solar energy: the semiconductor - nptel · 2019. 2. 21. · allowed energy and wave vectors of...

94
Solar Energy: The Semiconductor

Upload: others

Post on 02-Apr-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Solar Energy:The Semiconductor

Page 2: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Learning objectives:

1)To plot the band diagrams of materials2)To explain the interaction of bands with

radiation3)To understand the different ways in

which band diagrams can be plotted.

Page 3: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Band gap Eg

Filled Valence Band

Overlapping bands: Metal

Partially filled bands: Metal

Band gap less than 2eV:

Semiconductor

Band gap greater than

2eV: Insulator

Filled Valence Band

Empty Conduction

Band

Empty Conduction

Band

Band gap Eg

(a) (b) (c) (d)

Page 4: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Visible Spectrum Wavelength: 400 nm (violet) to 700 nm (red)

Corresponding band gaps: 3.1 eV to 1.8 eV

UV3%

Visible44%Infra Red

53%

Page 5: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Band gap Eg

Filled Valence Band

Overlapping bands: Metal

Partially filled bands: Metal

Band gap less than 2eV:

Semiconductor

Band gap greater than

2eV: Insulator

Filled Valence Band

Empty Conduction

Band

Empty Conduction

Band

Band gap Eg

Visible Spectrum Wavelength: 400 nm (violet) to 700 nm (red)

Corresponding band gaps: 3.1 eV to 1.8 eV

Page 6: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Filled Valence Band

Intrinsic semiconductor

Empty Conduction

Band

(a) (b) (c)

Filled Valence Band

n-type extrinsic semiconductor

Empty Conduction

Band

Filled Valence Band

p-type extrinsic semiconductor

Empty Conduction

Band

Ef

Ef

Ef

Acceptor LevelsDonor Levels

Page 7: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Temperature

Ch

arge

car

rier

co

nce

ntr

atio

n

Extrinsic regime

Intrinsic regimeLow TemperatureCharge Carriersfrozen

Intrinsic semiconductorExtrinsic semiconductor

Page 8: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

2 2

2

h kE

m

l = ph

E = hn Planck

de Broglie

Page 9: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Ene

rgy

Ek

0 π/a 2π/a 3π/a-3π/a -2π/a -π/a-4π/a 4π/a

Allowed energy and wave vectors of nearly free electrons

Brillouin zone boundaries

Brillouin zones and allowed

electron energy levels

identified, but interaction

between them not shown

Page 10: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

d

dSinq dSinq

qq

qq

Page 11: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

O A

B

S

S0

l

l

S

l

S0

l- = Hhkl

b1

b2

Ewald sphere

Page 12: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Ene

rgy

Ek

0 π/a 2π/a 3π/a-3π/a -2π/a -π/a

Brillouin zone boundaries

Interaction between Brillouin

zones and allowed nearly free

electron energy levels –

Extended zone representation

E Vs k of nearly free electrons, without accounting for the Brillouin ZonesE Vs k of nearly free electrons, distorted due to interaction with Brillouin Zones

Page 13: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Ene

rgy

Ek

0 π/a 2π/a 3π/a-3π/a -2π/a -π/a

Brillouin zone boundaries

Interaction between Brillouin

zones and allowed nearly free

electron energy levels –

Extended zone representation

E Vs k of nearly free electrons, without accounting for the Brillouin ZonesE Vs k of nearly free electrons, distorted due to interaction with Brillouin Zones

Resulting

flat band

diagrams

Page 14: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Ene

rgy

Ek

0 π/a 2π/a 3π/a-3π/a -2π/a -π/a

Brillouin zone boundaries

Interaction between Brillouin

zones and allowed nearly free

electron energy levels –

Extended zone representation

E Vs k of nearly free electrons, without accounting for the Brillouin ZonesE Vs k of nearly free electrons, distorted due to interaction with Brillouin Zones

Resulting

flat band

diagrams

Ef

Page 15: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Ene

rgy

E

k0 π/a 2π/a 3π/a-3π/a -2π/a -π/a

Brillouin zone boundaries

Interaction between Brillouin

zones and allowed nearly free

electron energy levels –

Repeated zone representation

E Vs k of nearly free electrons, without accounting for the Brillouin ZonesE Vs k of nearly free electrons, distorted due to interaction with Brillouin Zones

