sol-gel, self-assembly and phase separation pathways to ......coupling sol-gel and self assembly for...

57
Sol-gel, self-assembly and phase separation pathways to multiporous films, gels and aerogels Galo Soler Illia Instituto de NanoSistemas, UNSAM www.unsam.edu.ar/institutos/ins

Upload: others

Post on 09-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Sol-gel, self-assembly and phase

    separation pathways to multiporous

    films, gels and aerogels

    Galo Soler Illia

    Instituto de NanoSistemas, UNSAM

    www.unsam.edu.ar/institutos/ins

  • UNSAMknowledge generation

    through interdiscipline

  • 7 Research Groups in 2019

    Research Projects

    • Nanomaterials Design

    • Surface Tailoring

    • BioSensors

    • Nano-optics

    • Nanomedicine

    • Adsorbents

    www.unsam.edu.ar/ins

    Instituto de Nanosistemas

    INS UNSAM

    @insunsam

  • October 2019

    Buenos Aires

    9

  • © C. Sanchez, Collège de France

    Hierarchical Structures: tailoring multiscale porosity

  • Sanchez, BL Su Chem. Soc. Rev., 2017

  • Si

    OR

    ORRO

    RO

    molecule

    Si

    OR

    O

    OR

    RO

    Si

    OR

    RO

    RO

    dimer

    Nano-

    object

    Molecular Chemistry (connections, bonds…)

    CONNECTIVITY/ Building Blocks

    Colloid Chem. (Interactions)

    Morphology/ OBJECT

    AssemblyH2O

    Nanomaterials through soft chemistry

  • “La Chimie crée

    son objet”

    “We can hope to recreate all

    the substances that can be

    developed since the very

    beginning […] using the

    same forces that Nature

    puts into action to do so.”Marcellin BerthelotLa Synthèse Chimique,

    1876

  • A Toolbox to

    Hierarchical Materials

    – Sol-Gel• Understanding inorganic polymerization

    • Tuning Nanobuilding Blocks

    – Self-Assembly• Spontaneous processes towards ordering

    • Controlling interactions

    – Phase Separation• Controlling separation processes through

    Interactions

    – Processing• How to tune these processes along time

  • Sanchez, BL Su Chem. Soc. Rev., 2017

  • From solution to sol

    Hydrolysis:

    Fe (H2O)63+ + H2O Fe(OH)(H2O)5

    2+ + H3O+

    Ti (i- O Pr)4 + H2O Ti(OH)(OPr)3 + HOPrO

    H

    Condensation: O

    Al(H2O)5OH2+ + Al(H2O)5OH

    2+ [(H2O)4Al Al(H2O)4]4+

    O

    H

    salt

    alkoxide

  • Hydrolysis

    Mz+

    M

    OH2

    OH2

    OH2

    OH2 M

    OH2

    OH2

    OH2

    OH+ H2O

    Hydrated cation

    + H3O+

    M

    OH2

    OH2

    OH2

    OH2d++

    d+-

    MXz + z X- (aq)Mz+ (aq)

    Mz+ :O

    H

    Hd+

    d+

    d+

    d-

  • Condensation

    Livage et al Progr. Solid State chem 1988, 18, 259

    Ti...O

    ...O...O

    O

    Hd

    TiO...

    ...O O...

    O

    H

    d Ti

    O......O O...

    Ti...O

    ...O...O

    O

    H2O+

    oxolation

    Oxolation (oxo bridge) or

    olation (hydroxo bridge)

    processes can take place,

    depending on the precursor

    charge, pH and ligand.

