- Sfa - Allowable Flange Stress at ASSEMBLY temp.72 SA-193 B7 <- Bolting Material 73 25,000 <- Sb - allowable bolt stress at DESIGN temp74 25,000 <- Sba - allowable bolt stress at ASSEMBLY temp75

76 Geometry Constraints:81 tx = max(1/4,2*treq) = max(1/4,2*0.027) tx = 0.25085 WeldC = min(0.25,min(tn,tx)) = min(0.25,min(0.216,0.25)) WeldC = 0.21689 Min Throat = 0.7*WeldC = 0.7*0.216 mtc = 0.15190 Throat Leg 1 = 0.7*Leg1 >= mtc = 0.7*0.25 >= 0.151 Acceptable tL1 = 0.17592 Throat Leg 3 = 0.7*Leg3 >= mtc = 0.7*0.216 >= 0.151 Acceptable tL3 = 0.15196 Max Setback = WeldC + 1/4 = 0.216 + 0.25 Acceptable mSet = 0.46697 Std nut width across corners NutG = 1.08398 Nut Clearance = varC/2-B/2-Leg1-NutG/2 > 0 Nut Clearance = 0.458599 = 6/2-3.5/2-0.25-1.083/2 Acceptable111 Calculated Dimensions:122 B = B+2*corr = 3.5+2*0 Corroded ID B = 3.500130 varN = (GOD-GID)/2 = (5-3.5)/2 Gasket Width in Contact varN = 0.750131 b0 = varN / 2 = 0.75 / 2 gasket seating width b0 = 0.375132 varb = min(Sqrt(b0)/2,b0) = min(Sqrt(0.375)/2,0.375) eff seating width varb = 0.306133 varG = max(GOD-2*varb,(GOD-GID)/2 + GID) gasket load reaction diameter varG = 4.388134 = max(5-2*0.306,(5-3.5)/2 + 3.5)145

146 Bolt Loads (VIII App 2-5):147 H = 0.785*varG^2*P = 0.785*4.388^2*100.65 end load H = 1,521148 He = 0.785*varG^2*Pe = 0.785*4.388^2*0 end load external pressure He = 0149 HP = 2*varb*3.14*varG*m*P contact load HP = 425154 HD = pi/4 * B^2 * P = pi/4 * 3.5^2 * 100.65 end load HD = 968155 HDe = pi/4 * B^2 * Pe = pi/4 * 3.5^2 * 0 end load external pressure HDe = 0158 HT = H - HD = 1521 - 968 face load HT = 553159 HTe = He - Hde = 0 - 0 HTe = 0161 Wm1 = H + HP = 1521 + 425 bolt load Wm1 = 1,946162 Wm2 = pi*varb*varG*gy = pi*0.306*4.388*0 seating load Wm2 = 0167 Am = max(Wm1/Sb, Wm2/Sa) req bolt area Am = 0.078168 Ab = Root*Nbolt = 0.208*4 5/8-11 UNC 2A Acceptable Ab = 0.832169 excess = Ab-Am = 0.832-0.078 Excess bolt area excess = 0.754

ASME VIII div 1 2004 Edition No Addenda

TankInlet and Outlet Flanges A&B

= 2*0.306*3.14*4.388*0.5*100.65

= max(1946/25000, 0/25000)

Leg3Leg1

1

3

Page 9: Solid works model for the pressure vessel

173 26-May-05 Page 9 of 16174

175 Flange Loads - lbs - (app 2-5):176 W = (Am + Ab)*Sba/2 = (0.078 + 0.832)*25000/2 seating conditions W = 11,373177 HG = Wm1 - H = 1946 - 1521 operating conditions HG = 425179 Flange Moment Arms - inch - (Table App 2-6 - loose flanges):195 mhD = (varC-B)/2 = (6-3.5)/2 end pressure mhD = 1.250196 mhT = (mhD+mhG)/2 = (1.25+0.806)/2 face pressure mhT = 1.028197 mhG = (varC-varG)/2 = (6-4.388)/2 gasket load mhG = 0.806198205

206 Flange Moments - inch*lbs - (App 2-6):207 MD = HD * mhD = 968 * 1.25 end pressure MD = 1,210208 MT = HT * mhT = 553 * 1.028 face pressure MT = 568209 MG = HG * mhG = 425 * 0.806 gasket load MG = 342214 Mo1i = MD+MT+MG = 1210 + 568 + 342 total operating Mo1i = 2,121215 Mo1e = Hde*(mhD-mhG)+Hte*(mhT-mhG) total operating external pressure Mo1e = 0.000216 = 0*(1.25-0.806)+0*(1.028-0.806)217 Mo1 = Max(Mo1i,Mo1e) = Max(2120.949,0) Mo1 = 2,121219 Mo2 = W*(varC-varG)/2 = 11373*(6-4.388)/2 total seating Mo2 = 9,169220240

