solid state lectures

Upload: jawaidalig

Post on 13-Apr-2018

237 views

Category:

Documents


1 download

TRANSCRIPT

  • 7/27/2019 Solid state lectures

    1/53

    TemperatureDependenceof

    CarrierConcentrations(IntrinsicLecture08

    .

    MdJawaidAlam JIIT,Sect62,Noida,India

    Intrinsiccarrierconcwithtempraturefor

    Ge,SiandGaAs.RefB

    G

    Streetman

    Fig

    318

  • 7/27/2019 Solid state lectures

    2/53

    TemperatureDependenceofCarrierConcentrations

    (ExtrinsicSemiconductors)

    Lecture08

    Thetemperaturedependenceofelectronconcentrationin

    adopedsemiconductorcanbevisualizedasshowninthis

    Fig

    concentrationNDof1015

    cm3.

    Atver lowtem eratures

    (large1/T),negligible

    intrinsicEHPsexist,and the

    donorelectronsareboundo e onora oms.

    RefBGStreetmanFig319

    Between100400Kwheneveryavailable

    extrinsicelectronhasbeen transferredtothe

    conductionband,n isvirtuallyconstantwith

    At higher temperatures ni is

    much greater than Nd, and the

    MdJawaidAlam JIIT,Sect62,Noida,India

    temperature untiltheconcentrationofintrinsic

    carriersnibecomescomparabletotheextrinsicconcentrationNd.

  • 7/27/2019 Solid state lectures

    3/53

    CompensationandSpaceChargeNeutrality Lecture08

    D i A i,only approximation no=Ndand po= NA is valid.

    The exact relationship among the electron, hole, donor, and acceptor

    concentrations can be obtained by considering the requirements for space charge

    neutrality

    If the material is to remain electrostaticall neutral the sum of the ositive

    charges (holes and ionized donor atoms) must balance the sum of the negative

    charges (electrons and ionized acceptor atoms).

    MdJawaidAlam JIIT,Sect62,Noida,India

    Ifthematerialisdopedntype(n0p0)then

  • 7/27/2019 Solid state lectures

    4/53

    * 10 3

    Lecture08

    temperature then

    a) findtheequilibriumelectronandholeconcentrationinthedoped

    semiconductor.

    b) Shiftin

    Fermi

    level

    with

    respect

    to

    intrinsic

    Fermi

    level.c) If wedopeBinsteadofAsthenrepeatparta)andb).

    Prob 2:FindthedopingconcentrationofAsorB(whicheverbesuitable)

    sothatFermilevelinthedopedSiliesexactlymiddleofthebandgap.

    MdJawaidAlam JIIT,Sect62,Noida,India

  • 7/27/2019 Solid state lectures

    5/53

    Lastlecture.Lecture09

    MdJawaidAlam JIIT,Sect62,Noida,India

  • 7/27/2019 Solid state lectures

    6/53

    Lastlecture.Lecture09

    MdJawaidAlam JIIT,Sect62,Noida,India

  • 7/27/2019 Solid state lectures

    7/53

    TemperatureDependenceofCarrierConcentrations

    (IntrinsicSemiconductors)Lecture09

    MdJawaidAlam JIIT,Sect62,Noida,India

  • 7/27/2019 Solid state lectures

    8/53

    Drift and DiffusionDrift and Diffusion Lecture09

    We now have some idea of the number density of

    semiconductor material from the work we covered inthe last lectures.

    ncecurren s e ra e o ow o c arge , we s abe able calculate currents flowing in real devices

    since we know the number of charge carriers. There are two current mechanisms which cause

    charges to move in semiconductors. The twomechanisms we shall stud in due course are dri tdri tandand diffusiondiffusion.

    Md Jawaid Alam JIIT,Sec62,Noida,INDIA

  • 7/27/2019 Solid state lectures

    9/53

    CarrierDriftCarrierDrift Lecture09

    fieldsince thefield exert a forceon charge carriers (electrons and holes).

    These movements result a current of ; F E=d

    d d

    dV

    Anq

    d

    :dV

    chargeoftheelectrondriftvelocityofchargecarrier :q

    areaofthesemiconductor:A

    Md Jawaid Alam JIIT,Sec62,Noida,INDIA

  • 7/27/2019 Solid state lectures

    10/53

    CarrierMobility,CarrierMobility, Lecture09

    dV E=

    :E appliedfieldmobilit ofchar ecarrier

    2

    [ ]

    =SecV

    cm isaproportionalityfactor

    =E

    d

    So is ameasurehoweasilychargecarriersmoveundertheinfluenceof .