    The condensation reaction

    continues until an average

    electronegativity equivalent

    to the one of the external

    nucleophiles is attained

    (Livage-Henry-Sanchez)

  • Molecular Metallic Precursors

    • Purity

    • High yield

    • Selectivity in synthesis

    • Ease of handling

    • Low toxicity

    • Solubility

    • Volatility (CVD)

    • High Control of Hy/Cond

    • Addition of functional groups

    • Multinuclear precursors

    Si

    OR

    OR

    RO

    RO

    Ti

    O

    OO

    O

    CH3

    CH3 CH3

    CH3

    Ti

    O

    OO

    O

    RR

    Alkoxide Carboxylate M-diketonate

  • Proton Transfer: -OR replaced by –OH (Nucleophilic substitution).

    Hidrolysis of Alkoxides

    + H2OTi

    OR

    ORRO

    RO

    Ti

    OR

    OHRO

    RO

    + ROHM M

    Factors affecting hidrolysis rate:

    1) Nature of the cation

    2) Nature of the alkyl group

    3) Solvent

    4) Concentration

    5) Water:metal ratio, rw = [H2O]/[M]

    6) Temperature

    Generally:

    Highly dependent on coordination (SN2)

    Slow and pH-dependent for Si

    Fast for TM (hexacoordinated)

  • Si

    RO

    RO

    RO

    O R + O+

    H

    HH Si

    -

    RO

    RO

    RO

    O+

    R

    HO

    +

    H

    Hd d

    Example: silica hydrolysis

    Pohl and Osterholz, 1985

    Leaving

    Group

    Si

    RO

    RO

    RO

    OH + +R OH H+

    Reaction rate is found to depend on:

    •[Si]

    •pH

    •rw=[H2O]/[Si]

    • Molecular effects (inductive, steric, charge…)

  • Silica condensation

    Si-OR + HO-Si Si-O-Si + ROH

    Si-OH + HO-Si Si-O-Si + H2O

    alcoxolation

    oxolación

    From monomer to dimer

    • Acid or base catalized

    •R-Si(OH)3 presents a minimum

  • Minimum gel formation rate atpH 2

    • Coincides with pzc of SiO2

    • Polymerization increases acidity

    • Silanol groups intervene in

    polymerization

    • Acid conditions: elongated

    polymers

    Si-O-Si extended condensation

    Stable sols at high pHs

    • Fast polymerization

    • Electrostatic repulsion hinder

    gelation

  • Basic Catalysis

    Acid Catalysis

    Polymeric species are less reactive upon growth

    Linear species form, then crosslink

    Polymeric species are more reactive

    upon growth.

    Condensed species coagulate

  • TM alkoxide hydrolysis and condensation

    J. Blanchard et al, J. non-Crystalline Solids 2000

    rw = 0,1

    0,3

    0,5

    0,7

    1 (8 min)

    4d

    17O RMN

    µ2

    O

    Ti

    Ti

    µ3

    O

    Ti

    TiTi

    µ4

    O

    Ti

    TiTi Ti

    SAXS

    Ti

    O

    OO

    O

    Alkoxide d(M)

    Zr (OEt)4 +0,65

    Ti (OEt)4 +0,63

    VO (OEt)3+0,46

    Si (OEt)4 +0,32

  • Summary…

    • Silica, three broad

    regimes

    – pH5, branched growth

    and precipittion

    • Non-silica (e.g., MO2)

    – More reactive

    – Closo objects that can

    aggregate

    – Control through

    acidity or complexation

  • 8a Escuela de Síntesis de

    Materiales: Procesos Sol-Gel

    Buenos Aires,

    Total control of

    size, shape, and “philicity”

    Surface Charge control

    pHpiepH < pHpie pH > pHpie

    philicity control

    hidrofóbico hidrofílico

    Si

    O

    SiO

    Si

    ORRO

    OOSiOR

    OSi OSi

    Si

    O

    SiO

    Si

    OH

    OH

    OOSi

    OH

    OSi OSi

    linear closo

    fractal

  • Coupling Sol-Gel and Self Assembly

    for organized matter

    Organised CdS Stupp et al., Science, 1997

    Mesoporous Silica Beck et al., Nature, 1992

    Sol-Gel: Soft Synthesis methods (low T)