Corresponding

flat band

diagrams

Ef

Page 16: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Ene

rgy

Ek

0 π/a 2π/a 3π/a-3π/a -2π/a -π/a

Brillouin zone boundaries

Interaction between

Brillouin zones and allowed

nearly free electron energy

levels – Reduced zone

representation

E Vs k of nearly free electrons, without accounting for the Brillouin ZonesE Vs k of nearly free electrons, distorted due to interaction with Brillouin Zones

Corresponding

flat band

diagrams

Ef

Page 17: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Ene

rgy

E

k0 π/a-π/a

Corresponding flat band diagrams

Ene

rgy

E

k0 π/a-π/b

Corresponding flat band diagrams

EgEg

Direct bandgap semiconductor Indirect bandgap semiconductor

Page 18: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Ene

rgy

E

k

Eg

Ph

oto

n

Phonon

Page 19: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Conclusions:

1) There is significant variation in the band diagrams of different types of materials

2) Interaction of a material with radiation depends strongly on its band diagram

3) Visible spectrum is a small fraction of solar radiation4) There is a difference in the effectiveness with which

direct and indirect bandgap semiconductors interact with radiation

Page 20: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Solar Energy:The p-n junction

Page 21: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Learning objectives:

1)To describe the material features as well as characteristics of the p-n junction

2)To explain the functioning of the p-n junction

Page 22: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Charge carrier concentration depends only temperature

Conductivity depends only on Temperature

Examples: Elemental: Group IV A: Si (1.1 eV), Ge (0.7 eV) Compound:

Group III A and Group V A (III-V) GaAs, InSb

Group II B and Group VI A (II-VI) CdS, ZnTe

Filled Valence Band

Intrinsic semiconductor

Empty Conduction

Band

Ef

Page 23: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Filled Valence Band

p-type extrinsic semiconductor

Empty Conduction

Band

Ef

Acceptor Levels

Charge carrier concentration depends on dopant concentration

Conductivity depends on dopant concentration

Examples: Group IV A elements doped with small

quantities of Group III A elements: B, Al, Ga, In, Tl

Page 24: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Filled Valence Band

n-type extrinsic semiconductor

Empty Conduction

Band

Ef

Donor Levels

Charge carrier concentration depends on dopant concentration

Conductivity depends on dopant concentration

Examples: Group IV A elements doped with small

quantities of Group V A elements: N, P, As, Sb, Bi

Page 25: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Valence Band

Intrinsic semiconductor

Conduction Band

Ef

Hole in valence band

Electron in conduction band

𝐸𝑔 = ℎ𝑣 Stability of electron-hole pair?