    Md Jawaid Alam JIIT,Sec62,Noida,INDIA

  • 7/27/2019 Solid state lectures

    11/53

    ThemobilityhastwocomponentsThemobilityhastwocomponents Lecture09

    Themobilityhastwocomponent

    Impurityinteraction

    component

    component

    Md Jawaid Alam JIIT,Sec62,Noida,INDIA

  • 7/27/2019 Solid state lectures

    12/53

    ThermalvelocityThermalvelocity Lecture09

    ssume t at s c crysta s at t ermo ynam c equ r um .e. t ere s noapplied field). What will be the energy of the electron at a finitetemperature?

    The electron will have a thermal energy ofkkTT//22 per degree of freedom. So, in 3D, electron will have a thermal energy of

    * 23 1 3 3th th

    kT kT kT

    E m V V = = =

    : electronovelocitthermalV

    1

    2

    1

    TV th

    2mV th

    Md Jawaid Alam JIIT,Sec62,Noida,INDIA

  • 7/27/2019 Solid state lectures

    13/53

    RandommotionRandommotionresultresultnocurrentnocurrent.. Lecture09

    Since there isno applied field,the movement of thechar e carriers will be com letel random. This

    randomness resultno net current flow. As a result of

    thermal energy there are almostan equal number ofcarriers moving right as left, in as out or up as down.

    Md Jawaid Alam JIIT,Sec62,Noida,INDIA

  • 7/27/2019 Solid state lectures

    14/53

    CalculationCalculation Lecture09

    Calculate the velocity of an electron in a piece of ntype silicon

    due to its thermal energy at RT and due to the application of an

    *= = =

    e ec r c e o m across e p ece o s con.

    2? 1000 / 0.15 /( )

    t e

    dV E V m m V s= = =

    53 1.08 10 / secth th

    kTV V x m

    = =

    150 / secV E V m= =

    Md Jawaid Alam JIIT,Sec62,Noida,INDIA

  • 7/27/2019 Solid state lectures

    15/53

    MicroscopicunderstandingofmobilityMicroscopicunderstandingofmobility?? Lecture09

    Howlon doesacarriermoveintimebeforecollision?

    Theaveragetimetakenbetweencollisionsiscalledasrelaxation

    time, (ormeanfreetime)

    v

    collision?

    Theaveragedistancetakenbetweencollisionsiscalledasmean

    freepath, . l

    Md Jawaid Alam JIIT,Sec62,Noida,INDIA

  • 7/27/2019 Solid state lectures

    16/53

    CalculationCalculation Lecture09

    Driftvelocity=AccelerationxMeanfreetime

    *dFV

    m=

    Forceisduetotheappliedfield, F=qE

    * *d

    qV

    m m = =

    d

    qV E

    = =

    Md Jawaid Alam JIIT,Sec62,Noida,INDIA

  • 7/27/2019 Solid state lectures

    17/53

    CalculationCalculation Lecture09

    a cu a e e mean ree me an mean ree pa or e ec ronsin a piece of ntype silicon and for holes in a piece of ptypesilicon.

    *

    2 2

    ? ? 1 .1 8 0 .5 90 .1 5 / 0 .0 4 5 8 /

    e o h ol m m m m

    m V s m V s

    = = = == =

    1 2 1 31 0 sec 1 .5 4 1 0 sece e h he h

    m mx

    q q

    = = = =

    5 51 .0 8 1 0 / 1 .0 5 2 1 0 /elec h o leth th

    v x m s v x m s= =

    5 1 2 7(1 .0 8 1 0 / )(1 0 ) 1 0elece th e

    l v x m s s m = = =

    5 1 3 8 .h o l eh th h

    . .

