solid-state nmr of quadrupolar nucleiwinterschool.mit.edu/sites/default/files/documents/philip...

85
Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table) P. J. Grandinetti L’Ohio State University NMR Winter School, 2020 Electric Field Gradient Tensors NMR Transition Frequencies The Central Transition High Resolution Methods: DOR, DAS, MQ-MAS Sensitivity Enhancement Methods: CP, RAPT, CPMG. P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 1 / 85

Upload: others

Post on 31-May-2020

8 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

Solid-State NMR of Quadrupolar Nuclei(the rest of the periodic table)

P. J. Grandinetti

L’Ohio State University

NMR Winter School, 2020

Electric Field Gradient Tensors

NMR Transition Frequencies

The Central Transition▶ High Resolution Methods: DOR, DAS, MQ-MAS▶ Sensitivity Enhancement Methods: CP, RAPT, CPMG.

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 1 / 85

Page 2: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 2 / 85

Page 3: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 3 / 85

Page 4: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

Most Abundant Isotope of Element with Odd Z is NMR ActiveGeneral rule: for element with odd atomic number (Z) its most abundant isotope is NMR activewhereas for element with even Z its most abundant isotope has spin of I=0 and is NMR inactive.

Hydrogen

Lithium

Sodium

Potassium

Rubidium

Berylium

Magnesium

Calcium

Strontium

Cesium Barium

87FrFrancium

Scandium Titanium Vanadium

Yttrium Zirconium

Lanthanum Hafnium

Praseodymium

Tantalum

Niobium

Tungsten

Molybdenum

Chromium

Neodymium

Rhenium

43TcTechnetium

Manganese

Osmium

Ruthenium

Iron Cobalt Nickel Copper Zinc

Rhodium Palladium Silver Cadmium

Iridium Platinium Gold Mercury

Boron Carbon Nitrogen Oxygen Fluorine Neon

Aluminum Silicon Phosphorus Sulfur Chlorine Argon

Helium

Gallium Germanium Arsenic Selenium Bromine Krypton

Indium Tin Antimony Tellurium Iodine Xenon

Thallium Lead Bismuth84Po

Polonium85AtAstatine

86RnRadon

88RaRadium

89AcActinium

Cerium61Pm

Promethium Samarium

Thorium Protactinium Uranium93Np

Neptunium

Europium Gadolinium Terbium Dysprosium Holmium Erbium

94PuPlutonium

95AmAmericium

96CmCurium

97BkBerkelium

98CfCalifornium

99EsEinsteinium

100FmFermium

101MdMendelevium

Thullium Ytterbium Lutetium

102NoNobellium

103LrLawrencium

IA

IIA

IIIB IVB VB VIB }VIIIBIB IIBVIIB

IIIA IVA VA VIA VIIA

VIIIA

Lanthanide Series

Actinide Series

1H1

3Li7

11Na23

19K3920Ca40

21Sc4522Ti48

23V5124Cr52

25Mn5526Fe56

27Co5928Ni58

29Cu6330Zn64

31Ga6932Ge74

33As7534Se80

35Br7936Kr84

12Mg2413Al27

14Si2815P31

16S32

17Cl3518Ar40

4Be95B

116C

127N

148O

169F

1910Ne20

2He499.9885%

92.41%

100%

93.2581%

37Rb85

55Cs13356Ba138

57La13972Hf180

73Ta181

58Ce140

74W18475Re187

76Os19277Ir193

78Pt19579Au197

80Hg20281Tl205

82Pb20883Bi209

38Sr8872.17% 82.58%

39Y89100%

40Zr9051.45%

41Nb93100%

42Mo9824.13%

44Ru10231.55%

45Rh103100%

46Pd10627.33%

47Ag10751.839%

48Cd11428.73%

49In11595.71%

50Sn12032.58%

51Sb12157.21%

52Te13034.08%

53I127100%

54Xe13226.89%

96.941% 100% 73.72% 99.750% 83.789% 100%

0%

100%

0% 0% 0%

71.698% 99.910% 35.08% 99.988%

88.450%

90Th232100%

91Pa231100%

92U23899.2745% 0% 0% 0% 0% 0% 0% 0% 0% 0%0%0%

59Pr141100%

60Nd14227.2%

62Sm15226.75%

63Eu15352.19%

64Gd15824.84%

65Tb159100%

66Dy16428.18%

67Ho165100%

68Er16633.61%

69Tm169100%

70Yb17431.83%

71Lu17597.41%0%

30.64% 40.78% 62.7% 33.832% 100% 29.86% 70.476% 52.4% 100% 0% 0% 0%62.60%

91.754% 100% 68.0769% 69.17% 48.63% 48.63% 36.28%

78.99% 100% 92.2297% 100%

100% 49.61% 50.69% 57.00%

94.93% 75.78% 99.6003%

100% 80.2% 98.93% 99.632% 99.757% 100% 90.48%

99.999863%

Most Abundant Isotope is NMR Active

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 4 / 85

Page 5: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

NMR sensitivity increases with frequency

Hydrogen

Lithium

Sodium

Potassium

Rubidium

Berylium

Magnesium

Calcium

Strontium

Cesium Barium

87FrFrancium

Scandium Titanium Vanadium

Yttrium Zirconium

Lanthanum Hafnium

Praseodymium

Tantalum

Niobium

Tungsten

Molybdenum

Chromium

Neodymium

Rhenium

43TcTechnetium

Manganese

Osmium

Ruthenium

Iron Cobalt Nickel Copper Zinc

Rhodium Palladium Silver Cadmium

Iridium Platinium Gold Mercury

Boron Carbon Nitrogen Oxygen Fluorine Neon

Aluminum Silicon Phosphorus Sulfur Chlorine Argon

Helium

Gallium Germanium Arsenic Selenium Bromine Krypton

Indium Tin Antimony Tellurium Iodine Xenon

Thallium Lead Bismuth84Po

Polonium85AtAstatine

86RnRadon

88RaRadium

89AcActinium

Cerium61Pm

Promethium Samarium

Thorium Protactinium Uranium93Np

Neptunium

Europium Gadolinium Terbium Dysprosium Holmium Erbium

94PuPlutonium

95AmAmericium

96CmCurium

97BkBerkelium

98CfCalifornium

99EsEinsteinium

100FmFermium

101MdMendelevium

Thullium Ytterbium Lutetium

102NoNobellium

103LrLawrencium

IA

IIA

IIIB IVB VB VIB }VIIIBIB IIBVIIB

IIIA IVA VA VIA VIIA

VIIIA

Lanthanide Series

Actinide Series

1H1

3Li7

11Na23

19K3920Ca43

21Sc4522Ti48

23V5124Cr52

25Mn5526Fe57

27Co5928Ni61

29Cu6330Zn67

31Ga7132Ge73

33As7534Se77

35Br8136Kr83

12Mg2513Al27

14Si2915P31

16S33

17Cl3518Ar

4Be95B

116C

137N

158O

179F

1910Ne21

2He399.9885%

92.41%

100%

93.2581%

37Rb87

55Cs13356Ba137

57La13972Hf177

73Ta181

58Ce

74W18375Re187

76Os18977Ir193

78Pt19579Au197

80Hg19981Tl205

82Pb20783Bi209

38Sr8727.83% 7%

39Y89100%

40Zr9111.22%

41Nb93100%

42Mo9515.92%

44Ru9912.76%

45Rh103100%

46Pd10522.33%

47Ag10751.839%

48Cd11312.22%

49In11595.71%

50Sn1198.59%

51Sb12157.21%

52Te1257.07%

53I127100%

54Xe12926.4%

0.135% 100% 73.72% 99.750% 83.789% 100%

100% 11.232% 99.910% 18.6% 99.988%

90Th 91Pa231100%

92U23899.2745%

59Pr141100%

60Nd1458.3%

62Sm14714.99%

63Eu15147.81%

64Gd15715.65%

65Tb159100%

66Dy16118.91%

67Ho165100%

68Er16722.869%

69Tm169100%

70Yb17114.28%

71Lu1762.59%

14.31% 16.21% 62.7% 33.832% 100% 16.87% 70.476% 22.1% 100%62.60%

2.119% 100% 1.14% 69.17% 4.1% 39.892% 7.76%

10% 100% 4.683% 100%

100% 7.63% 49.31% 11.49%

0.75% 75.78%

100% 80.2% 1.11% 0.366% 0.038% 100% 0.27%

0.000137%

32-43 MHz/T

15-32 MHz/T

12-15 MHz/T

8-12 MHz/T

5-8 MHz/T

0-5 MHz/T

No stable NMR active isotope

Remember: Most abundant isotope of odd Z are NMR activeP. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 5 / 85

