solid state properties chapter 4. amorphous glassy semi-crystalline elastomeric polyisoprene t g =...

46
Solid State Properties Chapter 4

Upload: luke-williams

Post on 28-Dec-2015

219 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Solid State Properties Chapter 4. Amorphous Glassy Semi-Crystalline Elastomeric Polyisoprene T g = -73 °C Polybutadiene, T g = -85 °C Polychloroprene,

Solid State Properties

Chapter 4

Page 2: Solid State Properties Chapter 4. Amorphous Glassy Semi-Crystalline Elastomeric Polyisoprene T g = -73 °C Polybutadiene, T g = -85 °C Polychloroprene,

AmorphousGlassy

Semi-CrystallineElastomericPolyisoprene Tg = -73 °CPolybutadiene, Tg = -85 °CPolychloroprene, Tg = -50 °CPolyisobutylene, Tg = -70 °C

Viscous Liquid

Polymer Phases

Polystyrene Tg = 100 °CPolymethyl methacrylate, Tg = 105 °C

Nylon 6,6, Tg = 50 °C; Tm = 265 °CPoly ethylene terephthalate, Tg = 65 °C; Tm =270 °C

Polydimethylsiloxane Tg = -123°C; Tm = -40 °C

Page 3: Solid State Properties Chapter 4. Amorphous Glassy Semi-Crystalline Elastomeric Polyisoprene T g = -73 °C Polybutadiene, T g = -85 °C Polychloroprene,

Glass-rubber-liquid

• Amorphous plastics have a complex thermal profile with 3 typical states:

Log(stiffness)Pa

Temperature

3

9

6

7

8

4

5

Glass phase (hard plastic)

Rubber phase (elastomer)

Liquid

Leathery phase

Polystyrene

Tg

Tygon (plasticized PVC)

PDMS

polyisobutylene

Page 4: Solid State Properties Chapter 4. Amorphous Glassy Semi-Crystalline Elastomeric Polyisoprene T g = -73 °C Polybutadiene, T g = -85 °C Polychloroprene,

Phase diagram for semi-crystalline polymer

Page 5: Solid State Properties Chapter 4. Amorphous Glassy Semi-Crystalline Elastomeric Polyisoprene T g = -73 °C Polybutadiene, T g = -85 °C Polychloroprene,

Temperature

Tg Tm Tb

Vol

ume

Glassy Solid

Crystalline Solid

Glassy SolidsPolystyrene Tg 100 °CPMMA Tg 105 °CPolycarbonate Tg 145 °CRubber Tg -73 °C

Crystalline SolidsPolyethylene Tm 140 °CPolypropylene Tm 160 °CNylon 6,6 Tm 270 °C

Polymers don’t exist in gas state; RT for boiling is higher than bond energies

Liquid

LiquidsInjection molding & extrusionPolydimethylsiloxane Tm -40 °C

Polymer Phases

Page 6: Solid State Properties Chapter 4. Amorphous Glassy Semi-Crystalline Elastomeric Polyisoprene T g = -73 °C Polybutadiene, T g = -85 °C Polychloroprene,
Page 7: Solid State Properties Chapter 4. Amorphous Glassy Semi-Crystalline Elastomeric Polyisoprene T g = -73 °C Polybutadiene, T g = -85 °C Polychloroprene,

Differential Scanning Calorimetry (DSC)

Page 8: Solid State Properties Chapter 4. Amorphous Glassy Semi-Crystalline Elastomeric Polyisoprene T g = -73 °C Polybutadiene, T g = -85 °C Polychloroprene,

Modulus versus temperature

Page 9: Solid State Properties Chapter 4. Amorphous Glassy Semi-Crystalline Elastomeric Polyisoprene T g = -73 °C Polybutadiene, T g = -85 °C Polychloroprene,

Viscous Response of Newtonian Liquids

AF

s =σ

A

A

y

Fx

tx

v

=

There is a velocity gradient (v/y) normal to the area. The viscosity relates the shear stress, σs, to the velocity gradient.

ytx

yv

s

σ ==

The viscosity can thus be seen to relate the shear stress to the shear rate:

γγ

σ &====tty

xyt

xs

ΔΔΔ

The top plane moves at a constant velocity, v, in response to a shear stress:

v

has S.I. units of Pa s.