    Self-Assembly: Controlled Organization at

    the mesoscale (2-50 nm)

    Organised NBBOrganised Voids

    concentration

    Surfactant Micelle Liquid Crystal

  • Concentration

    Hydrophilic

    Head

    Hydrophobic

    Tail

    Self-Assembly using surfactantsPrecise Supramolecular fingers

    Micelle

    (NanoObject)Surfactant

    Asymmetric Molecule

    Lyotropic assembly

    Liquid Crystal (LC)

    Spontaneous Organization of asymmetric molecules

    Thermodynamic Control of Weak Interactions

    cmc

  • Porous Materials:

    scales of porosity

    microporous

    mesoporous

  • Mesoporous Oxides Using supramolecular templating

    Mesostructured

    Precursor

    “Fossile LC”

    Mesoporous

    Oxide

    Elimination of

    the Template

    Sol-Gel +

    Self-Assembly

    Micelles or LLC as templates (Supratemplates)

    Periodic Porous Network, Robust Systems

    High Surface (200-1000m2/g)

    Ordered Monodisperse Pores, 2-50 nm

    Accessibility

    RRRR

    RR

    Multifunctional

    Material

    Functionalization

    MX4

    M

    X

    XX

    X

    Surfactant

    (Template)

    Inorganic

    Precursor

    Soler-Illia et al., Chem. Rev., 2002

  • Precipitation

    True LC templating

    TLCT

    Evaporation-Induced

    Self-Assembly

    EISA

    Exotemplating

    Sole

    r-Illia

    an

    d A

    zza

    ron

    i., C

    hem

    . S

    oc. R

    ev.

    20

    11

  • Example: Titania Films(photocatalysis, photovoltaics, optics)

    Film Production by dip- or spin coating

    TiCl4 or TET/H+precursors

    Nonionic Block Copolymer templates

    Controlled water (r, RH%)

    Template size

    Small, Hydrophilic Ti-oxo clusters

    Fluidity Thin Titania filmd=100-300nm

    (interference)

    0.5 cm

    Review: Soler-Illia et al, Nanoscale, 2012

    n m n

    O

    CH3

    OOH O H

    PEO PPO PEO

  • Mesoporous Titania Thin Films

    TEM

    Soler-Illia et al. Nanoscale. 2012, Soler-Illia and Innocenzi Chem. Eur. J. 2006,

    C. Sanchez et al, Chem. Mater. 2008, Malfatti et al. Chem. Mater. 2013

    SAXS

  • 02

    4

    6

    8

    10

    0

    2

    4

    20

    30

    40

    50

    60

    70

    XR

    D In

    tens

    ity (a.u

    )

    RH %h=H

    2O/Ti

    Which are the important variables?Water Influences Organization

    Low water:

    poor

    organisation

    High water:

    excellent

    organisation

    Roles of water

    Evaporation Rate

    Hydrolysis of Ti(IV)

    Template Folding

    h= Water IN

    RH%= Water OUT

    Crepaldi et al., JACS., 2003

  • How do these

    mesostructures

    form?

    Disordered

    micelle array

    Isotropic solution: c < cmc

    CMC

    Humidity

    H2O regulation

    Solvent

    evaporation

    Formation of a

    liquid crystal

    Isolated

    template

    molecules

    Pu

    lling

    dire

    ctio

    n

    Disordered

    micelle array

    Isotropic solution: c < cmc

    CMC

    Humidity

    H2O regulation

    Solvent

    evaporation

    Formation of a

    liquid crystal

    Isolated

    template

    molecules

    Pu

    lling

    dire

    ctio

    n

    Brinker et al. Adv. Mater. 1999

    D. Grosso et al., Chem. Mater., 2002

    E. L. Crepaldi et al., JACS., 2003

    Soler-Illia and Innocenzi Chem. Euro. J. 2006

    Assembly of

    NanoBuilding

    Blocks (ANBB)