Page 6: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

Spin 1/2 Nuclei are easier

Hydrogen

Lithium

Sodium

Potassium

Rubidium

Berylium

Magnesium

Calcium

Strontium

Cesium Barium

87FrFrancium

Scandium Titanium Vanadium

Yttrium Zirconium

Lanthanum Hafnium

Praseodymium

Tantalum

Niobium

Tungsten

Molybdenum

Chromium

Neodymium

Rhenium

43TcTechnetium

Manganese

Osmium

Ruthenium

Iron Cobalt Nickel Copper Zinc

Rhodium Palladium Silver Cadmium

Iridium Platinium Gold Mercury

Boron Carbon Nitrogen Oxygen Fluorine Neon

Aluminum Silicon Phosphorus Sulfur Chlorine Argon

Helium

Gallium Germanium Arsenic Selenium Bromine Krypton

Indium Tin Antimony Tellurium Iodine Xenon

Thallium Lead Bismuth84Po

Polonium85AtAstatine

86RnRadon

88RaRadium

89AcActinium

Cerium61Pm

Promethium Samarium

Thorium Protactinium Uranium93Np

Neptunium

Europium Gadolinium Terbium Dysprosium Holmium Erbium

94PuPlutonium

95AmAmericium

96CmCurium

97BkBerkelium

98CfCalifornium

99EsEinsteinium

100FmFermium

101MdMendelevium

Thullium Ytterbium Lutetium

102NoNobellium

103LrLawrencium

IA

IIA

IIIB IVB VB VIB }VIIIBIB IIBVIIB

IIIA IVA VA VIA VIIA

VIIIA

Lanthanide Series

Actinide Series

1H1

3Li

11Na

19K 20Ca 21Sc 22Ti 23V 24Cr 25Mn 26Fe5727Co 28Ni 29Cu 30Zn 31Ga 32Ge 33As 34Se77

35Br 36Kr

12Mg 13Al 14Si2915P31

16S 17Cl 18Ar

4Be 5B 6C13

7N15

8O 9F19

10Ne

2He399.9885%

37Rb

55Cs 56Ba 57La 72Hf 73Ta

58Ce

74W18375Re 76Os187

77Ir 78Pt19579Au 80Hg199

81Tl20582Pb207

83Bi

38Sr 39Y89100%

40Zr 41Nb 42Mo 44Ru 45Rh103100%

46Pd 47Ag10751.839%

48Cd11112.80%

49In 50Sn1198.59%

51Sb 52Te1257.07%

53I 54Xe12926.44%

0% 0% 0%

90Th 91Pa 92U

59Pr 60Nd 62Sm 63Eu 64Gd 65Tb 66Dy 67Ho 68Er 69Tm169100%

70Yb17114.28%

71Lu

14.31% 1.96% 33.832% 16.87% 70.476% 22.1%

2.119%

4.6832% 100%

7.63%

1.07% 0.368% 100%

0.000137%High Abundance > 50%

Low Abundance < 50%

14N (I=1) 99.634%15N (I=1/2) 0.366%

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 6 / 85

Page 7: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

Nuclei with Spin > 1/2 have electric quadrupole momentsAllowed Nuclear Multipole Moments as a function of Nuclear Spin I

Nuclear l = 0 l = 1 l = 2 l = 3 l = 4Spin monopole dipole quadrupole octapole hexadecapoleI = 0 electric 0 0 0 0I = 1

2 electric magnetic 0 0 0I = 1 electric magnetic electric 0 0I = 3

2 electric magnetic electric magnetic 0I = 2 electric magnetic electric magnetic electric

nuclear electricquadrupole moment tensor

local electric field gradient tensor

nuclear interaction energy

nuclear magneticdipole moment vector

local magnetic field vector

The electric field gradient is to the nuclear electric quadrupole moment asthe magnetic field is to the nuclear magnetic dipole moment.

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 7 / 85

Page 8: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

Electric quadrupole moments with angular momentum precess in electric field gradient

nuclear magnetic dipole moment precesess in a magnetic field

nuclear electric quadrupole moment precesses in an electric field gradient

Nuclear electric quadrupole moment, Q, interactswith electric field gradient, 𝜕(0)∕𝜕r, generated byorbiting electrons as well as neighboring nuclei.

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 8 / 85

Page 9: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

Electric Quadrupole Moment Parameter, QI, describes shape of nucleus

Prolate SpheroidOblate SpheroidSphere

QI is Nuclear Electric Quadrupole Moment Parameter. Has dimensionality of L2. Commonly usedunit is barn.qeQI is size of nuclear electric quadrupole moment. Has dimensionality of L2 ⋅ T ⋅ I

qe = 1.6021766208 × 10−19s ⋅ A is fundamental charge constant.P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 9 / 85

Page 10: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

Nuclear QI parameters oscillate and grow with increasing Z.

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 10 / 85

Page 11: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

Electric field gradient at the nucleusConsider spatial variation of electric field vector

(r) = x(r)ex + y(r)ey + z(r)ez

Place nucleus at origin and do series expansion for (r) about origin

(r) = (0) + r ⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕x(0)𝜕x

𝜕x(0)𝜕y

𝜕x(0)𝜕z

𝜕y(0)𝜕x

𝜕y(0)𝜕y

𝜕y(0)𝜕z

𝜕z(0)𝜕x

𝜕z(0)𝜕y

𝜕z(0)𝜕z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Electric Field Gradient Tensor

⎡⎢⎢⎢⎢⎢⎣

ex

ey

ez

⎤⎥⎥⎥⎥⎥⎦+⋯

Use relationship between electric field vector, and electric potential, 𝜙,

= −∇𝜙 = −𝜕𝜙𝜕x

ex −𝜕𝜙𝜕y

ey −𝜕𝜙𝜕z

ez +⋯

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 11 / 85

Page 12: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

Electric field gradient at the nucleus

(r) = (0) − r ⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕2𝜙(0)𝜕x𝜕x

𝜕2𝜙(0)𝜕x𝜕y

𝜕2𝜙(0)𝜕x𝜕z

𝜕2𝜙(0)𝜕y𝜕x

𝜕2𝜙(0)𝜕y𝜕y

𝜕2𝜙(0)𝜕y𝜕z

𝜕2𝜙(0)𝜕z𝜕x

𝜕2𝜙(0)𝜕z𝜕y

𝜕2𝜙(0)𝜕z𝜕z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Electric Field Gradient Tensor

⎡⎢⎢⎢⎢⎢⎣

ex

ey

ez

⎤⎥⎥⎥⎥⎥⎦+⋯ = (0) + r ⋅ qeq ⋅

⎡⎢⎢⎢⎢⎢⎣

ex

ey

ez

⎤⎥⎥⎥⎥⎥⎦+⋯

Define qeq as the electric field gradient tensor. Components of 2nd-rank efg tensor are given by

qeqik =𝜕i(0)𝜕rk

=𝜕2𝜙(0)𝜕ri𝜕rk

efg tensor is symmetric, i.e., qik = qki.

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 12 / 85

Page 13: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

Electric field gradient at the nucleusComponents of the symmetric 2nd-rank efg tensor are given by

qeqik =𝜕i(0)𝜕rk

=𝜕2𝜙(0)𝜕ri𝜕rk

(0) is electric field and 𝜙(0) is electrostatic potential at nucleus due to surrounding charges.

