solar physics & space plasma research centre

29
Solar Physics & Space Plasma Research Centre University of Sheffield Ionization diagnostics of solar magnetic structures Dr Gary Verth [email protected] Can observed waves tell us anything at all about spicules?

Upload: marli

Post on 24-Feb-2016

54 views

Category:

Documents


1 download

DESCRIPTION

Solar Physics & Space Plasma Research Centre. Ionization diagnostics of solar magnetic structures. Can observed waves tell us anything at all about spicules ?. Dr Gary Verth [email protected]. University of Sheffield. Solar Physics & Space Plasma Research Centre. Acknowledgements. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Solar Physics & Space Plasma Research Centre

Solar Physics & Space Plasma Research Centre

University of Sheffield

Ionization diagnostics of solar magnetic structures

 

Dr Gary [email protected]

Can observed waves tell us anything at all about spicules?

Page 2: Solar Physics & Space Plasma Research Centre

Solar Physics & Space Plasma Research Centre

University of Sheffield

Acknowledgements

Prof. Marcel Goossens, Dr. Roberto Soler , Dr. Jesse Andries

Dr. Jaume Terradas

Dr. Jiansen He

Prof. Robertus Erdélyi, Prof. Michael Ruderman

Page 3: Solar Physics & Space Plasma Research Centre

Solar Physics & Space Plasma Research Centre

University of Sheffield

Plasma density measurements from intensity

Traditionally using spectral line intensities. Assuming filling factor, background subtraction, etc. correct still forced to make many assumptions. 

Intensity

Source function

Opacity

Plasma density

Geometric depth

Page 4: Solar Physics & Space Plasma Research Centre

Solar Physics & Space Plasma Research Centre

University of Sheffield

Spicule filling factor?

Spicules very narrow features at spatial resolution limit of telescopes, e.g., SOT (approx. 200 km). 

Unresolved expanding flux tube

De Forest (2007)

Page 5: Solar Physics & Space Plasma Research Centre

Solar Physics & Space Plasma Research Centre

University of Sheffield

Spicule plasma density modelling

Density model from eclipse flash spectra (Makita 2003).

Assumptions

1) constant source function

2) intensity of metallic lines       ∝ intensity of hydrogen density     (Zirker 1958)

3) Balmer line intensity       ∝ ne np

    (isothermal plasma assumption)

4) Height dependent spicule filling      factor  0.01-1.01

Page 6: Solar Physics & Space Plasma Research Centre

Solar Physics & Space Plasma Research Centre

University of Sheffield

Spicule magnetic field measurementFrom Centeno et al. (2010). S/N ratio poor for off-limb Zeeman and Hanle measurements. Integration time of 45 minutes at two different altitudes (2’’ and 3” above limb).  Much longer than lifetime of individual spicules.

Page 7: Solar Physics & Space Plasma Research Centre

Solar Physics & Space Plasma Research Centre

University of Sheffield

Example of propagating kink wave observed in spicule with Hinode/SOT Ca II H filter from He et al. (2009).  Relatively  undynamic “Type I” spicule.

Can we use wave observations to say something about spicule structure?

Flow speed (up and down) ≈ 10 km s-1

Phase speed ≈100 km s-1

→ Sub-Alfvenic flow (not always the case!)

 

Page 8: Solar Physics & Space Plasma Research Centre

Solar Physics & Space Plasma Research Centre

University of SheffieldTime (0 - 360s)

Heig

ht (0

- 7

Mm

)

Can measure  the follow crucial wave parameters as a function of height (He et al. 2009)

1) Period

2) Phase travel time (→phase speed)

3) Velocity amplitude

Wave propagates along the spicule in about 150 s, well within the spicule lifetime.

Amplitude vs height and time

Page 9: Solar Physics & Space Plasma Research Centre

Solar Physics & Space Plasma Research Centre

University of Sheffield

Wave properties vs height

From He et al. (2009). See also earlier work by Zaqarashvili et al. (2007) 

Page 10: Solar Physics & Space Plasma Research Centre

Using ideal MHD 

Allow  internal and external plasma density to be different

                         

Assume average R dependence for magnetic field, i.e,

Solar Physics & Space Plasma Research Centre

University of Sheffield

Basic model

Page 11: Solar Physics & Space Plasma Research Centre

Solar Physics & Space Plasma Research Centre

University of Sheffield

Governing wave equations m=0 (the “torsional Alfven wave”)                               m=1 (the “kink wave”)

See e.g. Hollweg (1981), Poedts et al. (1985).

Verth & Erdélyi (2008), Ruderman et al. (2008), Andries & Cally (2011)

N.B. not the same as equation by Spruit (1981)!

Page 12: Solar Physics & Space Plasma Research Centre

Solar Physics & Space Plasma Research Centre

University of Sheffield

Basic kink wave behaviour (no damping)

WKB solution for velocity amplitude is 

1)

2)

3)

Page 13: Solar Physics & Space Plasma Research Centre

Solar Physics & Space Plasma Research Centre

University of Sheffield

Observational examples

In study by He et al. (2009) they use Hinode/SOT to measure amplitudes and wavelengths in spicules. Are there understandable trends here?

Page 14: Solar Physics & Space Plasma Research Centre

Solar Physics & Space Plasma Research Centre

University of Sheffield

Effect of dampingFollowing on from Roberto’s talk. Ion-neutral damping is a frequency dependent effect.