    Md Jawaid Alam JIIT,Sec62,Noida,INDIA

  • 7/27/2019 Solid state lectures

    18/53

    Saturated DriftSaturated DriftVelocities(EffectatHighElectricField)Velocities(EffectatHighElectricField)Lecture09

    dV E=

    Soonecanmakeacarriergoasfastaswelikejustbyincreasing

    theelectricfield!!!

    dV forefore

    or o esor o es

    E E

    a mp ca ono a oveeqn. a ura on r ve oc y

    Md Jawaid Alam JIIT,Sec62,Noida,INDIA

  • 7/27/2019 Solid state lectures

    19/53

    Saturated DriftVelocitiesSaturated DriftVelocities Lecture09

    The equation of does not imply thatVVdd increasesEVd .=linearly with applied fieldEE..

    dd

    at some value ofVVdd which is closeVVthth at higher values ofEE.

    Any further increase in EE after saturation point does not

    increaseVVdd instead warms up the crystal.

    Md Jawaid Alam JIIT,Sec62,Noida,INDIA

  • 7/27/2019 Solid state lectures

    20/53

    LastLectureLecture10

    I n V A=

    dV E=

    So is ameasurehoweasilychargecarriersmoveundertheinfluenceof

    anappliedfieldor determineshowmobile the chargecarriersare.

    Themobilityhastwocomponent

    Impurityinteraction

    component

    Latticeinteraction

    component

  • 7/27/2019 Solid state lectures

    21/53

    MobilityvariationwithtemperatureMobilityvariationwithtemperature Lecture10

    L I

    TTTT

    Hightemperature Lowtemperature

    )ln(1 1 1

    Peakdependsonthedensityof

    impuritiesI

    LT L I

    =

    ln(T)ln(T)Thisequationiscalled as

    Mattheisensrule.Md Jawaid Alam JIIT,Sec62,Noida,INDIA

  • 7/27/2019 Solid state lectures

    22/53

    For lightly doped samples (e.g., the

    MobilityvariationwithtemperatureMobilityvariationwithtemperature Lecture10

    sample with doping of 1014 cm3), the

    lattice scattering dominates, and the

    mobility decreases as the temperature

    For heavily doped samples, the effect

    of impurity scattering is most

    pronounced at low temperatures. The

    mobility increases as the temperature

    increases, as can be seen for the19

    For a given temperature, the mobility

    decreases with increasing impurity

    Electronmobilityinsiliconversustemperaturefor

    impurity scattering

    var ous onorconcen ra ons. nser s ows e

    theoreticaltemperaturedependenceofelectron

    Mobility

  • 7/27/2019 Solid state lectures

    23/53

    ConceptofMeanfreetimeandMeanFreePathlengthLLecture10

    Driftvelocity=AccelerationxMeanfreetime

    *dFV

    m=

    Forceisduetotheappliedfield, F=qE

    * *d

    qV

    m m = =

    d

    qV E

    = =

  • 7/27/2019 Solid state lectures

    24/53

    Conductivity Lecture10

    Anq

    d

    I

    d d dI nqV A V E= =

    dJ

    A m

    = =

    d d2

    x d x x

    nqJ nqV nq E J E

    m

    = = =

    2 1n x xm = = =

  • 7/27/2019 Solid state lectures

    25/53

    OhmsLaw Lecture10

    1x

    x xx

    I IV VJ E

    A L A L = = =

    VA V

    L R= =

    Prob: Assumin that mobilit of electron is three times mobilit of holes insilicon at 300K prove that a silicon sample has maximum resistivity when it isslightly ptype. Also find the doping concentration for maximum resistivity.

  • 7/27/2019 Solid state lectures

    26/53

    CalculationCalculationLecture10

    a cu a e e mean ree me an mean ree pa or e ec ronsin a piece of ntype silicon and for holes in a piece of ptypesilicon.

    *

    2 2? ? 1 .1 8 0 .5 9

    0 .1 5 / 0 .0 4 5 8 /

    e o h ol m m m mm V s m V s

    = = = == =

    1 2 1 31 0 sec 1 .5 4 1 0 sece e h he h

    m mx

    q q

    = = = =

    5 51 .0 8 1 0 / 1 .0 5 2 1 0 /elec h o leth th

    v x m s v x m s= =

    5 1 2 7(1 .0 8 1 0 / )(1 0 ) 1 0elece th e

    l v x m s s m = = =

    5 1 3 8 .h o l eh th h

    . .

    Md Jawaid Alam JIIT,Sec62,Noida,INDIA

  • 7/27/2019 Solid state lectures

    27/53

    HallEffect Lecture11

    The carrier concentration in a semiconductor may be different

    from the impurity concentration, because the ionized impurity

    density depends on the temperature and the impurity energy

    level.