Atomic unit for efg is 1qe

4𝜋𝜖0a30

= 1Λ0 = 9.717366650590785 × 1021V/m2

This is efg at origin generated by elementary charge at one Bohr radius, a0, away from origin.

0

Principal axis system (PAS) is coordinate system where qeq is diagonal with principal components𝜆{q}

xx , 𝜆{q}yy , and 𝜆{q}

zz ordered according to convention|||𝜆{q}zz

||| > |||𝜆{q}xx

||| > |||𝜆{q}yy

|||P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 13 / 85

Page 14: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

How big is the electric field gradient at the nucleus?

With no electronic charge at nucleus 𝜙 satisfies Laplace’s equation, ∇2𝜙 = 0, and q is tracelesstensor, qxx + qyy + qzz = 0.

Principal components, 𝜆ii, of electric field gradient tensor used to define

𝜁q = 𝜆{q}zz and 𝜂q =

𝜆{q}yy − 𝜆{q}

xx

𝜁q

NMR doesn’t measure 𝜁q directly–instead it measures

Cq =qeQI

h𝜁q and 𝜂q =

𝜆{q}yy − 𝜆{q}

xx

𝜁q

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 14 / 85

Page 15: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

Values of Cq measured with atomic spectroscopy and calculated electricfield gradient, 𝜁q.

Nucleus Electron Cq/MHz 𝜁q/Λ0 Nucleus Electron Cq/MHz 𝜁q/Λ011B 2p -5.4 -0.565 79Br 4p -769.8 -9.898

23Na 3p -5.16 -0.218 81Br 4p -643.0 -9.91527Al 3p -37.5 -1.064 85Rb 5p -48.8 -0.90335Cl 3p 109.7 -5.660 87Rb 5p -23.6 -0.79137Cl 3p 86.5 -5.670 115In 5p -899.1 -4.44539K 4p 5.6 -0.486 127I 5p 2292.7 -12.351

69Ga 4p -125.0 -3.167 133Cs 6p −0.92 ± 1.0 1.05571Ga 4p -78.8 -3.164

EFG is approximately proportional to the ⟨1∕r3⟩ of the valence electron.

In a closed subshell the efg tensors arising from each atomic orbital sum to zero

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 15 / 85

Page 16: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

Examples of Quadrupolar couplings in solids

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 16 / 85

Page 17: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

Relationships between efg and StructureTry simple point charge model to predict efg at Cl− nucleus with approach of point charge

efg of point charge, 𝜁q =qe

4𝜋𝜖0d3 gives Cq,Cl =q2

eQI,Cl

4𝜋h𝜖0d3

0.0000 0.0002 0.0004 0.0006 0.0008 0.00100

100

200

300

400

500

1/d3 / (1/Å3)

10Å11Å12Å13Å14Å20Å

Cl- +

d

simple point charge

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 17 / 85

Page 18: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

Relationships between efg and StructureTry simple point charge model to predict efg at Cl− nucleus with approach of point charge

efg of point charge, 𝜁q =qe

4𝜋𝜖0d3 gives Cq,Cl =q2

eQI,Cl

4𝜋h𝜖0d3

0.0000 0.0002 0.0004 0.0006 0.0008 0.00100

100

200

300

400

500

1/d3 / (1/Å3)

10Å11Å12Å13Å14Å20Å

Cl- +

d

simple point charge

full electro

nic structure + point c

harge

Except, point charge model incorrectly predicts

𝜁q = qe∕(4𝜋𝜖0(10 Å)3

)≈ 0.0001482 Λ0

Gaussian input file

Gaussian gives 𝜁q = 0.020701 Λ0 at 10 Å.Why is it ∼ 140 times larger?

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 18 / 85

Page 19: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

Relationships between efg and StructureTry simple point charge model to predict efg at Cl− nucleus with approach of point charge

efg of point charge, 𝜁q =qe

4𝜋𝜖0d3 gives Cq,Cl =q2

eQI,Cl

4𝜋h𝜖0d3

0.0000 0.0002 0.0004 0.0006 0.0008 0.00100

100

200

300

400

500

1/d3 / (1/Å3)

10Å11Å12Å13Å14Å20Å

Cl- +

d

simple point charge

full electro

nic structure + point c

harge

Except, point charge model incorrectly predicts

𝜁q = qe∕(4𝜋𝜖0(10 Å)3

)≈ 0.0001482 Λ0

Gaussian input file

Gaussian gives 𝜁q = 0.020701 Λ0 at 10 Å. Why is it ∼ 140times larger?

Sternheimer effect–efg amplified by induced polarization of core electrons by external charges.P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 19 / 85

Page 20: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

EFG in HCl : Gaussian Calculation

z

xyH

Cl

Z-Matrix

- 1st atom defines origin- 2nd atom defines z axis

qeqH∕Λ0 =⎡⎢⎢⎣−0.170582 0 0

0 −0.170582 00 0 0.341165

⎤⎥⎥⎦qeqCl∕Λ0 =

⎡⎢⎢⎣−1.666650 0 0

0 −1.666650 00 0 3.333300

⎤⎥⎥⎦efg tensor is diagonal with H-Cl bond along the z axis in molecular frame defined by z-matrix.Molecular frame choice coincides with PAS convention: largest magnitude component along z.For both nuclei the efg is axially symmetric, 𝜂q = 0.

For Deuterium𝜁q,D = 𝜆(s)zz = 0.341165 Λ0

Cq,D = qeQI,D𝜁q,D∕h

= qe(0.00286 b)(0.341165 Λ0)∕h≈ 229.26 kHz

For Chlorine𝜁q,Cl = 𝜆(s)zz = 3.333300 Λ0

Cq,Cl = qeQI,Cl𝜁q,Cl∕h

= qe(−0.08249 b)(3.333300 Λ0)∕h≈ −64.6 MHz

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 20 / 85

Page 21: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

Effect of bond length on EFG in HCl Gaussian Calculation

1.20 1.24 1.28 1.32 1.36 1.4050

60

70

80

1.20 1.24 1.28 1.32 1.36 1.40-350

-300

-250

-200

-150

-100

H Cl

note: NOT proportional to 1/d3

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 21 / 85

Page 22: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

EFG in H2O : Gaussian Calculation

z

x107.5°

qeqO∕Λ0 =⎡⎢⎢⎣

0.859979 0 −0.7517490 −2.194010 0

−0.751749 0 1.334031

⎤⎥⎥⎦qeqH1

∕Λ0 =⎡⎢⎢⎣−0.086344 0 0.000414

0 −0.131454 00.000414 0 0.217799

⎤⎥⎥⎦qeqH2

∕Λ0 =⎡⎢⎢⎣

0.190535 0 −0.0868850 −0.131454 0

−0.086885 0 −0.059080

⎤⎥⎥⎦Need to find principal axis system for each efg tensor.

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 22 / 85

Page 23: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

EFG in H2O : Gaussian Calculation - Focus on Oxygen

z

x107.5°

qeqO∕Λ0 =⎡⎢⎢⎣

0.859979 0 −0.7517490 −2.194010 0

−0.751749 0 1.334031

⎤⎥⎥⎦Tensors are block diagonal, i.e., qxy components are zero.

Diagonalize block diagonal tensor with rotation about y axisby angle 𝛼 given by

tan 2𝛼 =2qxz

qxx − qzz

and get eigenvalues of

𝜆± = ±12

{√4q2

xz + (qxx − qzz)2 ± (qxx + qzz)}

For tensor diagonalization, review watch Video 4-4 from myp.chem class: grandinetti.org/chem-4300-physical-chemistry.