To compete with damping due to resonant absorption need  

Martinez-Sykora et al. (2012) Okamoto & De Pontieu (2011).

Page 15: Solar Physics & Space Plasma Research Centre

Solar Physics & Space Plasma Research Centre

University of Sheffield

Effect of resonant absorption

In the TTTB approximation  damping length due to RA was investigated by Terradas et al. (2010), Verth et al. (2010) and Soler et al. (2011)

Equilibrium type                                                  Damping relation                                           

Page 16: Solar Physics & Space Plasma Research Centre

Solar Physics & Space Plasma Research Centre

University of Sheffield

Effect of RA: example 1

Assume a straight tube (constant magnetic field ), constant density

Page 17: Solar Physics & Space Plasma Research Centre

Solar Physics & Space Plasma Research Centre

University of Sheffield

Effect of RA:example 2

Assume a expanding tube (non-constant magnetic field) and non-constant density so that kink speed varies.

Page 18: Solar Physics & Space Plasma Research Centre

Solar Physics & Space Plasma Research Centre

University of Sheffield

Velocity amplitude: Coronal holesThe trend in non-thermal spectral line broadening (interpreted as velocity amplitude) has been claimed to be the source for both coronal heating and solar wind acceleration (Hahn et al. 2012, Bemporad & Abbo 2012)

McIntosh et al. (2011) used SDO/AIA to estimate phase speed with height.

Measured average velocity amplitude of 25 km s-1

Page 19: Solar Physics & Space Plasma Research Centre

It is well known (Kneser`s oscillation theorem) that the governing  kink wave equation can have a cutoff if              is increasing linearly with height (or greater).

Solar Physics & Space Plasma Research Centre

University of Sheffield

Cutoff frequency

Linear profile Quadratic profile

Page 20: Solar Physics & Space Plasma Research Centre

Solar Physics & Space Plasma Research Centre

University of Sheffield

Spicule statistics Okamoto & De Pontieu (2011) studied wave properties of large sample.

59% propagating up 21% propagating down20% standing

1) High pass filtering due to longitudinal  stratification (cutoff frequency) 

2)   Low pass filtering caused by transverse      stratification (resonant absorption  or ion-neutral damping)

Page 21: Solar Physics & Space Plasma Research Centre

Solar Physics & Space Plasma Research Centre

University of Sheffield

Case study: Verth et al. (2011)

From observational case study of He at al. (2009) , all wave variables, apart from R(s), can be estimated.

where

Page 22: Solar Physics & Space Plasma Research Centre

Solar Physics & Space Plasma Research Centre

University of Sheffield

Least squares fit to data: Phase travel time

Page 23: Solar Physics & Space Plasma Research Centre

Solar Physics & Space Plasma Research Centre

University of Sheffield

Least squares fit to data: Velocity amplitude

Page 24: Solar Physics & Space Plasma Research Centre

Solar Physics & Space Plasma Research Centre

University of Sheffield

Spicule flux tube area vs height

Tsuneta et al. (2008) estimated upper limit area expansion of 345 between photosphere and corona (in Sun’s south polar region).

Tu et al. (2005)

Page 25: Solar Physics & Space Plasma Research Centre

Solar Physics & Space Plasma Research Centre

University of Sheffield

Spicule magnetic field strength vs heightComparison with average unsigned magnetic field from 3D radiative MHD simulations of De Pontieu et al. (2007) (courtesy M. Carlsson).

Page 26: Solar Physics & Space Plasma Research Centre

Solar Physics & Space Plasma Research Centre

University of Sheffield

Comparison of footpoint magnetic field

Comparison between wave study result and 3D radiative MHD simulation highly dubious!  A dipole structure at footpoint of spicule, c.f., simulation?

Page 27: Solar Physics & Space Plasma Research Centre

Solar Physics & Space Plasma Research Centre

University of Sheffield

Spicule plasma density vs height

Electron densitySpectroscopic studies of Becker (1968), Makita (2003)

Plasma densitySpectroscopic study of Makita (2003)

Estimate using kink wave observation  by Verth et al. (2011)

TEMPERATURE INCREASE WITH HEIGHT (De Pontieu et al. 2011)?

Page 28: Solar Physics & Space Plasma Research Centre

Solar Physics & Space Plasma Research Centre

University of Sheffield

Assuming plasma density is proportional to hydrogen number density and most free electrons are from hydrogen then ionisation fraction is 

Makita (2003) estimate plotted for comparison.

Spicule ionisation fraction vs heightBy combining wave observation (plasma density scale gradient) and spectroscopy (electron density gradient) can estimate ionisation fraction.

Page 29: Solar Physics & Space Plasma Research Centre

Solar Physics & Space Plasma Research Centre

University of Sheffield

Conclusions

   Studying waves can give insight into the height dependence of both magnetic field and plasma mass density. Not 

without value in the chromosphere!

  Need good estimates of both height dependence of phase speed and velocity amplitude. One without the other not  very useful. Although can say something about cutoff  frequency with just phase speed. 

  Can studying waves tell us anything about ionisation? Certainly can help with estimating  height dependence of mass density in chromosphere.  Not without value!

  Damping regime due to  ion-neutral collisions interesting. High frequency effect. Would be difficult to disentangle  from other damping effects, e.g. resonant absorption (also  frequency dependent).