242 Graph app 2-7.1 Value of Y255 K = A/B = 7.5/3.5 K = 2.143260 Y = (1/(K-1))*(0.66845+5.71690*(K^2*Log(K))/(K^2-1)) Figure 2.7-1 Y = 2.702283

284 Flange Seating Stress (app 2-7):302 STs = Y*ABS(Mo2) / (t^2*B) = 2.702*ABS(9169) / (1.75^2*3.5) STs = 2,311305 SBs = Wm2 / Ab = 0 / 0.832 SBs = 0308

309 Flange Operating Stress (app 2-7):321 STo = y*ABS(Mo1) / (t^2*B) = 2.702*ABS(2121) / (1.75^2*3.5) STo = 535325 SBo = Wm1 / Ab = 1946 / 0.832 SBo = 2,338328

329 Allowed Stress (App2-8): Seating Allowed Operating Allowed334 ST <= Sfa or Sf 2,311 5,900 535 5,900 Tan Flange Acceptable336 SB <= Sba or Sb 0 25,000 2,338 25,000 Bolting Acceptable337

350

351

352

Tank Inlet and Outlet Flanges A&B

Page 10: Solid works model for the pressure vessel

15 Coupling ver 2.11 UW16.2L 26-May-05 Page 10 of 1616 ASME Code VIII Div I 2004 Edition No Addenda www.pveng.com

22 <- Vessel18 <- Description19

20 Shell:21 SB-210 6061-T6 <- Shell material22 5,900 <- Sv, Allowable Stress Level (psi)23 0.216 <- t, Shell Wall Thick (inch)24 0.027 <- tMin, Min Required Wall at E=1 (inch)25 0.000 <- Corr, Corrosion Allowance (inch)26 0.540 <- D, Shell Opening Diameter (inch)27 1.561 <- ID, Shell Inside Diameter (inch)28 100.6 <- P,design Pressure (psi)29

30 Coupling:31 1/4 inch 3000# <- Coupling32 SB-247 6061-T6 <- Coupling Material33 5,900 <- Sn, Allowable Stress Level (Sn)35 0.2500 <- F1, Weld Size37 0.063 <- tmin16b, Min allowed wall per UG-16(b) 38 0.000 <- Corrc, Coupling Corrosion Allowance (inch)39 0.750 <- COD - Coupling OD40 0.540 <- POD - Pipe OD42 18.000 <- n, Treads Per Inch44 0.119 <- pt, Corresponding sch160 Wall Thickness (inch)45 0.088 <- tstd, Standard Pipe Wall Thickness (inch)46 12.5% <- UT, Under Tolerence (%)47

48 Geometry Restrictions UW-16 (f)(3)(a)(1),(2),(3)56 t1 = 0.7*F1 = 0.7*0.25 t1 = 0.17557 UW-16(f)(3)(a)(3) t1 req = Max(trn,ug45) <= t1 = Max(0.004,0.063) < 0.175 Acceptable70 UW-16(f)(3)(a) POD <= 3.5 = 0.54 <= 3.5 Acceptable71 UW-16(f)(3)(a)(1) t <= 0.375 = 0.216 <= 0.375 Acceptable72 UW-16(f)(3)(a)(2) D <= POD + 0.75 = 0.54 <= 0.54 + 0.75 Acceptable73 UW-16(f)(3)(a)(2) D <= ID/2 = 0.54 <= 1.561/2 Acceptable74