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 23 / 85

Page 24: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

EFG in H2O : Gaussian Calculation - Focus on Oxygen

z

x107.5°

qeqO∕Λ0 =⎡⎢⎢⎣

0.859979 0 −0.7517490 −2.194010 0

−0.751749 0 1.334031

⎤⎥⎥⎦For oxygen we find

𝛼 = 12tan−1 2Sxy

Sxx − Syy= 1

2tan−1

(2 × (−0.751749)

0.859979 − (1.334031)

)≈ 36.25◦

𝜆±∕Λ0 = ±12

{√4 × (−0.751749)2 + (0.859979 − (1.334031))2

± (0.859979 + (1.334031))}

≈ 0.308774 and 1.885236

Convention: 𝜆yy,O = 0.308774Λ0, 𝜆xx,O = 1.885236Λ0, 𝜆zz,O = −2.194010Λ0 = 𝜁q,O

.P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 24 / 85

Page 25: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

EFG in H2O : Gaussian Calculation - Focus on Oxygen

𝜆yy,O = 0.308774Λ0, 𝜆xx,O = 1.885236Λ0, 𝜆zz,O = −2.194010Λ0 = 𝜁q,O

Water molecule in 17O efg PAS

x

y

107.5°

36.25°Calculate 17O Cq of H2O

Cq,O =qeQI,O𝜁q,O

h=

qe(−0.02578 b)(−2.194010 Λ0)h

≈ 13.3 MHz

and its asymmetry parameter

𝜂q,O =𝜆xx,O − 𝜆yy,O

𝜁q,O= 0.308774 − (1.885236)

−2.194010≈ 0.72

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 25 / 85

Page 26: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

Exercises

1. Given the electric field gradient tensors for the two hydrogen in water calculate their deuteriumquadrupolar coupling constants and asymmetry parameters, and draw the water molecule in theprincipal axis system of each 2D electric field gradient.

2. Given the efg tensors of LiCl and NaCl obtained in the same molecular frame as HCl, calculate thequadrupole coupling constants of the most abundant NMR active nuclei, i.e., 7Li, 23Na, and 35Cl.

dM–Cl qeqMetal∕Λ0 qeqCl∕Λ0

LiCl 2.02 Å

⎡⎢⎢⎢⎢⎣0.013563 0 0

0 0.013563 00 0 −0.027125

⎤⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎣−0.048732 0 0

0 −0.048732 00 0 0.097464

⎤⎥⎥⎥⎥⎦

NaCl 2.36 Å

⎡⎢⎢⎢⎢⎣−0.040867 0 0

0 −0.040867 00 0 −0.081733

⎤⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎣−0.508237 0 0

0 0.254118 00 0 0.254118

⎤⎥⎥⎥⎥⎦

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 26 / 85

Page 27: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

Exercises

3. The point charge model for the electric field gradient tensor can be compactly written usingspherical tensors according to

R{q}2,k = 1

4𝜋𝜖0(1 − 𝛾∞)

n∑j=1

Zjqe

r3j

√4𝜋5

Y2,k(𝜃j, 𝜙j)

where 𝛾∞ is the Sternheimer shielding, ri is the distance to each point charge, and Y2,k(𝜃j, 𝜙j) arethe spherical harmonic functions describing the orientation of the point charge in a fixedcoordinate system. Use the point charge model and show that the efg tensor of sodium andchlorine ions in the simple cubic lattice of NaCl is zero taking only the first coordination spherearound each ion into account.

4. Use the point charge model equation in the problem above to derive the Cq and 𝜂q values for thecentral atom in geometries given on the next slide.

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 27 / 85

Page 28: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

Rough guide to some point charge models of efg

zzzz

zzzz

zz

zz

zz

StructureName Cq ηq

linear (2) __

Trigonal Planar (3)

Tetrahedral (4)

__

Trigonal Bipyramidal (5) _ __

Octahedral (6)

__

|

| |

linear (1) _

bent (2)

zz

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 28 / 85

Page 29: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

NMR Transition Frequencies

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 29 / 85

Page 30: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

The First-Order (Chemical) Shift Frequency Contribution

Ω(1)𝜎 (Θ,mi,mj) = −𝜔0 𝜎iso 𝕡I(mi,mj) − 𝜔0 𝜁𝜎 𝔻{𝜎}(Θ)𝕡I(mi,mj)

𝜔0 ≡ Larmor Frequency, 𝜎iso ≡ Isotropic Shielding, 𝜁𝜎 ≡ Shielding Anisotropy, and𝕡I(mi,mj) and 𝔻{𝜎}(Θ) are spin transition and spatial symmetry functions:

𝕡I(mi,mj) = mf − mi and 𝔻{𝜎}(Θ) = P02(cos 𝛽) +

𝜂q

6P2

2(cos 𝛽) cos 2𝛼

𝛼 and 𝛽 give orientation of shielding tensor PAS relative to B0

60

40

20

0

0 45 90 135 180-20

frequency / µHz/Hz-20-40-60 0 20 40 60 80 100

θ,ϕ

Single Crystal Calcium Carbonate Polycrystalline Calcium Carbonate

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 30 / 85

Page 31: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

Associated Legendre Polynomials and their roots.Highlighted are the polynomials associated with the sectoral harmonics.

Pm𝓁 (cos 𝜃) Polynomial Roots

P00(cos 𝜃) 1

P01(cos 𝜃) cos 𝜃 90◦

P11(cos 𝜃) − sin 𝜃 0◦ 180◦

P02(cos 𝜃)

12(3 cos2 𝜃 − 1) 54.73561◦ 125.2644◦

P12(cos 𝜃) −3 cos 𝜃 sin 𝜃 0◦ 90◦ 180◦

P22(cos 𝜃) 3 sin2 𝜃 0◦ 180◦

P03(cos 𝜃)

12(5 cos2 𝜃 − 3) cos 𝜃 39.23152◦ 90◦ 140.7685◦

P13(cos 𝜃) − 3

2(5 cos2 𝜃 − 1) sin 𝜃 0◦ 63.43495◦ 116.56505◦ 180◦

P23(cos 𝜃) 15 cos 𝜃 sin2 𝜃 0◦ 90◦ 180◦

P33(cos 𝜃) −15 sin3 𝜃 0◦ 180◦

P04(cos 𝜃)

18(35 cos4 𝜃 − 30 cos2 𝜃 + 3) 30.55559◦ 70.124281◦ 109.87572◦ 149.44441◦

P14(cos 𝜃) − 5

2(7 cos2 𝜃 − 3) cos 𝜃 sin 𝜃 0◦ 49.10660◦ 90◦ 130.89340◦ 180◦

P24(cos 𝜃)

152(7 cos2 𝜃 − 1) sin2 𝜃 0◦ 67.79235◦ 112.20765◦ 180◦

P34(cos 𝜃) −105 cos 𝜃 sin3 𝜃 0◦ 90◦ 180◦

P44(cos 𝜃) 105 sin4 𝜃 0◦ 180◦

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 31 / 85

Page 32: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

Variable- and Magic-Angle Spinning⟨Ω{𝜎}(𝜃R,Θ′,mi,mj)

⟩VAS = −𝜔0𝜎iso 𝕡I(mi,mj) − 𝜔0𝜁𝜎 𝔻{𝜎}

0 (𝜃R,Θ′)𝕡I(mi,mj)

𝔻{𝜎}0 (𝜃R,Θ′) = 𝔻{𝜎}(Θ′)P0

2(cos 𝜃R) =[

P02(cos 𝛽

′) +𝜂q

6P2

2(cos 𝛽′) cos 2𝛼′

]P0

2(cos 𝜃R)

Angles 𝛼′ and 𝛽′ give orientation of shielding tensor PAS relative to rotor frame𝜃R is angle of rotor axis to B0

0 10 20 4030 6050 90 100 110 120 130 140 150 160 170 1808070

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

54.74 ° 125.26 °

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 32 / 85

Page 33: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

Variable-Angle Spinning of Shift Anisotropy

90°

45°

15°

60°

30°

75°

54.74°

frequency/kHz200-20

frequency/kHz200-20

rotor angle

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 33 / 85

Page 34: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

Magic-Angle Spinning of Shift Anisotropy

2.5 kHz

5 kHz

7.5 kHz

static

10 kHz

12.5 kHz

15 kHz

17.5 kHz

20 kHz

frequency/kHz frequency/kHz200-20 200-20

spinning speed

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 34 / 85

Page 35: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

Which way is the Quantization Axis?