Page 26: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Metal

Page 27: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

The p-n junction

+ + + + + + +

+ + + + + + +

+ + + + + + +

+ + + + + + +

+ + + + + + +

+ + + + + + +

- - - - - - -

- - - - - - -

- - - - - - -

- - - - - - -

- - - - - - -

- - - - - - -

Si doped with B Si doped with P

𝜎 = 𝑛 𝑒 𝜇𝑒 + 𝑝 𝑒 𝜇ℎ

Page 28: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

The space charge regionDepletion region

+ + + + ++ +

+ + + + ++ +

+ + + + ++ +

- -- - - - -

- -- - - - -

- -- - - - -

+ + + + ++ +

+ + + + ++ +

+ + + + ++ +

- -- - - - -

- -- - - - -

- -- - - - -

𝐸

Page 29: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

space charge regiondepletion region

+ + + + ++ +

+ + + + ++ +

+ + + + ++ +

- -- - - - -

- -- - - - -

- -- - - - -

+

+

+

- - - -

- - - -

- - - -

- - -

- - -

- - -

++ +

++ +

++ +

Page 30: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

+ + + + ++ +

+ + + + ++ +

+ + + + ++ +

- -- - - - -

- -- - - - -

- -- - - - -

+ + +

+ + +

+ + +

- - -

- - -

- - -

+ + + +

+ + + +

+ + + +

-

-

-

space charge regiondepletion region

Page 31: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

EVac

EC

EFp

EV

EC

EFn

EV

EFi EFi

p- type n- type

Page 32: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

EVac

EC

EFp

EV

EC

EFn

EV

EFi

EFi

pn-junction

Page 33: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

EVac

EC

EFp

EV

EC

EFn

EV

EFi

EFi

pn-junction

Page 34: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

The space charge region

+ + + + ++ +

+ + + + ++ +

+ + + + ++ +

- -- - - - -

- -- - - - -

- -- - - - -

Charge density 𝜌

𝜌

Page 35: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

The space charge region

+ + + + ++ +

+ + + + ++ +

+ + + + ++ +

- -- - - - -

- -- - - - -

- -- - - - -

𝜕𝐸

𝜕𝑥=𝜌

𝜀

𝐸

Page 36: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

𝜕2𝑉

𝜕𝑥2= −

𝜌

𝜀

The space charge region

+ + + + ++ +

+ + + + ++ +

+ + + + ++ +

- -- - - - -

- -- - - - -

- -- - - - -

𝜕𝑉

𝜕𝑥= −𝐸

𝑉

Page 37: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

𝜌

𝐸

𝑉

𝜕𝐸

𝜕𝑥=𝜌

𝜀

𝜕2𝑉

𝜕𝑥2= −

𝜌

𝜀

𝜕𝑉

𝜕𝑥= −𝐸

Page 38: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Forward bias

+ + + + ++ +

+ + + + ++ +

+ + + + ++ +

- -- - - - -

- -- - - - -

- -- - - - -

Page 39: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Forward bias

+ + + + ++ +

+ + + + ++ +

+ + + + ++ +

-- - - - - -

-- - - - - -

-- - - - - -

Page 40: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Reverse bias

+ + + + ++ +

+ + + + ++ +

+ + + + ++ +

- -- - - - -

- -- - - - -

- -- - - - -

Page 41: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Reverse bias

+ + + +++ +

+ + + +++ +

+ + + +++ +

- --- - - -

- --- - - -

- --- - - -

Page 42: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

I-V characteristics

I

V

Forward biasReverse bias

Page 43: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Conclusions:

1) A p-n junction can be formed using appropriately doped materials that are processed carefully

2) Charge, Field and Potential depend on the location in a p-n junction

3) A p-n junction has interesting I-V characteristics

Page 44: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

I-V characteristics

I

V

Forward biasReverse bias

Page 45: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Solar Cell:Growing the single crystal

and making the p-n junction

Page 46: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Learning objectives:

1)To become familiar with the techniques used to make single crystal as well as amorphous Si

2)To understand the method to manufacture the p-n junction

Page 47: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Czochralski process

Float Zone process

Zone refining

Cutting wafers

Amorphous Si

Manufacturing p-n junctions

Page 48: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

A

(a) (b)

(c) (d)

Page 49: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Quartzite(relatively pure sand)

Metallurgical Grade Silicon (MGS)

Metallurgical Grade Silicon (MGS)98% purity

Electronic Grade Silicon (EGS)ppm (C, O) to ppb (metals)

Si (solid) + 3HCl SiHCl3 (gas) + H2

Si converted to Trichlorosilane, which is purified and reduced back to Si

SiO2 + Coke + Heat

Page 50: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Molten Silicon(Melting point 1414 oC)

Heating coilsRF currentsInduction1425 oC

Rotating Chuck

Quartz Crucible

GrowingCrystal

SeedCrystal

Czochralski process

200-300mm

25 mm/hrSemiconductor grade SiliconQuartz (SiO2) crucible (1670 oC)Inert atmosphere of ArB or P added before melting

Page 51: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Introduction of seed crystal

Melting of polycrystalline

Silicon and adding of dopants

Growth of crystal

Completed crystal

Czochralski process

Page 52: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Float zone process

Polycrystalline Si rod

Molten Zone

Moving Heating coils

Upper chuck

Lower chuck

SeedCrystal

Ar Smaller diameter

(150mm) due to surface tension

Higher purity

Page 53: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Zone refining

Composition % B

Tem

per

atu

re

Page 54: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Inner diameter slicing of Si ingot

Diamond cutting edge

Silicon ingot

Sliced wafer

Can produce one wafer at a timeWire saw uses fast moving thin wire with abrasive slurry, can cut several wafers at the same time