  • Film

    Thickness

    Sol Film

    Syncrotron-SAXS in-situ

    Formation Process of MP Films

    Time

    10 s 60 s 70 s 80 s 2 min 30 min

    Interferometry

    Crepaldi et al., J. Am. Chem. Soc., 2003Grosso et al., Adv. Funct. Mater., 2004

    Competition of

    Stiffening

    sol-gel / viscosity

    Organisation

    (rearrangement)

    substrate

    Solvent Evaporation

    Micelle formation

    Mesophases

    Micelle

    Alignment/

    OrganizationDrying Line

    Worm Like

    Phase

    ContractionEtOH

    evaporation

  • ORGANIZATION

    Stiffening (viscosity/condensation)

    Controlling the Building blocks

    Initial Solution

    Soler-Illia and Innocenzi Chem. Euro. J. 2006

    80 n m

    H = 4

    50 nm

    H = 0.5

  • 100 nm

    100 nms = 0.003 s = 0.01

    d-110 = 13,45

    d-110 = 15,38

    Understanding Organization

    Simulations (Q. Tang-M.Müller)

    ABC template / TiO2 NP

    Tunable interaction potential

    Equilibrium and Dynamics

    Disorder-to-order

    Q. Tang et al., Phys. Chem. Chem. Phys., 2017

    D

    e

  • M(II) oxohydroxyde NBB

    N. Tarutani et al. ACS Nano., 2016

    LDH nanocluster

    Controllable size

    0.5-10 nm diam.

  • Controlling Ni(II)

    NBB diameter

    Reaction time

    / min

    Reaction rate

    / mol%

    Diameter

    / nm

    1 32 0.24

    5 45 0.99

    60 98 1.88

    Combination of homogeneous

    alkalinization and complexation

    N. Tarutani et al.

    Chem. Mater., 2016

  • Optimizing NBB size

    using simulation

    (N. Tarutani + Q. Tang)

    N. Tarutani, Q. Tang, et al. Chem. Mater, 2019

  • M. Takahashi and N. Tarutani (OPU)

    A successful predictive experiment at

    LNLS synchrotron

  • N. Tarutani et al. Chem. Mater., 2016

    N. Tarutani, et al. J Sol-Gel Sci Tech, 2018

  • Soler-Illia, Sanchez, Lebeau, Patarin., Chem. Rev., 2002

    Soler-Illia and Azzaroni., J. Sol-Gel Sci. Tech., 2011 Chem. Soc. Rev., 2011

    Soler-Illia et al., Nanoscale., 2012; S. Alberti et al., Chem. Commun., 2015

    High surface area

    Controlled pore size and interface

    Confinement effects

  • P. Innocenzi et al., Chem. Mater., 2011

  • Controlled phase separationmicroemulsion templates

    poreneck

    As-prep

    HT-aged

    Schmidt-Winkel et al., Chem Mater., 2000

    Mesostructured cellular

    foams (MCF)Produced by microemulsion

    templating

    Hydrothermally stable

    Pores and “windows”

    controllable

  • Controlled phase separationthrough inorganic polymerization

    K. Nakanishi, J. Sol-Gel Sci. Tech, 2000

    Review: K. Nakanishi, J. Porous Mater., 1997; Acc. Chem. Res., 2007;