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 35 / 85

Page 36: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

Quadrupolar Frequency ContributionThe battle between the EFG and B0

Increasing external magnetic field strength

Series expansion of the NMR transition frequency about the high magnetic field limit

Zeroth-OrderContribution

First-OrderContribution

Second-OrderContribution

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 36 / 85

Page 37: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

First-Order Quadrupolar Frequency Contribution

Ω(1)q (Θ,mi,mf ) = 𝜔q 𝔻{q}(Θ)

√32(m2

f − m2i ) = 𝜔q 𝔻{q}(Θ)𝕕I(mi,mf )

𝜔q is the quadrupolar splitting frequency

𝜔q = 2𝜋𝜈q =6𝜋Cq

2I(2I − 1)

𝔻{q}(Θ) is the spatial symmetry function

𝔻{q}(Θ) = 1√6

[P0

2(cos 𝛽) +𝜂q

6P2

2(cos 𝛽) cos 2𝛼]

𝕕I(mi,mf ) is the transition symmetry function

𝕕I(mi,mf ) =√

32(m2

f − m2i ).

Polycrystalline SampleSpin I=1 case, e.g., 2D

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 37 / 85

Page 38: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

First-Order Quadrupolar Anisotropy: 2H NMR in Oriented SamplesMembrane Bilayers

oriented on glass slides

CH3

D

D

θ

CH3

D

D

All Trans

CH3

D

D

g+

θ

CH3

D

D

θ

tiltCH3

D

D

g+, t+, g- kink

θ

Membrane Surface

B0

40 30 20 10 0 -10 -20 -30 -40Frequency / kHz

90°

78°

67°

54.7°

48°

27°

θ

M. F. Brown and coworkers, J. Chem. Phys., 110, 8802 (1999), Colloids and Surfaces A: Physiochem. Eng.Aspects, 158, 281-298 (1999).

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 38 / 85

Page 39: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

Measuring the ensemble average distribution of the bond order SCD

Frequency / kHz segment position30 20 10 -10 -20 -300 2

0.0

0.1

0.2

0.3

0.4

0.5

4 6 10 12 148

DMPC-d54 cholesterol (l/l)

DMPC-d54

DMPC-d54 cholesterol (l/l)DMPC-d54

M. F. Brown and coworkers, J. Chem. Phys., 110, 8802 (1999), Colloids and Surfaces A: Physiochem. Eng.Aspects, 158, 281-298 (1999).

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 39 / 85

Page 40: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

1st-order quadrupolar frequency is invariant under 𝜋 pulse

General effect of a 𝜋 pulse on a transition

|||mf⟩ ⟨mi

|| 𝜋⟶ |||−mf

⟩ ⟨−mi||

Effect of 𝜋 pulse on transition symmetry functions

𝕡I𝜋

⟶ −𝕡I and 𝕕I𝜋

⟶ 𝕕I

Exercise:

5. Given 𝕡I = mf − mi and 𝕕I =√

32

(m2

f − m2i

)confirm this result.

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 40 / 85

Page 41: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

Two pulse pathways in Deuterium

Ω = −𝜔0 𝜎iso 𝕡I − 𝜔0𝜁𝜎𝔻𝜎 𝕡I + 𝜔q𝔻q(Θ)𝕕I

01

-1

01

-1

rf

Hahn Echo Sequence

01

-1

01

-1

rf

Solid Echo Sequence

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 41 / 85

Page 42: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

Two pulse pathways in Deuterium

Ω = −𝜔0 𝜎iso 𝕡I − 𝜔0𝜁𝜎𝔻𝜎 𝕡I + 𝜔q𝔻q(Θ)𝕕I

01

-1

01

-1

rf

No Echo Sequence

01

-1

01

-1

rf

Hahn-Solid Echo Sequence

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 42 / 85

Page 43: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

Static 2H NMR: p-d correlation on CuCl2⋅2D2O

01

-1

01

-1

“shifting d” transition pathway

Walder et. al., J. Chem. Phys., 142, 014201 (2015)

Ω = −𝜔0 𝜎iso 𝕡I − 𝜔0𝜁𝜎𝔻𝜎 𝕡I + 𝜔q𝔻q(Θ)𝕕I

00

100 200 300 400

100

200

300

400

/ µs

/ µs

p removed d removed

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 43 / 85

Page 44: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

Separating and correlating shift and first-order quadrupolar anisotropic lineshapes

Paramagnetic Shift Anisotropy / ppm

Qua

drup

olar

Ani

sotro

py /

kHz

0

40

80

120

-40

-80

-120

0

40

80

120

-40

-80

-120

0

40

80

120

-40

-80

-1200100200300 -100 -200-300 0100200300 -100 -200-300 0100200300 -100 -200-300 0100200300 -100 -200-300

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 44 / 85

Page 45: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

Static 2H 2D NMR shifting-d experiment on polycrystalline CuCl2⋅2D2O

01

-1

01

-1

“shifting d” transition pathway

Walder et. al., J. Chem. Phys., 142, 014201 (2015)

Qua

drup

olar

Ani

sotro

py /

kHz

Qua

drup

olar

Ani

sotro

py /

kHz

Shift / ppm from D2O0200 -200

0

40

80

120

-40

-80

-120400

Shift / ppm from D2O0200 -200

0

40

80

120

-40

-80

-120400

Experiment Best Fit

From projection onto quad. anisotropy dimension⟨Cq⟩ = 118.0+1.7−1.2 and ⟨𝜂q⟩ = 0.86 ± 0.01

Assuming instantaneous 2H Cq = 230 kHz in O–Dbond and D–O–D angle near 109.47◦, then resultsare consistent with 2-fold hopping motional modelprediction: ⟨Cq⟩ ≈ Cq∕2 and ⟨𝜂q⟩ ≈ 1

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 45 / 85

Page 46: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

Spin I > 3∕2 : Solomon Echoes (multiple d echoes at different times)

Exercise:

6. For the pathway 𝕡I = 0 → −1 → −1determine the timing and number of𝕕I echoes that appear after the 2nd𝜋∕2 pulse in I = 5∕2 case.Recall 𝕡I = mf − mi and

𝕕I =√

32 m2

f − m2i

rf

10

-1

24

0-2-4

24

0-2-4

24

0-2-4

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 46 / 85

Page 47: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

The Centra Transition

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 47 / 85

Page 48: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

The Central Transition of Half-Integer Quadrupolar NucleiWhats so special about it?

m = -1/2 -3/2

m = 1/2 -1/2

m = 3/2 1/2

ZeemanInteraction

QuadrupoleInteraction

1st order quadrupolarfrequencycontributionvanishes.

transition symmetry functions

True for any symmetric (m → −m) transitionP. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 48 / 85

Page 49: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

NMR spectrum of I=3/2 nucleus in polycrystalline sample

Frequency / MHz0 -0.5 -1.0 -1.50.51.01.5

Intensity X 46

Frequency / kHz010 -1020 -20

2

Frequency / MHz0 -0.5 -1.0 -1.5 -2.00.51.01.52.0

Frequency / kHz010 -1020 -20

static sample magic-angle spinning sample

Much narrower linewidthbut still has anisotropic broadening under MAS.