75 Required Coupling Wall Thickness UG-44(c), B16.11 - 2.1.1 and UG-31(c)(2)76 Ro = POD/2-0.8/n = 0.54/2-0.8/18 Ro = 0.22677 tp = (1-UT)*pt-Corrc-0.8/n = (1-0.125)*0.119-0-0.8/18 tp = 0.06078 Min Thick = P*Ro/(Sn*1+0.4*P) = 101*0.226/(5900*1+0.4*100.65) trn = 0.00479 Acceptable80 Pressure Weld Stress UW-18(d) - Pressure Load only UW-16(f)(3)(a)(3)(b)81 Load = COD^2*(PI()/4)*P = 0.75^2*(PI()/4)*100.65 Load = 4482 Weld Area = pi()*((COD+F1)^2-COD^2)/4 Weld Area = 0.34483 = pi()*((0.75+0.25)^2-0.75^2)/488 Max Stress = Min(Sn,Sv) * 0.55 = Min(5900,5900) * 0.55 Max Stress = 324589 Weld Stress = Load / Area = 44 / 0.344 Weld Stress = 12990 Acceptable95 UG-4596 Tstd = Standard pipe wall thickness from chart Tstd = 0.08897 Nact = Pt * (1-UT) Actual Wall Thick. Nact = 0.10498 Tt = 0.8/n Ug-31(c)(2) threads Tt = 0.04499 UG45 = Max(UG45a, UG45b) <= Nact UG45 = 0.063100 = Max(0.048, 0.063) <= 0.104 Acceptable101 UG45a = trn + corrc + Tt UG45a = 0.048102 0.004 + 0 + 0.044103 UB45b = Min(UG45b1, UG45b4) UB45b = 0.063104 = Min(0.063, 0.077)105 UG45b1 = Max(tmin+ CORRC, Tmin16b + CORRC) UG45b1 = 0.063106 = Max(0.027 + 0, 0.063 + 0)107 UG45b4 = Tstd*0.875 + corrc = 0.088*0.875 + 0 UG45b4 = 0.077108

109

TankCoupling D

UW-16.2 (L)

Outside

Inside Vessel

F1

D

PODCOD

tt1

Page 11: Solid works model for the pressure vessel

15 Coupling ver 2.11 UW16.2L 26-May-05 Page 11 of 1616 ASME Code VIII Div I 2004 Edition No Addenda www.pveng.com

22 <- Vessel18 <- Description19

20 Shell:21 SB-209 6061-T651 <- Shell material22 5,900 <- Sv, Allowable Stress Level (psi)23 0.375 <- t, Shell Wall Thick (inch)24 0.131 <- tMin, Min Required Wall at E=1 (inch)25 0.000 <- Corr, Corrosion Allowance (inch)26 1.500 <- D, Shell Opening Diameter (inch)27 15.250 <- ID, Shell Inside Diameter (inch)28 100.6 <- P,design Pressure (psi)29

30 Coupling:31 3/4 inch 3000# <- Coupling32 SB-247 6061-T6 <- Coupling Material33 5,900 <- Sn, Allowable Stress Level (Sn)35 0.2500 <- F1, Weld Size37 0.063 <- tmin16b, Min allowed wall per UG-16(b) 38 0.000 <- Corrc, Coupling Corrosion Allowance (inch)39 1.380 <- COD - Coupling OD40 1.050 <- POD - Pipe OD42 14.000 <- n, Treads Per Inch44 0.219 <- pt, Corresponding sch160 Wall Thickness (inch)45 0.113 <- tstd, Standard Pipe Wall Thickness (inch)46 12.5% <- UT, Under Tolerence (%)47

48 Geometry Restrictions UW-16 (f)(3)(a)(1),(2),(3)56 t1 = 0.7*F1 = 0.7*0.25 t1 = 0.17557 UW-16(f)(3)(a)(3) t1 req = Max(trn,ug45) <= t1 = Max(0.008,0.099) < 0.175 Acceptable70 UW-16(f)(3)(a) POD <= 3.5 = 1.05 <= 3.5 Acceptable71 UW-16(f)(3)(a)(1) t <= 0.375 = 0.375 <= 0.375 Acceptable72 UW-16(f)(3)(a)(2) D <= POD + 0.75 = 1.5 <= 1.05 + 0.75 Acceptable73 UW-16(f)(3)(a)(2) D <= ID/2 = 1.5 <= 15.25/2 Acceptable74