Silicon wafers are 0.2 to 0.75 mm thick

Page 55: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

p{100)

n{111}

P{111}

n{100}

Notches typically used to indicate orientation and doping

Page 56: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Amorphous Si

CVD process

Has dangling bonds (defects)

Hydrogenated amorphous Silicon, a-Si:H by deposition from Silane gas SiH4

Page 57: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

p-n junction

Ion implantation: Low temperature process, ionized dopants accelerated using electric fields. Annealing required

Diffusion: Vapour phase deposition followed by high temperature diffusion

Epitaxy: Under high vacuum, gaseous elements condense on substrate wafer

Page 58: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Conclusions:

1) It is quite challenging to produce single crystal Si2) Multiple process steps involved 3) Purity and dimensions can have significant impact

on costs4) Amorphous Si is an option

Page 59: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Solar Energy:Interaction of p-n junction

with radiation

Page 60: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Learning objectives:

1)To describe the interaction of a p-n junction with radiation

2)To explain the functioning of the p-n junction solar cell

Page 61: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Forward bias

+ + + + ++ +

+ + + + ++ +

+ + + + ++ +

- -- - - - -

- -- - - - -

- -- - - - -

Page 62: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

𝜌

𝐸

𝑉

𝜕𝐸

𝜕𝑥=𝜌

𝜀

𝜕2𝑉

𝜕𝑥2= −

𝜌

𝜀

𝜕𝑉

𝜕𝑥= −𝐸

Page 63: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Forward bias

+ + + + ++ +

+ + + + ++ +

+ + + + ++ +

-- - - - - -

-- - - - - -

-- - - - - -

Page 64: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Reverse bias

+ + + + ++ +

+ + + + ++ +

+ + + + ++ +

- -- - - - -

- -- - - - -

- -- - - - -

Page 65: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Reverse bias

+ + + +++ +

+ + + +++ +

+ + + +++ +

- --- - - -

- --- - - -

- --- - - -

Page 66: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

I-V characteristics

I

V

Forward biasReverse bias

Page 67: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

EC

EFp

EV

EC

EFn

EV

EFi

EFi

pn-junction

Page 68: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

EVac

EC

EFp

EV

EC

EFn

EV

EFi

EFi

pn-junction

Incoming Solar Radiation

- --

- --

++ +

++ +

Page 69: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

EVac

EC

EFp

EV

EC

EFn

EV

EFi

EFi

pn-junction

Incoming Solar Radiation

- --- --

++ +++ +

Page 70: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

EVac

EC

EFp

EV

EC

EFn

EV

EFi

EFi

pn-junction

Incoming Solar Radiation

- --- --

++ +++ +

Page 71: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

EVac

EC

EFp

EV

EC

EFn

EV

EFi

EFi

pn-junction

Incoming Solar Radiation

- --- --

++ +++ +

Page 72: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

EVac

EC

EFp

EV

EC

EFn

EV

EFi

EFi

pn-junction

Incoming Solar Radiation

- --- --

++ +++ +

Need to minimize recombinationEffect of DefectsSingle Crystalline SiPolycrystalline SiAmorphous Si Trade off between cost and efficiency

Page 73: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Solar Cell is a current source

Charge carriers created by sunlight received: Photocurrent Iph

Without external load, the pn junction is forward biased, and internally shorts

Iph

Page 74: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

RL

RL

RS

Iph

Iph Iph

RL

RS

RShIph

Page 75: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Conclusions:

1)The p-n junction stabilizes the electron-hole pair

2)The p-n junction solar cell is a current source and has to be used accordingly

Page 76: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Solar Energy:Solar cell characteristics

and usage

Page 77: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Learning objectives:

1)To determine the operational characteristics of a p-n junction based solar cell

2)To understand the best way to use the solar cell

Page 78: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

I-V characteristics

I

V

Forward biasReverse bias

𝐼𝑑 = 𝐼0(𝑒𝑞𝑉𝑑𝛾𝑘𝑇 − 1)