The shear strain increases by a constant amount over a time interval, allowing us to define a strain rate:

γ =& Units of s-1

Page 10: Solid State Properties Chapter 4. Amorphous Glassy Semi-Crystalline Elastomeric Polyisoprene T g = -73 °C Polybutadiene, T g = -85 °C Polychloroprene,

Measuring viscosities

Requires standards10-100,000 cP

1 pascal second = 10 poise = 1,000 millipascal second

Page 11: Solid State Properties Chapter 4. Amorphous Glassy Semi-Crystalline Elastomeric Polyisoprene T g = -73 °C Polybutadiene, T g = -85 °C Polychloroprene,
Page 12: Solid State Properties Chapter 4. Amorphous Glassy Semi-Crystalline Elastomeric Polyisoprene T g = -73 °C Polybutadiene, T g = -85 °C Polychloroprene,

Viscosity of Polymer Melts

Poly(butylene terephthalate) at 285 ºC

For comparison: for water is 10-3 Pa s at room temperature.

Shear thinning behaviour

Page 13: Solid State Properties Chapter 4. Amorphous Glassy Semi-Crystalline Elastomeric Polyisoprene T g = -73 °C Polybutadiene, T g = -85 °C Polychloroprene,

Scaling of Viscosity: ~ N3.4

~ TGP

~ N3.4 N0 ~ N3.4

Universal behaviour for linear polymer melts

Applies for higher N: N>NC

Why?Data shifted

for clarity!

G.Strobl, The Physics of Polymers, p. 221

3.4

Viscosity is shear-strain rate dependent. Usually measure in the limit of a low shear rate: o

Page 14: Solid State Properties Chapter 4. Amorphous Glassy Semi-Crystalline Elastomeric Polyisoprene T g = -73 °C Polybutadiene, T g = -85 °C Polychloroprene,

Concept of “Chain” Entanglements If the molecules are sufficient long (N >100 - corresponding to the entanglement mol. wt., Me), they will entangle with each other.

Each molecule is confined within a dynamic “tube”.

Tube G.Strobl, The Physics of Polymers, p. 283

Page 15: Solid State Properties Chapter 4. Amorphous Glassy Semi-Crystalline Elastomeric Polyisoprene T g = -73 °C Polybutadiene, T g = -85 °C Polychloroprene,

Network of Entanglements

There is a direct analogy between chemical crosslinks in rubbers and “physical” crosslinks that are created by the entanglements.

The physical entanglements can support stress (for short periods up to a time T), creating a “transient” network.

Page 16: Solid State Properties Chapter 4. Amorphous Glassy Semi-Crystalline Elastomeric Polyisoprene T g = -73 °C Polybutadiene, T g = -85 °C Polychloroprene,
Page 17: Solid State Properties Chapter 4. Amorphous Glassy Semi-Crystalline Elastomeric Polyisoprene T g = -73 °C Polybutadiene, T g = -85 °C Polychloroprene,

An Analogy!

There are obvious similarities between a collection of snakes and the entangled polymer chains in a melt.

The source of continual motion on the molecular level is thermal energy, of course.

Page 18: Solid State Properties Chapter 4. Amorphous Glassy Semi-Crystalline Elastomeric Polyisoprene T g = -73 °C Polybutadiene, T g = -85 °C Polychloroprene,

“Memory” of Previous State

Poly(styrene)

Tg ~ 100 °C

Page 19: Solid State Properties Chapter 4. Amorphous Glassy Semi-Crystalline Elastomeric Polyisoprene T g = -73 °C Polybutadiene, T g = -85 °C Polychloroprene,

Development of Reptation Scaling Theory

Sir Sam Edwards (Cambridge) devised tube models and predictions of the shear relaxation modulus.

In 1991, de Gennes was awarded the Nobel Prize for Physics.

Pierre de Gennes (Paris) developed the concept of polymer reptation and derived scaling relationships.

Page 20: Solid State Properties Chapter 4. Amorphous Glassy Semi-Crystalline Elastomeric Polyisoprene T g = -73 °C Polybutadiene, T g = -85 °C Polychloroprene,

There once was a theorist from Francewho wondered how molecules dance.“They’re like snakes,” he observed, “As they follow a curve, the large onesCan hardly advance.”