75 Required Coupling Wall Thickness UG-44(c), B16.11 - 2.1.1 and UG-31(c)(2)76 Ro = POD/2-0.8/n = 1.05/2-0.8/14 Ro = 0.46877 tp = (1-UT)*pt-Corrc-0.8/n = (1-0.125)*0.219-0-0.8/14 tp = 0.13478 Min Thick = P*Ro/(Sn*1+0.4*P) = 101*0.468/(5900*1+0.4*100.65) trn = 0.00879 Acceptable80 Pressure Weld Stress UW-18(d) - Pressure Load only UW-16(f)(3)(a)(3)(b)81 Load = COD^2*(PI()/4)*P = 1.38^2*(PI()/4)*100.65 Load = 15182 Weld Area = pi()*((COD+F1)^2-COD^2)/4 Weld Area = 0.59183 = pi()*((1.38+0.25)^2-1.38^2)/488 Max Stress = Min(Sn,Sv) * 0.55 = Min(5900,5900) * 0.55 Max Stress = 324589 Weld Stress = Load / Area = 151 / 0.591 Weld Stress = 25590 Acceptable95 UG-4596 Tstd = Standard pipe wall thickness from chart Tstd = 0.11397 Nact = Pt * (1-UT) Actual Wall Thick. Nact = 0.19298 Tt = 0.8/n Ug-31(c)(2) threads Tt = 0.05799 UG45 = Max(UG45a, UG45b) <= Nact UG45 = 0.099100 = Max(0.065, 0.099) <= 0.192 Acceptable101 UG45a = trn + corrc + Tt UG45a = 0.065102 0.008 + 0 + 0.057103 UB45b = Min(UG45b1, UG45b4) UB45b = 0.099104 = Min(0.131, 0.099)105 UG45b1 = Max(tmin+ CORRC, Tmin16b + CORRC) UG45b1 = 0.131106 = Max(0.131 + 0, 0.063 + 0)107 UG45b4 = Tstd*0.875 + corrc = 0.113*0.875 + 0 UG45b4 = 0.099108

109

Coupling E In ShellTank

UW-16.2 (L)

Outside

Inside Vessel

F1

D

PODCOD

tt1

Page 12: Solid works model for the pressure vessel

14 Appendix Y Flange ver 2.02 cl1-cat3 26-May-05 Page 12 of 1615 ASME VIII Division I 2004 Edition No Addenda16 www.pveng.com17 <- Vessel18 <- Description19

20 Dimensions:21 20.000 <- A - Flange OD22 16.000 <- B - Flange ID25 1.250 <- t or tIL26 0.000 <- ts - thickness of spacer39 0.000 <- Corr - Corrosion Allowance40 100.6 <- P, Operating Pressure42

43 18.500 <- C - Bolt Circle Dia44 0.625 <- Bolt Size45 0.750 <- D - Bolt Hole Size46 0.207 <- Root - Bolt Root Area47 24.000 <- Number of bolts4849

50 17.300 <- GOD - Gasket OD51 16.700 <- GID - Gasket ID52

53 Material Properties (no cast iron materials):54 SB-209 6061-T651 <- Flange Material 55 5,900 <- Sf - Allowable Flange Stress56 9,600,000 <- Ef - Flange Modulus (also EI)

60 SA-193 B7 <- Bolting Material 61 25,000 <- Sa - Allowable Bolt Stress at Atmospheric Temp62 25,000 <- Sb - Allowable Bolt Stress at Design Temp63 29,000,000 <- Eb - Bolting Modulus68

69 Calculated Dimensions:72 Corroded flange ID [Bcorr] = B + 2*Corr = 16.00073 Gasket Load Reaction Diameter [G] = (GOD+GID)/2 = 17.00077 Shape Factor [aS] = (A + C)/(2*B1) = 1.20378 B1 = B (loose flange) [BOne] = B = 16.00084

85 Flange Moment Arms : inch86 gasket load hG = (C-G)/2 = ( 18.5 - 17)/2 = 0.75087 face pressure hT = (hD + hG)/2 = (1.25 + 0.75)/2 = 1.00088 end pressure hD = (C-B)/2 = (18.5-16)/2 = 1.25099

Body FlangeTank

CA

BG

tt

App. Y Class 1 Flange

Page 13: Solid works model for the pressure vessel

101 Appendix Y Flange ver 2.02 26-May-05 Page 13 of 16102 Flange Loads :103 end load HD = 0.785 * B^2 * P = 0.785 * 16^2 * 100.64965 = 20,227106 end load H = 0.785*G^2*P = 0.785 * 17^2 * 100.64965 = 22,834107 face load HT = H - Hd = 22834 - 20227 = 2,607108

109 Flange Moments (inch -lb) (app 2-6): inch*lbs111 end pressure MD = HD * hD = 20226.554 * 1.25 = 25283112 face pressure MT = HT * hT = 2607.329 * 1 = 2607113 gasket load MG = HG * hG = 0 * 0.75 = 0114 total operating MP = MD + MT + MG = 25283 + 2607 + 0 = 27891116