  • K. Nakanishi, J. Porous Mater., 1997

  • How to control phase separation

    Silica-polymer interactions

    Versus

    Entropy loss due to silica condensation

    Enthalpic Systems: repulsion betweenpoly/solvent

    Entropic Systems: 2 inmiscible polys

    Poly + solvent

    Inorg + solvent

    Inorg + Poly

    Solvent

    Tanaka et al., J. Chromatogr., 2002

  • h < 1

    Controlled Phase Segregation

    in macro-mesoporous titania films

    •Macroporous Oxides

    •Micron scale compatible with

    biospecies (enzymes,

    membranes, antibodies, cells)hydrophobic Ti-

    oxo clusters

    ORTi

    OR

    OH

    OTi

    TiOR

    OR

    OR OR

    HOTi

    OR

    OR OR

    RO

    Fuertes and Soler-Illia, Chem. Mater 2006

    Nakanishi., J. Porous Mater., 1997

    O

    O

    …O

    OO

    Ti

    HO

    EtO

    O

    Ti

    EtO

    O

    CH2CH2OH

    •Clusters associate with

    PEG

    •Solvent phase

    segregates (spinodal)O O

    O O

    Poly ethylene glycol

    (PEG)

  • Droplet templating

    Enthalpic Systems

    Entropic Systems

    Poly + solvent

    Inorg + solvent

    Inorg + Poly

    Solvent

    3050 3000 2950 2900 2850 2800 2750 2700

    0.00

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    TP22 / PEG2000

    Absorb

    ancia

    (u.a

    .)

    Número de onda (cm-1)

    25 C

    75 C

    130 C

    200 C

    250 C

    300 C

    350 C

    Wavenumber (cm-1)

    FTIR

    MEB

    75ºC

    130ºC

    200ºC 350ºC

    3050 3000 2950 2900 2850 2800 2750 2700

    0.00

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    TP22 / PEG2000

    Absorb

    ancia

    (u.a

    .)

    Número de onda (cm-1)

    25 C

    75 C

    130 C

    200 C

    250 C

    300 C

    350 C

    3050 3000 2950 2900 2850 2800 2750 2700

    0.00

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    TP22 / PEG2000

    Absorb

    ancia

    (u.a

    .)

    Número de onda (cm-1)

    25 C

    75 C

    130 C

    200 C

    250 C

    300 C

    350 C

    Wavenumber (cm-1)

    FTIR

    MEB

    75ºC

    130ºC

    200ºC 350ºC

    Mostly

    Enthalpy-driven system

    Polymer Integrated

    with Ti-oxo NBB

  • Multiscale porosity

    5 m

    5 m

    MACROPores(by phase separation)0,1 to 2 m

    •Ti-oxo/PEG complex

    •Phase segregation of Solvent

    • PEG acts as separator

    •Hierarchical porosity

    NO

    O

    O

    O

    O

    O

    Ti+

    Ti

    O

    Ti

    O

    OTi

    +

    OH

    OTi...OTi...

    OTi...

    OTi...

    OTi...• Mesoporous walls (3 nm)

    • Functions included

  • From swelling to

    controlled phase

    separation

    Template (F127) +

    Swelling agent (PPG) +

    Co-Solvent (THF)

    Malfatti et al., Chem. Mater., 2009

  • Design of Bimodal porous titania

    Malfatti et al., Chem. Mater., 2009

    Fuertes et al. Chem. Mater., 2006

    Zelcer et al. J. Mat. Chem. 2009, 2012

    Template (F127) +

    Swelling agent (PPG) +

    Co-Solvent (THF)

    0 510 15

    20 2530 35

    40

    0.000

    0.004

    0.008

    0.012

    0.016

    14

    16

    18

    20

    P =

    [PP

    G]/[T

    i]

    inte

    rpore

    dis

    tance / n

    m

    VTHF

    0 510 15

    20 2530 35

    40

    0.000

    0.003

    0.006

    0.0090.012

    0.015

    0

    20

    40

    60

    80

    100

    120

    140

    160

    P =

    [PP

    G]/[T

    i]

    La

    rge

    po

    re d

    iam

    ete

    r /

    nm

    VTHF

    a b

    0 510 15

    20 2530 35

    40

    0.000

    0.004

    0.008

    0.012

    0.016

    14

    16

    18

    20

    P =

    [PP

    G]/[T

    i]

    inte

    rpore

    dis

    tance / n

    m

    VTHF

    0 510 15

    20 2530 35

    40

    0.000

    0.003

    0.006

    0.0090.012

    0.015

    0

    20

    40

    60

    80

    100

    120

    140

    160

    P =

    [PP

    G]/[T

    i]