Why?

centraltransition central

transition

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 49 / 85

Page 50: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

Central Transition Nutation Behavior

-1.00

-0.50

0.00

0.50

1.00

0 5 10 15 20I=3/2

Cq = 1 kHz

Cen

tral T

rans

ition

Inte

nsity

Pulse Duration (microseconds)

ν1 = 50 kHz

In the limit that 𝜔1 ≪ 𝜔q the effective central transition nutation frequency becomes (I + 1∕2)𝜔1

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 50 / 85

Page 51: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

Central Transition Nutation Behavior

-1.00

-0.50

0.00

0.50

1.00

0 5 10 15 20I=3/2

Cq = 1 kHz 1000 kHz

Cen

tral T

rans

ition

Inte

nsity

Pulse Duration (microseconds)

ν1 = 50 kHz

In the limit that 𝜔1 ≪ 𝜔q the effective central transition nutation frequency becomes (I + 1∕2)𝜔1

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 51 / 85

Page 52: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

Central Transition Nutation Behavior

-1.00

-0.50

0.00

0.50

1.00

0 5 10 15 20I=3/2

Cq = 1 kHz 25 kHz 50 kHz

100 kHz 250 kHz

1000 kHzC

entra

l Tra

nsiti

onIn

tens

ity

Pulse Duration (microseconds)

ν1 = 50 kHz

In the limit that 𝜔1 ≪ 𝜔q the effective central transition nutation frequency becomes (I + 1∕2)𝜔1A one-pulse (two-dimensional) nutation experiment should be one of the first experiments you do onany quadrupolar nucleus to determine nutation behavior

t1 t2 Do a proper 2D experiment,not paropt.

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 52 / 85

Page 53: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

Second-Order Quadrupolar Frequency Contribution

Ω(2)q (Θ,mi,mj) =

𝜔2q

𝜔0𝕊{qq} 𝕔0(mi,mj) +

𝜔2q

𝜔0𝔻{qq}(Θ) 𝕔2(mi,mj) +

𝜔2q

𝜔0𝔾{qq}(Θ) 𝕔4(mi,mj)

2nd-order isotropic shift...decreases with inverse of B0

adds to isotropic chemical shift. Warning: resonance positions not field independent on ppm scale.only averages to zero in liquids when inverse reorientational correlation time exceeds 𝜔0.

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 53 / 85

Page 54: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

Second-Order Quadrupolar Frequency Contribution

Ω(2)q (Θ,mi,mj) =

𝜔2q

𝜔0𝕊{qq} 𝕔0(mi,mj) +

𝜔2q

𝜔0𝔻{qq}(Θ) 𝕔2(mi,mj) +

𝜔2q

𝜔0𝔾{qq}(Θ) 𝕔4(mi,mj)

Remember 4th-rank Legendre polynomials?

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 54 / 85

Page 55: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

Legendre Polynomials

0 10 20 4030 6050 90 100 110 120 130 140 150 160 170 1808070

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

30.56˚ 54.74˚ 70.12˚

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 55 / 85

Page 56: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

No single spinning axis angle eliminates both 2nd- and 4th-rank anisotropies.

η = 0.0 0.3 0.5 0.7 1.0

00.00°

90.00°

63.43°

30.56°

70.12°

37.38°

79.19°

54.74°

rotorangle

What can we do?

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 56 / 85

Page 57: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

Buy a bigger magnet

14 T

19.6 T

25 T

40 T

100 0 -50-2550 2575Frequency / µHz/Hz

27Al central transition MAS of aluminoborate 9 Al2O3 + 2 B2O3

2nd-order contributionsdecreases with increasing

magnetic field strength

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 57 / 85

Page 58: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

Try to buy (or build) a Double Rotation probe

Under double rotation at speeds faster than 𝜔2q∕𝜔0 the anisotropic part of the 2nd-order frequency

averages to𝔻{qq}

0,0 (Θ′′, 𝜃outR , 𝜃in

R ) = 𝔻{qq}(Θ′′)P02(cos 𝜃

outR )P0

2(cos 𝜃inR )

𝔾{qq}0,0 (Θ′′, 𝜃out

R , 𝜃inR ) = 𝔾{qq}(Θ′′)P0

4(cos 𝜃outR )P0

4(cos 𝜃inR )

where Θ′′ now gives the orientation of the efg tensor relative to the inner rotor axis. Under DOR thecentral transition averages to

⟨Ω(mi,mj)

⟩DOR = −𝜔0𝜎iso 𝕡I(mi,mj) +

𝜔2q

𝜔0𝕊{qq} 𝕔0(mi,mj)

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 58 / 85

Page 59: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

23Na central transition spectra of polycrystalline Na4P2O7

** *

**

*

**

*

νL = 158.7 MHz

νR = 1420 Hz

νL = 211.6 MHz

νR = 1250 Hz

νL = 105.8 MHz

νR = 850 Hz

**

* **

**17.6 T

14.1 T

9.4 T

14.1 T

9.4 T

1020 0 -10 -20 -30 -40 -50 -60 -70 -80Frequency / µHz/Hz

102030 0 -10 -20 -30 -40 -50 -60 -70Frequency / µHz/Hz

18.8 T

1

1

1,2

2

2

3

3

3

4

4

4

Magic-Angle Spinning Double Rotation

Engelhardt, Kentgens, Koller, Samoson,Solid State NMR, 15, 171-180 (1999).P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 59 / 85

Page 60: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

Buy a Dynamic-Angle Spinning (DAS) probeDAS solution is hidden in variable-angle spinning spectra below. Can you see it?

η = 0.0 0.3 0.5 0.7 1.0

00.00°

90.00°

63.43°

30.56°

70.12°

37.38°

79.19°

54.74°

rotorangle

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 60 / 85

Page 61: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

Buy a Dynamic-Angle Spinning (DAS) probeDAS solution is hidden in variable-angle spinning spectra below. Can you see it?

η = 0.0 0.3 0.5 0.7 1.0

00.00°

90.00°

63.43°

30.56°

70.12°

37.38°

79.19°

54.74°

rotorangle

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 61 / 85

Page 62: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

DAS : simultaneous D0 and G0 echoes refocus residual anisotropy

isotro

pic

dimensio

n

54.74°

79.19°

37.38°

Need probe that can flip rotor angle during experiment.

Chmelka et al., Nature, 339, 42 (1989).

Llor and Virlet, Chem. Phys. Lett., 152, 248 (1988).

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 62 / 85

Page 63: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

17O DAS of coesite (crystalline polymorph of silica, SiO2)

0.0 –50.050.0

Frequency / µHz/Hz (from H217O)0.0 –50.050.0

Magic-Angle Spinning

Dynamic-Angle Spinning

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 63 / 85

Page 64: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

DAS is 2D experiment correlating isotropic to anisotropic frequencies

O4

O3

O5O3

δiso = 29 ppmCq = 6.05 MHzηq = 0.0O1: 180.0°,1.595Å

δiso = 41 ppmCq = 5.43 MHzηq = 0.166O2: 142.56°, 1.612Å

δiso = 53 ppmCq =5.52 MHzηq = 0.169O4: 149.5°,1.608Å

δiso = 57 ppmCq = 5.45 MHzηq = 0.168O3: 144.5°, 1.614Å

δiso = 58 ppmCq = 5.16 MHzηq = 0.292O5: 137.2°,1.620Å

MAS dimension (ppm)

0 -20 -40 -60 -80204060

0

-10

-20

-30

10

20

30

0 -40 -8040MAS dimension (ppm)

isot

ropi

c di

men

sion

(ppm

)

O1

O2

O4

O3

O5

17O 2D DAS of coesite (crystalline polymorph of silica, SiO2)

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 64 / 85

Page 65: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

You don’t have a bigger magnet, a DOR, nor a DAS probe.MAS alone eliminates 𝔻 anisotropy but leaves 𝔾0 anisotropy

⟨Ω(mi,mj)

⟩D-MAS = −𝜔0𝜎iso𝕡I(mi,mj) +

𝜔2q

𝜔0𝕊{qq} 𝕔0(mi,mj) +

𝜔2q

𝜔0𝔾{qq}

0 (𝜃(2)M ) 𝕔4(mi,mj)

If we can’t remove the last term by eliminating 𝔾0, what about the transition symmetry functions?