117 Variables118 Hg = 0 = 0.000120 re = Ef/Eb = 9600000/29000000 = 3.021121 hCmax = (A-varC)/2 = (20-18.5)/2 = 0.750129 l = 2*t+ts+0.5*boltod = 2*1.25+0+0.5*0.625 = 2.813135 F' = 0 0 = 0.000144 Ab = Root*n = 0.207 * 24 = 4.970145

146 C Factors147 hC = hCmax = (20-18.5)/2 = 0.750148 Beta = (varC+ BOne)/(2*BOne) = (18.5+ 16)/(2*16) = 1.078149 AR = (n*D)/(Pi()*varC) = (24*0.75)/(Pi()*18.5) = 0.310150 rB = (1/n)*(4/(sqrt(1-AR^2))*atan(sqrt((1+AR)/(1-AR)))-Pi()-2*AR) = 0.009151 = (1/24)*(4/(sqrt(1-0.31^2)*atan(sqrt((1+0.31)/(1-0.31))-Pi()-2*0.31)152 Js = (1/BOne)*(2*hD/Beta+hC/aS)+Pi()*rB = 0.211153 = (1/16)*(2*1.25/1.078+0.75/1.203)+Pi()*0.009154 Jp = (1/BOne)*(smallhD/Beta+hC/aS)+Pi()*rB = 0.138155 = (1/16)*(2*1.25/1.078+0.75/1.203)+Pi()*0.009177 Ms = (Jp*Fp*Mp)/(t^3+Js*Fp) Ms = 0178 = (0.138*0*27890.521)/(1.25^3+0.211*0)179 EThetaB = 5.46/(pi()*t^3)*(Js*Ms+Jp*Mp) EThetaB = 3,433180 = 5.46/(pi()*1.25^3)*(0.211*0+0*27891)181 HC = (Mp + Ms)/hc = (27891 + 0)/0.75 HC = 37,187184 Wm1 = H + Hg + Hc = 22834 + 0 + 37187 Wm1 = 60,021185 SigmaB = Wm1/Ab =60021/4.97 Acceptable SigmaB = 12,078186 Si = SigmaB-(1.159*hC^2*(Mp+Ms))/(aS*t^3*l*re*BOne) Acceptable Si = 12,021187 = 12078-(1.159*0.75^2*(27891+0))/(1*1.25^3*2.813*3.021*16)188 Sr = (6*(Mp + Ms))/(t^2*(Pi()*varC-n*D)) Acceptable Sr = 2,670189 = (6*(27891 + 0))/(1.25^2*(Pi()*18.5-24*0.75))194 Sr = 0 Acceptable Sr = 0199 St = t*EThetaB/BOne =1.25*3433/16 Acceptable St = 268204 Sh = 0 Acceptable Sh = 0

Page 14: Solid works model for the pressure vessel

Vessel Weight and Volume ver. 1.1 26-May-05 Page 14 of 16www.pveng.com

<- Vessel

Volume:1.00 <- Fluid Specific Gravity0.46 <- Head each (cuft) 0.92 2 heads4.93 <- Shell (cuft) 4.93

======5.85 <- cuft

36.45 <- Imp Gallons43.77 <- US Gallons

365 <- fluid wt 365

Construction:14 <- Head (ea, lbs) 27.4 2 heads77 <- Shell 76.9

200 <- Misc 200 =======

304 <- lbs 304 ======

Total 669 lbs

Tank

Page 15: Solid works model for the pressure vessel

1 Zick Analysis - Unstiffened Vessel ver 1.03 26-May-05 Page 15 of 162 L.P. Zick - 19513

4 <- Vessel5 <- Description6

7 44.000 <- L - Length (inch)8 8.000 <- R - Radius of Shell (inch)9 6.500 <- H - depth of Head10 120.000 <- Theta - Saddle Contact Angleº11 0.375 <- b - Saddle Width (inch)12 7.000 <- A - Overhang (inch)13 0.375 <- ts - Nominal Shell Thickness (inch)14 0.343 <- th - Nominal Head Thickness (inch)15

16 335 <- Q, Load on one saddle (lbs)17 101 <- P, Design Pressure, (psi)18 SB-209 6061-T651 <- Shell Material19 5,900 <- Sa, Allowable Shell Stress (psi)20 32,000 <- Sy, Yield Point (psi)21 9,830 <- Comp Limit for Shell, psi22 0.70 <- E, Circ Joint Efficiency23