    To measure the carrier concentration directly, the most

    .

    Hall measurement is also one of the most convincing methodsto show the existence of holes as charge carriers, because the

    measurement can ive directl the carrier t e.

  • 7/27/2019 Solid state lectures

    28/53

    HallEffectCont Lecture11

    Anelectricfieldappliedalongthexaxis

    AmagneticfieldappliedalongthezaxisHallCoefficient

    Consideraptypesemiconductorsample

    where

  • 7/27/2019 Solid state lectures

    29/53

    HallEffectCont Lecture11

    AmeasurementoftheHallvoltageforaknowncurrentandmagneticfieldyields

    whereallthequantitiesinthelighthandsideoftheequationcanbemeasured.

  • 7/27/2019 Solid state lectures

    30/53

    n(x)DiffusionCurrent Lecture11

    F1ofelectronscrossingplane

    x=0fromtheleftisthen

    Similarly,theaveragerateofelectronflow

    perun area 2o e ec ronsa x= cross ng

    planex=0fromtherightis

    xWhere

    * 23 1 3 3th th

    kT kT kT E m V V

    = = =

  • 7/27/2019 Solid state lectures

    31/53

    Lecture11

    Thenetrateofcarrierflowfromlefttorightis

    firsttwotermsofaTaylorseriesexpansion,

    weobtain

    Where

    is calledthediffusioncoefficientalsocalled

    F

    .

    Becauseeachelectroncarriersacharge q

  • 7/27/2019 Solid state lectures

    32/53

    LastLecture Lecture12

    Prob:Assumethat,inanntypesemiconductoratT

    =300

    K,

    the

    electron

    concentration

    variesLinearlyfrom1x1018 to7X1017cm3 overadistanceof0.1cm.Calculatethe

    diffusioncurrentdensityiftheelectrondiffusioncoefficientisDn=22.5cm2/s.

    Current L t 12

  • 7/27/2019 Solid state lectures

    33/53

    Current

    TotalCurrentdensity Lecture12

    n(x)Electrondiffusion

    x

    Current

    p(x)

    x

    40 L t 12

  • 7/27/2019 Solid state lectures

    34/53

    EinsteinRelation40 Lecture12

    40

    L t 13

  • 7/27/2019 Solid state lectures

    35/53

    Module4: Excesscarriersgeneration&recombination

    processesandsemiconductordeviceequations.

    Lecture13

    Intrinsic Doped

    OnlyinthermalequilibriumtheTheprocessofintroducingexcesscarriersis

    i

    .

    calledcarrier

    injection.

    Wecanintroduceexcesscarriersby

    Optica excitation

    forwardbiasingapnjunction

    Electronbombardment

    Lecture 13

  • 7/27/2019 Solid state lectures

    36/53

    DirectRecombination Lecture13

    Numberofelectronholepairsgeneratedpercm3 per

    second: GthNumberofelectronholepairsRecombinedper

    cm3 persecond:Rth

    andatthermalequilibriumRth=Gth

    nn0nn0 nn =nn0+ nn0

    Thermalequilibrium

    pn0pn =pn0+ pn0

    n0

    Lecture 13

  • 7/27/2019 Solid state lectures

    37/53

    DirectRecombination Lecture13

    therateofchangeofholes withtimeinthisdynamicsystemwillbe

    Insteadystate,

    whereUisthenetrecombinationrate.

    Lecture 13

  • 7/27/2019 Solid state lectures

    38/53

    Lecture13

    And

    u

    For lowlevel in ection

    Where

    Lecture 13

  • 7/27/2019 Solid state lectures

    39/53

    Thephysicalmeaningoflifetimecanbestbe

    Lecture13

    adeviceafterthesuddenremovalofthelight

    source.

    Consideranntypesample,asshown

    inFigthatisilluminatedwithlightand

    inwhichtheelectronholepairsare

    generateduniformlythroughoutthe

    samplewithagenerationrateGL

    Insteadystate GLmustbeequaltoNet

    recombinationU

    Lecture13

  • 7/27/2019 Solid state lectures

    40/53

    Lecture13

    Ifatanarbitrarytime,say

    t=0,thelightissuddenly

    Willreduceto

  • 7/27/2019 Solid state lectures

    41/53

    andthesolutionis Lecture13

    Prob:ASisamplewithnn0=1014 cm3 isilluminatedwithlightand1013 electronhole

    pairs/cm3arecreatedeverymicrosecond.Iftn=tp=1uSec,findthechangeintheminority

    carrierconcentration.