D ~ M -2

P.G. de GennesScaling Concepts in Polymer Physics

Cornell University Press, 1979

de Gennes

Page 21: Solid State Properties Chapter 4. Amorphous Glassy Semi-Crystalline Elastomeric Polyisoprene T g = -73 °C Polybutadiene, T g = -85 °C Polychloroprene,

Entanglement Molecular Weights, Me, for Various Polymers

Poly(ethylene) 1,250

Poly(butadiene) 1,700

Poly(vinyl acetate) 6,900

Poly(dimethyl siloxane) 8,100

Poly(styrene) 19,000

Me (g/mole)

Page 22: Solid State Properties Chapter 4. Amorphous Glassy Semi-Crystalline Elastomeric Polyisoprene T g = -73 °C Polybutadiene, T g = -85 °C Polychloroprene,

Amorphous Glasses (< Tg)

Tg: 40 carbons in backboneStarting moving in concert

Page 23: Solid State Properties Chapter 4. Amorphous Glassy Semi-Crystalline Elastomeric Polyisoprene T g = -73 °C Polybutadiene, T g = -85 °C Polychloroprene,

Glass transition temperature

Page 24: Solid State Properties Chapter 4. Amorphous Glassy Semi-Crystalline Elastomeric Polyisoprene T g = -73 °C Polybutadiene, T g = -85 °C Polychloroprene,

Rate of cooling affects Tg

Page 25: Solid State Properties Chapter 4. Amorphous Glassy Semi-Crystalline Elastomeric Polyisoprene T g = -73 °C Polybutadiene, T g = -85 °C Polychloroprene,

Polymer Tg ( °C)

Page 26: Solid State Properties Chapter 4. Amorphous Glassy Semi-Crystalline Elastomeric Polyisoprene T g = -73 °C Polybutadiene, T g = -85 °C Polychloroprene,

Polymer Tg ( °C)

Page 27: Solid State Properties Chapter 4. Amorphous Glassy Semi-Crystalline Elastomeric Polyisoprene T g = -73 °C Polybutadiene, T g = -85 °C Polychloroprene,

Factors that affect Tg

Polar groups increase packing density; more thermal energy is needed to created volume

Page 28: Solid State Properties Chapter 4. Amorphous Glassy Semi-Crystalline Elastomeric Polyisoprene T g = -73 °C Polybutadiene, T g = -85 °C Polychloroprene,

Factors that affect Tg

**

OHn

**

CNn

**

FnOther polar vinyl polymer:

Page 29: Solid State Properties Chapter 4. Amorphous Glassy Semi-Crystalline Elastomeric Polyisoprene T g = -73 °C Polybutadiene, T g = -85 °C Polychloroprene,

Factors that affect Tg

Page 30: Solid State Properties Chapter 4. Amorphous Glassy Semi-Crystalline Elastomeric Polyisoprene T g = -73 °C Polybutadiene, T g = -85 °C Polychloroprene,

Factors that affect Tg

Main chain stiffness: reduced flexibility

Page 31: Solid State Properties Chapter 4. Amorphous Glassy Semi-Crystalline Elastomeric Polyisoprene T g = -73 °C Polybutadiene, T g = -85 °C Polychloroprene,

N

O

O

*

O

NH

H2C

npolyamide imide (Torlon)

Tg = 550-600 °C

O

*NH

n

polybenzamide

Tg = 500+ °C

N

NH

*

N

HN

n

polybenzimidazole (PBI)

Tg = 700-775 °C

Polyarylenes

Page 32: Solid State Properties Chapter 4. Amorphous Glassy Semi-Crystalline Elastomeric Polyisoprene T g = -73 °C Polybutadiene, T g = -85 °C Polychloroprene,

Nylon-3Tg = 110-200 °C

* NH

*

O

n

Nylon-6Tg = 52 °C

*

HN *

O

n * NH

*

O

n

Nylon-11Tg = 42 °C

O

*NH

n

polybenzamide

Tg = 500+ °C

Nylons or polyamides

Page 33: Solid State Properties Chapter 4. Amorphous Glassy Semi-Crystalline Elastomeric Polyisoprene T g = -73 °C Polybutadiene, T g = -85 °C Polychloroprene,