24 K Factors - From Charts25 K1 = 0.335 K4 = 0.880 K5 = 0.401 K7 = 0.76026 K2 = 1.171 K3 = 0.319 K6 = 0.044 K8 = 0.60327

28 Stress - Longitudinal Bending - Tension29 S1a top saddle = ((Q*A)(K1*Rvar^2*ts))*(*(1-(1-A/L+(Rvar^2-H^2)/(2*A*L))/(1+(4*H)/(3*L)))) S1a = 7830 = (334.5*7/(0.335*8^2*0.375))*(1-(1-7/44+(8^2-6.5^2)/(2*7*44)/(1+(4*6.5)/(3*44)31 S1b bot. saddle = ((Q*A)(K8*Rvar^2*ts))*(*(1-(1-A/L+(Rvar^2-H^2)/(2*A*L))/(1+(4*H)/(3*L)))) S1b = 4332 = (334.5*7/(0.603*8^2*0.375))*(1-(1-7/44+(8^2-6.5^2)/(2*7*44)/(1+(4*6.5)/(3*44)33 S1c midspan = ((Q*L/4)/(Pi()*Rvar^2*ts))*(1+(2*(Rvar^2-H^2)/L^2/(1+(4*H)/(3*L))-(4*A/L)) S1c = 1934 = ((334.5*44/4)/(3.14*8^2*0.375))*(1+(2*(8^2-6.5^2)/44^2/(1+(4*6.5)/(3*44))-(4*7/44))35 S1max = Max(S1a, S1b, S1c) = Max(78, 43, 19) S1max = 7836 S1from Press. = P*R/(2*ts) = 100.64965*8/(2*0.375) S1p = 1,07437 S1total = S1max + S1p = 78 + 1074 S1total = 1,15238 S1Limit = Sa * E = 5900 * 0.7 S1Limit = 4,13039 Acceptable40 Stress - Longitudinal Bending - Compression41 A = 0.125/(R/t) = 0.125/(8/0.375) A = 0.0058642 Max Comp = max(S1b, S1c) = Max(43, 19) Max Comp = 4343 Comp Limit = 9,83044 Acceptable45 Stress - Tangential Shear - Shell46 S2a in Shell = ((K2*Q)/(R*ts))*((L-2*A)/(L+4/3*H) S2a = 7447 = ((1.171*334.5)/(8*0.375))*((44-2*7/(44+4/3*6.5)48 S2b in Shell = ((K3*Q)/(R*ts))*((L-2*A)/(L+4/3*H) S2b = 2049 = ((0.319*334.5)/(8*0.375))*((44-2*7/(44+4/3*6.5)50 S2c in Shell = (K4*Q)/(R*ts) = (0.88*334.5)/(8*0.375) S2c = 9851 S2d in Head = (K4*Q)/(R*th) = (0.88*334.5)/(8*0.343) S2d = 10752 S2e (A>R/2) = max(S2a, S2b) = max(74, 20) S2e = 7453 S2f (A<=R/2) = max(S2c, S2d) = max(98, 107) S2f = 10754 S2 = Use S2e S2 = 7455 S2 limit = 0.8*Sa = 0.8*5900 S2 limit = 4,72056 Acceptable

www.pveng.com

TankSaddle

b

Page 16: Solid works model for the pressure vessel

60 Tank Saddle 26-May-05 Page 16 of 1661

67 Stress - Circumferential Bending - Saddle Horn68 S4a (L >= 8R) = (Q/(4*ts*(b+1.56*sqrt(R*ts))))-((3*K6*Q)/(2*ts^2)) S4a = 8469 = (334.5/(4*0.375*(0.375+1.56*sqrt(8*0.375))))-((3*0.044*334.5)/(2*0.375^2))70 S4b (L < 8R) = (Q/(4*ts*(b+1.56*sqrt(R*ts))))-((12*K6*Q*Rvar)/(2*L*ts^2)) S4b = 4271 = (334.5/(4*0.375*(0.375+1.56*sqrt(8*0.375))))-((12*0.044*334.5*8)/(2*44*0.375^2))72 S4 = Use S4b S4 = 4273 S4 limit = 1.5*Sa = 1.5*5900 S4 limit = 8,85074 Acceptable75 Stress - Circumferential Bending - Bottom of Shell76 S5 = Q*K7/(ts*(b+1.56*sqrt(R*ts))) S5 = 22077 = (334.5*0.76)/(0.375*(0.375+1.56*SQRT(8*0.375)))78 S5 limit = 0.5*Sy = 0.5*Sy S5 limit = 16,00079 Acceptable80

81