Page 79: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

RL

RS

RShIph

(Assuming recombination current is low)𝐼𝑝ℎ − 𝐼𝑑 = 𝐼𝐿

𝐼𝑑 = 𝐼0(𝑒𝑞𝑉𝑑𝛾𝑘𝑇 − 1)

𝑉𝑑 = 𝑉𝐿 + 𝐼𝐿𝑅𝑆

𝑉𝐿 =𝛾𝑘𝑇

𝑞ln

𝐼𝑝ℎ − 𝐼𝐿

𝐼0+ 1 − 𝐼𝐿𝑅𝑆

𝐼𝑝ℎ − 𝐼𝑑 − 𝐼𝑆ℎ = 𝐼𝐿

𝐼𝐿 = 𝐼𝑝ℎ − 𝐼0 𝑒𝑞(𝑉𝐿+𝐼𝐿𝑅𝑆)

𝛾𝑘𝑇 − 1 −𝑉𝐿 + 𝐼𝐿𝑅𝑆

𝑅𝑆ℎ

𝑉𝑂𝐶 =𝛾𝑘𝑇

𝑞ln

𝐼𝑝ℎ

𝐼0+ 1

Page 80: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

I-V characteristics

IL

VL

Isc

Voc

Page 81: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

I-V characteristics

IL

VL

Isc

Voc

Maximum Power Point

𝐹𝑖𝑙𝑙 𝐹𝑎𝑐𝑡𝑜𝑟 =𝑉𝑀𝑃𝑃 × 𝐼𝑀𝑃𝑃

𝑉𝑂𝐶 × 𝐼𝑆𝐶

Page 82: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

I-V characteristics

IL

VL

Isc

Voc

Comparing Solar Panels

Page 83: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

I-V characteristics

IL

VL

Isc

Voc

Variation with Sunlight

𝑉𝑂𝐶 =𝛾𝑘𝑇

𝑞ln

𝐼𝑝ℎ

𝐼0+ 1

𝐼𝑝ℎDepends linearly on incident sunlight

Page 84: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

I-V characteristics

IL

VL

Isc

Voc

AgingRL

RS

RShIph

Page 85: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Conclusions:

1)The solar cell is a current source2)I- V relationship is complicated3)OCV is not the most important parameter4)Fill factor of a solar cell is important5)Solar cell must be coupled with an end

use that utilizes the MPP

Page 86: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Solar Energy:Solar cell construction

Page 87: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Learning objectives:

1)To describe how solar cells are constructed2)To indicate the limitations of single junction

solar cells3)To describe the functioning of tandem solar

cells

Page 88: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Shockley-Quiesser limit

Air Mass Coefficient: Optical path length relative to path length vertically upward AM 1.5 typically used for evaluating panels

In unconcentrated, AM 1.5 Solar radiation with a band gap of 1.34 eV, 33.4 % efficiency is obtained

Si, 1.1 eV, 32 % efficiency is the best. Practically 24% accomplished

Blackbody radiation 7% (At room T, actual T~ 75 oC)Recombination losses 10% Spectrum losses 19% unabsorbed, 33% excess n, total 52%

Page 89: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Negative terminal

Positive terminal

Page 90: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Negative terminal

Positive terminal

Anti-reflective coatings necessary

Page 91: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Negative terminal

Positive terminal

Single crystalline: 25%Poly crystalline: 15%Amorphous: 5%

Page 92: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Low bandgap cell

High bandgap cell

Tandem Cells

With several tandem cells and concentrated sunlight, theoretically > 80% efficiency possible

Page 93: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Visible Spectrum Wavelength: 400 nm (violet) to 700 nm (red)

Corresponding band gaps: 3.1 eV to 1.8 eV

PbS, a direct bandgap semiconductor

Bandgap of bulk PbS: 0.41 eV (3020 nm)Bandgap of nanocrystalline PbS: Can be varied to 4.0 eV

Page 94: Solar Energy: The Semiconductor - NPTEL · 2019. 2. 21. · Allowed energy and wave vectors of nearly free electrons Brillouin zone boundaries Brillouin zones and allowed electron

Conclusions:

1)Parts of a solar cell are designed to increase the efficiency of the solar cell

2)Shockley-Quiesser limit indicates the limitation of a single junction solar cell

3)Tandem solar cells can overcome these limitations