Side Chain Rigidity

Long chains plasticize

Factors that affect Tg

Anchors to movement

Page 34: Solid State Properties Chapter 4. Amorphous Glassy Semi-Crystalline Elastomeric Polyisoprene T g = -73 °C Polybutadiene, T g = -85 °C Polychloroprene,

Long chains plasticize movements

Page 35: Solid State Properties Chapter 4. Amorphous Glassy Semi-Crystalline Elastomeric Polyisoprene T g = -73 °C Polybutadiene, T g = -85 °C Polychloroprene,

Factors that affect Tg

OOMe

n

poly(methyl methacrylate)

Me

OMeO

OMeOO

MeOOMeOO

MeO

Tg = 47 °C (isotactic)

OMeO

OMeOO

MeOOMeOO

MeO

Tg = 120-140 °C (syndiotactic)

Tg = 110 °C (atactic > 50 % syndiotactic)

poly(methyl methacrylate)

Page 36: Solid State Properties Chapter 4. Amorphous Glassy Semi-Crystalline Elastomeric Polyisoprene T g = -73 °C Polybutadiene, T g = -85 °C Polychloroprene,

Factors that affect Tg

Tacticity

Page 37: Solid State Properties Chapter 4. Amorphous Glassy Semi-Crystalline Elastomeric Polyisoprene T g = -73 °C Polybutadiene, T g = -85 °C Polychloroprene,

Factors that affect Tg

Symmetry of substituents

**

Fn

**

Fn

F

Tg = -39 °CTg = -20 °C

**

Cln

**

Cln

Cl

Tg = -17 °CTg = 87 °C

asymmetric symmetric

Asymmetric have higher Tg’s

Page 38: Solid State Properties Chapter 4. Amorphous Glassy Semi-Crystalline Elastomeric Polyisoprene T g = -73 °C Polybutadiene, T g = -85 °C Polychloroprene,

Factors that affect Tg: Mw

Page 39: Solid State Properties Chapter 4. Amorphous Glassy Semi-Crystalline Elastomeric Polyisoprene T g = -73 °C Polybutadiene, T g = -85 °C Polychloroprene,

Factors that affect Tg: Crosslinking

Page 40: Solid State Properties Chapter 4. Amorphous Glassy Semi-Crystalline Elastomeric Polyisoprene T g = -73 °C Polybutadiene, T g = -85 °C Polychloroprene,

Factors that affect Tg: Plasticizer

Phthalates

O

O

O

O

Page 41: Solid State Properties Chapter 4. Amorphous Glassy Semi-Crystalline Elastomeric Polyisoprene T g = -73 °C Polybutadiene, T g = -85 °C Polychloroprene,

Immiscible (Two phase) and miscible (blends) polymers

Page 42: Solid State Properties Chapter 4. Amorphous Glassy Semi-Crystalline Elastomeric Polyisoprene T g = -73 °C Polybutadiene, T g = -85 °C Polychloroprene,

Tg as a function of film thickness

Page 43: Solid State Properties Chapter 4. Amorphous Glassy Semi-Crystalline Elastomeric Polyisoprene T g = -73 °C Polybutadiene, T g = -85 °C Polychloroprene,
Page 44: Solid State Properties Chapter 4. Amorphous Glassy Semi-Crystalline Elastomeric Polyisoprene T g = -73 °C Polybutadiene, T g = -85 °C Polychloroprene,

Glass Transition

• Rigid group in backbone

• Flexible polymer backbone

• Steric Hinderance

• Long plasticizing side groups

• Symmetrical substituents

• Polar functionalities

• Plasticizers

O*O

O

*

n

polyether ketone (PEEK)Tg = 119 °C

O*O

O

*

n

polyether ketone (PEEK)Tg = 225 °C

Page 45: Solid State Properties Chapter 4. Amorphous Glassy Semi-Crystalline Elastomeric Polyisoprene T g = -73 °C Polybutadiene, T g = -85 °C Polychloroprene,

Additional Kinds of Transitions

Page 46: Solid State Properties Chapter 4. Amorphous Glassy Semi-Crystalline Elastomeric Polyisoprene T g = -73 °C Polybutadiene, T g = -85 °C Polychloroprene,

Amorphous Polymers Thermo-mechanical properties