𝕔0 = 4√125

[I(I + 1) − 3∕4

]𝕡I +

√1825

𝕗 I

𝕔2 =√

2125

[I(I + 1) − 3∕4

]𝕡I −

6√35

𝕗 I

𝕔4 = −√

18875

[I(I + 1) − 3∕4

]𝕡I −

17√175

𝕗 I

where 𝕗 I =1√10

[5(m3

j − m3i ) + (1 − 3I(I + 1))(mj − mi)

]only depends on mi, mf , and I.

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 65 / 85

Page 66: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

Make tables of transition symmetry function values, stare, and think!

1

3

3

1

1

3

3

1

1

3

3

1

1

3

3

1

3

9

9

3

27

27

21

21

8

6

6

8

72

114

114

72

15

27

27

15

135

303

303

135

24

54

54

24

216

546

546

216

Transition

Values in black filled circles are negative

SymmetricTransitions

Centraltransitionwith pI=-1

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 66 / 85

Page 67: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

Make tables of transition symmetry function values, stare, and think!

1

3

3

1

3

9

9

3

27

27

21

21

Transition

Values in black filled circles are negative

SymmetricTransitions

Centraltransitionwith pI=-1

Just think about the spin I=3/2 case

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 67 / 85

Page 68: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

Make tables of transition symmetry function values, stare, and think!

1

3

3

1

3

9

9

3

27

27

21

21

Transition

Values in black filled circles are negative

SymmetricTransitions

Centraltransitionwith pI=-1

Just think about the spin I=3/2 caseLike DAS, design a two-dimensional experiment that refocuses c4 into an echo modulated only

by isotropic frequencies.

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 68 / 85

Page 69: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

Make tables of transition symmetry function values, stare, and think!

1

3

3

1

3

9

9

3

27

27

21

21

Transition

Values in black filled circles are negative

SymmetricTransitions

Centraltransitionwith pI=-1

Just think about the spin I=3/2 caseLike DAS, design a two-dimensional experiment that refocuses c4 into an echo modulated only

by isotropic frequencies.

pulse pulse

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 69 / 85

Page 70: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

MQ-MAS uses a c4 echo to refocus residual anisotropy⟨Ω(mi,mj)

⟩D-MAS = −𝜔0𝜎iso𝕡I(mi,mj) +

𝜔2q

𝜔0𝕊{qq} 𝕔0(mi,mj) +

𝜔2q

𝜔0𝔾{qq}

0 (𝜃(2)M ) 𝕔4(mi,mj)

Frydman and Harwood, J. Am. Chem. Soc., 117, 5367 (1995)Medek, Harwood, and Frydman, J. Am. Chem. Soc. 117, 12779 (1995)

Pulse Pulse

ShearTransformation

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 70 / 85

Page 71: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

MQ-MAS uses a c4 echo to refocus residual anisotropy⟨Ω(mi,mj)

⟩D-MAS = −𝜔0𝜎iso𝕡I(mi,mj) +

𝜔2q

𝜔0𝕊{qq} 𝕔0(mi,mj) +

𝜔2q

𝜔0𝔾{qq}

0 (𝜃(2)M ) 𝕔4(mi,mj)

Frydman and Harwood, J. Am. Chem. Soc., 117, 5367 (1995)Medek, Harwood, and Frydman, J. Am. Chem. Soc. 117, 12779 (1995)

Pulse Pulse

-20 -30 -40 -50 -60 -70Frequency / µHz/Hz (from 1M RbNO3)

-20 -30 -40 -50 -60 -70Frequency / µHz/Hz (from 1M RbNO3)

MAS

MQ-MAS

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 71 / 85

Page 72: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

Isotropic frequency in MQ-MAS is weighted average of 3Q and CT isotropic frequencies.

I=3/2 case:

I=5/2 case:

difference between isotropic shielding and chem. shift reference in central transition spectrum

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 72 / 85

Page 73: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

Field Dependance of Isotropic Shift

7.0 T

9.4 T

Frequency (ppm from 1M 87RbNO3)-10 -30 -50 -70 -90

11.7 T

4.2 T

Isotropic frequency of quadrupolar nucleus is sum of isotropic (1) chemical shift and (2) 2nd order quadrupolar shift.

0.01 0.02 0.03 0.04 0.05 0.06

-60

-50

-40

-30

η = 0.12 siteη = 0.48 siteη = 1.00 site

1 / B02 ( Tesla-2 )

δ obs

( pp

m )

87Rb DAS Spectra of RbNO3

3 Rb sites

CB

Azyx

Warning: Avoid labeling spectrum axis of quadrupolar nuclei in solids as "Chemical Shift". Only true inlimit that 𝜈q∕𝜈0 goes to zero.

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 73 / 85

Page 74: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

Comparison of high-resolution methods for quadrupolar nucleiAdvantages Disadvantages

DOR • Quantitative• High Sensitivity• Low rf power• One dimensional experiment - Quick experiment (In principle)

• Quantitative• High Sensitivity, even with nuclei having large quad. couplings• Low rf power• Works well for dilute quadrupolar nuclei

• Easiest to implement (no special probe)• Works well for Abundant nuclei • Works well for nuclei with short longitudinal relaxation

• Special Probe Required• Stable spinning requires finesse• Slow spinning speeds - (large # of sidebands)• Large coil ... low rf power - poor decoupling.

• Special Probe Required• Fails in presence of strong homonuclear dipolar couplings• Long hop times (30 ms) limits use to samples with long longitudinal relaxation (rare problem).

DAS

MQ-MAS • Not always quantitative• Requires high rf power for excitation and mixing• Poor sensitivity for large Cq• Complex spinning sideband behavior

• Easy to implement (no special probe)• Excites only single quantum transitions• Works well for Abundant nuclei • Works well for nuclei with short longitudinal relaxation

ST-MAS • Sensitive to magic-angle misset (< 0.01°)• Stable spinning speed required.• Requires high rf power for satellite excitation.• Poor sensitivity for large Cq• Not always quantitative• Complex spinning sideband behavior• Fails to remove 3rd and other higher-order effects• T2 of satellite transitions significantly shorter than symmetric transitions• Fails when there's motional averaging of satellite lineshapes.

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 74 / 85

Page 75: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

Enhancing Sensitivity

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 75 / 85

Page 76: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

Cross-Polarization Transfer: 1H to 13Cz

y

x

r

z

y

r13C

1H

13C

1HAdjust individual B1 field strengths so that Mutual Spin Flips are

Energy Conserving

(π/2)x

1H

13C

(SL)y

(SL)f

1H decoupling

Hartmann-Hahn ConditionStatic Sample

mI1/2

-1/2

mI1/2

-1/2

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 76 / 85

Page 77: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

Cross-Polarization Transfer: 1H to Quadrupole - Static Sample Case

Hartmann-Hahn Condition when |𝛾XB1,X| ≫ |𝜔q|𝛾HB1,H = 𝛾XB1,X

mI3/21/2-1/2

-3/2

All transitions get enhanced polarization

Hartmann-Hahn Condition when |𝛾XB1,X| ≪ |𝜔q|𝛾HB1,H = (I + 1∕2) 𝛾XB1,X

mI3/21/2-1/2-3/2

Only central transition gets enhanced polarization

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 77 / 85

Page 78: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

Cross-Polarization Transfer: 1H to Quadrupole - Spinning Sample CaseJust like spin 1/2 nuclei the H-H match breaks into spinning sidebands.