    Ifthelightisturnedoffatt=0sec,i.e GL=0att=0, thenfind theholeconcentrationatt=1u

    sec,

    t=2u

    sec,

    t=4u

    sec

    and

    t=10u

    sec

    Indirect Recombination Lecture14

  • 7/27/2019 Solid state lectures

    42/53

    IndirectRecombination

    recombinationcenters

    Lecture 14

    Traplevel

    NetRecombination

    rate

    (U)

    depends

    on ee ec ronor o ecap urecross

    section.

    Auger recombination Lecture14

  • 7/27/2019 Solid state lectures

    43/53

    Augerrecombination Lecture 14

    Usually,Augerrecombinationisimportantwhenthecarrierconcentrationisveryhigh

    asaresultofeitherhighdopingorhighinjectionlevel.BecausetheAugerprocess

    vo ve eep e , o u o o x

    TheproportionalityconstantBhasastrongtemperaturedependence

    CONTINUITY EQUATION Lecture14

  • 7/27/2019 Solid state lectures

    44/53

    CONTINUITYEQUATION Lecture 14

    In the revious lectures we considered individual effects such as drift due to an

    electricfield,diffusionduetoaconcentrationgradient,andrecombinationofcarriersthroughintermediatelevelrecombinationcenters

    , ,

    simultaneouslyinasemiconductormaterial.Thegoverningequationiscalledthe

    continuityequation.

    CONTINUITY EQUATION Lecture14

  • 7/27/2019 Solid state lectures

    45/53

    CONTINUITYEQUATION

    Toderivetheonedimensionalcontinuityequationforelectrons,consideraninfinitesimal

    Thenumberofelectronsintheslicemay

    thesliceandthenetcarriergeneration

    intheslice

    Theoverallrateofelectron

    increaseisthealgebraicsumof

    fourcomponents:thenumberof

    ,

    minusthenumberofelectrons

    flowingoutatx+dx,plustherate

    atwhichelectronsaregenerated,

    minustherateatwhichtheyare

    recombined withholesintheslice.

    CONTINUITY EQUATION Lecture14

  • 7/27/2019 Solid state lectures

    46/53

    CONTINUITYEQUATION

    atx+dx inTaylorseriesyields

    Wethusobtainthebasiccontinuityequation

    forelectrons:

    Asimilarcontinuityequationcanbederived

    forholes,

    CONTINUITYEQUATION Lecture14

  • 7/27/2019 Solid state lectures

    47/53

    Q

    Intermsofmobilityanddiffusiontheonedimensionalcaseunderlowinjectioncondition,continuityequationsforminoritycarriersbecomes

    YouMustkeepinmindthebasic

    requirementofPoissonsEquation

    Lecture15SteadyStateInjectionfromOneSide

  • 7/27/2019 Solid state lectures

    48/53

    IntheFigureanntypesemiconductor

    whereexcesscarriersareinjectedfromonesideasaresultofillumination.Itis

    assumedthatlight penetrationisnegligibly

    small i.e. the assum tions of zero field

    andzerogenerationforx>0).

    thereisaconcentrationgradientnearthe

    sur acean tw sat s y ont nu ty

    equationgivenby.

    Atsteadystatesolutionofthedifferentialequationfor

    t em nor tycarr ers ns et esem con uctor s

    Lecture15

  • 7/27/2019 Solid state lectures

    49/53

    o ut ono t e or er erent a equat on s

    Thelength isequalto andiscalledthediffusionlength.ppDL p

    Minority Carriers at the Surface Lecture15

  • 7/27/2019 Solid state lectures

    50/53

    MinorityCarriersattheSurface

    Lecture15

  • 7/27/2019 Solid state lectures

    51/53

    Assignment1Dateofsubmission:onorbefore23rdofFebruary

    Answer

    Lecture15

  • 7/27/2019 Solid state lectures

    52/53

    W

    Uniqueness ofFermilevelinbulksemiconductor

  • 7/27/2019 Solid state lectures

    53/53