    La

    rge

    po

    re d

    iam

    ete

    r /

    nm

    VTHF

    0 510 15

    20 2530 35

    40

    0.000

    0.004

    0.008

    0.012

    0.016

    14

    16

    18

    20

    P =

    [PP

    G]/[T

    i]

    inte

    rpore

    dis

    tance / n

    m

    VTHF

    0 510 15

    20 2530 35

    40

    0.000

    0.003

    0.006

    0.0090.012

    0.015

    0

    20

    40

    60

    80

    100

    120

    140

    160

    P =

    [PP

    G]/[T

    i]

    La

    rge

    po

    re d

    iam

    ete

    r /

    nm

    VTHF

    a b

    0 510 15

    20 2530 35

    40

    0.000

    0.004

    0.008

    0.012

    0.016

    14

    16

    18

    20

    P =

    [PP

    G]/[T

    i]

    inte

    rpore

    dis

    tance / n

    m

    VTHF

    0 510 15

    20 2530 35

    40

    0.000

    0.003

    0.006

    0.0090.012

    0.015

    0

    20

    40

    60

    80

    100

    120

    140

    160

    P =

    [PP

    G]/[T

    i]

    La

    rge

    po

    re d

    iam

    ete

    r /

    nm

    VTHF

    a b

    0 510 15

    20 2530 35

    40

    0.000

    0.004

    0.008

    0.012

    0.016

    14

    16

    18

    20

    P =

    [PP

    G]/[T

    i]

    inte

    rpore

    dis

    tance / n

    m

    VTHF

    0 510 15

    20 2530 35

    40

    0.000

    0.003

    0.006

    0.0090.012

    0.015

    0

    20

    40

    60

    80

    100

    120

    140

    160

    P =

    [PP

    G]/[T

    i]

    La

    rge

    po

    re d

    iam

    ete

    r /

    nm

    VTHF

    0 510 15

    20 2530 35

    40

    0.000

    0.004

    0.008

    0.012

    0.016

    14

    16

    18

    20

    P =

    [PP

    G]/[T

    i]

    inte

    rpore

    dis

    tance / n

    m

    VTHF

    0 510 15

    20 2530 35

    40

    0.000

    0.003

    0.006

    0.0090.012

    0.015

    0

    20

    40

    60

    80

    100

    120

    140

    160

    P =

    [PP

    G]/[T

    i]

    La

    rge

    po

    re d

    iam

    ete

    r /

    nm

    VTHF

    a b

  • Bellino et al, Small 2014, Mater. Today Comm. 2016

    Review: Catalano et al. Bioelectrochem. 2015

    Enzyme+NP@MesoporesEnergy Nanosystems

  • Concurrent

    polymerizationsol-gel versus organics

    Drisko et al., Chem. Mater., 2010

  • Titania

    Macro-meso monoliths

    Complex system

    Double role of surfactant

    Drisko et al., Microporous Mesoporous Mater., 2011

    ACS Appl.Mater. Interf., 2012

  • Multimodal templating

    using “the forces of Nature”

    PDMS~20m

    Colloidal Latex ~200nmMicelles~10 nm

    MEB

    200 m20 m200 m

    MEB

    200 m20 m200 m

    MEB

    200 m20 m200 m

    MEB

    200 m20 m200 m

    Sea Urchin Stucky, Whitesides, Pine 1998, 2001

  • Conclusions

    • Chemical Control of

    building blocks and

    interactions is essential

    • Sol-Gel chemistry (NBB)

    – Composition, shape, size, surface, charges…

    • Self-Assembly

    – Driving forces towards order

    (central, vectorial, local)

    • Phase Separation

    – Controlling microSpace

    • Processing

    – Coordinating kinetics and transport