Hartmann-Hahn Condition when |𝛾XB1,X| ≫ |𝜔q|𝛾HB1,H = 𝛾XB1,X ± nΩR

All transitions get enhanced polarization

Hartmann-Hahn Condition when |𝛾XB1,X| ≪ |𝜔q|𝛾HB1,H = (I + 1∕2) 𝛾XB1,X ± nΩR

Only central transition get enhanced polarizationWarning: Sample spinning leads to crossings of central and satellite energy levels and causes

polarization transfer between central and multiple quantum transitions.Check out 2 key papers:

1 “MAS NMR Spin Locking of Half-Integer Quadrupolar Nuclei,” AJ Vega, J. Magn. Reson., 96, 50 (1992)2 “CPMAS of Quadrupolar S = 3/2 Nuclei,” AJ Vega, Solid State NMR, 96, 50 (1992)

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 78 / 85

Page 79: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

CT Polarization Enhancement by Population Transfer from SatellitesIf only exciting and detecting central transition, then steal polarization from satellites.

mI

3/2

1/2

-1/2

-3/2

Enhance Central Transition by Selective Saturation of Satellite TransitionsIdea first described by Pound in 1950Nuclear electric quadrupole interations in crystals, Phys, Rev., 79, 685-702 (1950)

If all satellites are saturated the central transition is enhanced by a factor of (I+1/2)-3/2, -1/2 -1/2, 1/2 1/2, 3/2

-3/2, -1/2

-1/2, 1/2

1/2, 3/2

Significant enhancement and easy to implement

Enhance Central Transition by Selective Inversion of Satellite TransitionsmI

3/2

1/2

-1/2

-3/2

Described by Vega and Naor in 1980.Triple quantum NMR on spin systems with I=3/2 in Solids, J. Chem. Phys., 75, 75-86 (1981)

If all satellites are inverted (outermost to innermost)the central transition is enhanced by a factor of 2I-3/2, -1/2 -1/2, 1/2 1/2, 3/2

-3/2, -1/2

-1/2, 1/2

1/2, 3/2 Greatest enhancement but difficult to implement

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 79 / 85

Page 80: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

CT Polarization Enhancement by Rotor Assisted Population Transfer from SatellitesLet the rotor bring the satellites to you

mI3/21/2-1/2-3/2

τ(π/2)CT

01

-1p

54.74°B0

τ1x x_Recycle

Delay

n

t

RAPTSelective Saturation of Satellite Transitions

Spectrum Frequency

νoff (RAPT Offset Frequency)

0 -Cq/2Cq/2

0 -Cq/2Cq/2

CT

STST

93Nb (I=9/2)Central Transition

in NaNbO3

0 -40 -80 -1204080120Frequency (ppm)Frequency (ppm)Frequency (ppm)

0 -20 -40 -60204060

59Co(I=7/2)Central Transitionin Na3[Co(NO2)6]

3.02.687Rb (I=3/2)

Central Transitionin RbClO4 1.96

0 -25 -50 -75255075

Yao et al., Chem. Phys. Lett., 327, 85-90 (2000), Prasad et al., JACS, 124(18), 4964-4965 (2002)P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 80 / 85

Page 81: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

CT Sensitivity Enhancement using Multiple RAPT

τ(π/2)CT

01

-1p

τ1x xx_ _

RecycleDelay

n m

54.74°B0

t

Frequency (ppm)100 80 60 40

1.02.05

3.02No RAPT

Single RAPT

Multi-RAPT

No RAPT

Single RAPT

Multi-RAPT

27Al (I=5/2) in Albite

Frequency (ppm)0 -200 -400 -600200400600

1.0

5.76

3.05

93Nb (I=9/2) in NaNbO3

Kwak, et al, Solid-State NMR, 24, 71-77 (2003)P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 81 / 85

Page 82: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

CT Sensitivity Enhancement with Echo Train Acquisition

(π/2)x πyτ τ τ

πyτ τ τ τ τ τ τ τ

πy πy πy πy

0+1

-1p

Echo train enhancement∝√

T2∕(2𝜏)

17O CPMG of Coesite (SiO2 Polymorph)

Frequency / kHz0102030 -10 -20 -30

8

6

4

2

1000 π pulses

Echo

Tra

in D

urat

ion/

s

Frequency / kHz0102030 -10 -20 -30

First EchoWeighted Sum of Echoes

CPMG Sensitivity Enhancement = 4.2

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 82 / 85

Page 83: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

CT Sensitivity Enhancement with Soft Pulse Echo Train Acquisition

0 50 100 150 200 250 300 350Time / s

1.0

0.5

0

–0.5

Echo

Am

plitu

deEc

ho A

mpl

itude

natural abundance 17O Echo Train Decay in Quartz 2.73 kHz Gaussian Pulses

natural abundance 17O Echo Train Decay in Quartz 32.5 kHz Square Pulses

0 5 10 15 20 25 30 35

1.0

0.5

–0.5

0

0100200 -100 -200frequency (ppm relative to H2

17O)

48 minutesS/N = 32

Natural abundance 17O CT in α-quartzCPMG Enhancement = 405

RAPT-CPMG Enhancement = 1012

0100200 -100 -200frequency (ppm relative to H2

17O)

ST x30

48 minutesS/N = 32

Natural abundance 17O CT in α-quartzCPMG Enhancement = 405

RAPT-CPMG Enhancement = 1012

Central Transition: 1∕T2 ∝ J(𝜔0) + J(2𝜔0)Satellite Transition: 1∕T2 ∝ J(0) + J(𝜔0) + J(2𝜔0)

Satellite transition T2 values are on order ofmilliseconds while central transition T2 values are onorder of T1, i.e., seconds to hours.P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 83 / 85

Page 84: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

CT Sensitivity Enhancement with Soft Pulse Echo Train AcquisitionD. Jardón-Álvarez, et al., Phys. Rev. B, 100, 140103 (2019)

It is always beneficial, and without any disadvantage, to go to lowest possible 𝜔1 withinconstraints of required excitation bandwidth.

Do not set 𝜋∕2 and 𝜋 pulse lengths based on CT nutation. Instead work in the 𝜔1 ≪ 𝜔q limit,calibrate 𝜔1 with liquid, and set pulse lengths to theoretical values of

𝜏𝜋∕2 = 14

2𝜋(S + 1∕2)𝜔1

and 𝜏𝜋 = 12

2𝜋(S + 1∕2)𝜔1

Soft pulse ETA works best in lattices dilute in NMR active nuclei, i.e., with no strong sources ofcentral transition T2 relaxation or echo train dephasing, e.g., dipolar couplings.

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 84 / 85

Page 85: Solid-State NMR of Quadrupolar Nucleiwinterschool.mit.edu/sites/default/files/documents/Philip Grandinetti... · Solid-State NMR of Quadrupolar Nuclei (the rest of the periodic table)

Acknowledgments

"Quadrupole" CollaboratorsAlex Pines, Jay Baltisberger, Antoine Llor, Margaret Eastman, Young Lee, Boqin Sun, Yue Wu, Jonathan Stebbins, Ian Farnan, Ulrike Werner-Zwanziger, Sheryl Gann, Josef Zwanziger, Joe Sachleben, Maurice Goldman, Zbigniew Olejniczak, Andrew Kolbert, Lucio Frydman, Gerry Chingas, Raz Jelinek, Brad Chmelka, Jacek Klinowski,

Dominique Massiot, Joseph Virlet, Thomas Vosegaard, Zhehong Gan, Lyndon Emsley, Dimitri Sakellariou, Michael Deschamps, Franck Fayon, Stefan Steuernagel, Guido Pintacuda

Past Group MembersProf. Jay Baltisberger

Dr. Pierre FlorianDr. Alex Klymachyov

Prof. Ted ClarkDr. Subramanian Prasad

Dr. Mike DavisDr. Daniel Jardón-Álvarez

Dr. Karl VermillionDr. Ping Zhang

Dr. Hyung-Tae KwakDr. Jason Ash

Dr. Nicole TreaseDr. Krishna Dey

Dr. Brennan WalderZhi Yao

Travis SefzikAntonio Paulic

Ramesh SharmaDerek KasemanKim ShookmanJacob Sillaman

Eric KeelerKevin Sanders

Pyae Phyo

RMN

Multidimensionalsignal processing on MacOS(ask for a free promo code)

Current Group MembersDr. Deepansh Srivastava

Dr. Jose Lorie LopezBrendan Wilson

Mark BoveeAudrey Cowen

Maxwell Venetos

P. J. Grandinetti (L’Ohio State University) Solid-State NMR of Quadrupolar Nuclei NMR Winter School, 2020 85 / 85