smart playing cards a ubiquitous computing game

29
UBIQUITOUS COMPUTING A Technical Seminar on: Submitted by: PRIYAM CHAKRABORTY Department of Computer Science & Engineering Jawaharlal Nehru National College of Engineering Shimoga - 577 204

Upload: guest218195

Post on 08-May-2015

2.327 views

Category:

Documents


2 download

DESCRIPTION

ubicomp smart games

TRANSCRIPT

Page 1: Smart Playing Cards A Ubiquitous Computing Game

UBIQUITOUS COMPUTING UBIQUITOUS COMPUTING

A Technical Seminar on:

Submitted by:

PRIYAM CHAKRABORTY

Department of Computer Science & EngineeringJawaharlal Nehru National College of Engineering

Shimoga - 577 204

Page 2: Smart Playing Cards A Ubiquitous Computing Game

ABSTRACTABSTRACTIn the 80’s a person had access to one personal computer. In the 90’s, the internet was introduced globally. At this point, one person had access to 10 computers. This includes devices such as mobile phones, digital cameras, portable music players, digital watches, laptops and many more. Now, present time, it is known as “the age of Ubiquitous Computing”.

Page 3: Smart Playing Cards A Ubiquitous Computing Game

INTRODUCTIONINTRODUCTION Ubiquitous computing refers to a new genre of

computing in which the computer completely permeates the life of the user.

Ubiquitous computing names the third wave in computing, just now beginning. First were mainframes, each shared by lots of people.

Now we are in the personal computing era, person and machine staring uneasily at each other across the desktop.

Next comes ubiquitous computing, or the age of calm technology.

Page 4: Smart Playing Cards A Ubiquitous Computing Game

The Idea is That...The Idea is That...

In mainframe computing,– many people share

one computer In desktop computing,

– one person, one computer

In ubiquitous computing,– many computers

serve each person

Page 5: Smart Playing Cards A Ubiquitous Computing Game

HISTORYHISTORY

The father of Ubiquitous Computing is Mark D. Weiser who was also the chief scientist at Xerox PARC in the United States and coined the term Ubiquitous Computing.

Researcher in the Computer Science Lab at Xerox’s PARC (Palo Alto Research Center) first articulated the idea of ubiquitous computing in 1988 and has called UC “…highest ideal is to make a computer so imbedded, so fitting, so natural, that we use it without even thinking about it.”

Page 6: Smart Playing Cards A Ubiquitous Computing Game

EXPERIMENTSEXPERIMENTS

• Tabs • Pads• Boards

1988 – 1994 at PARC Xerox

Tabs: wearable centimeter sized devices.Pads: hand-held decimeter-sized devicesBoards: meter sized interactive display devices.

Page 7: Smart Playing Cards A Ubiquitous Computing Game

A Few More Relevant Experiments

A Few More Relevant Experiments

• Smart dust • The Internet of things • Smart paper • Smart wallpaper • Smart <you-name-it>• Things that think

Page 8: Smart Playing Cards A Ubiquitous Computing Game

TECHNOLOGYTECHNOLOGY

Ubiquitous computing is the method of enhancing computer use by making many computers available throughout the physical environment, but making them effectively invisible to the user.

Mark criticized UC as a kind of “opposite trend“ to virtual reality,Artificial Intelligence and User Agent.

Page 9: Smart Playing Cards A Ubiquitous Computing Game

UC vs. Virtual Reality UC vs. Virtual Reality

Figure1.Ubiquitous Computing versus Virtual Reality

Page 10: Smart Playing Cards A Ubiquitous Computing Game

Taxonomy Of UC NodesTaxonomy Of UC Nodes

Figure2. Taxonomy of UC devices

Page 11: Smart Playing Cards A Ubiquitous Computing Game

Design and Implementation Challenges

Design and Implementation Challenges

• Smaller screen display• Location-based and context-sensitive data• Cultural differences• Privacy• Security

Page 12: Smart Playing Cards A Ubiquitous Computing Game

APPLICATIONSAPPLICATIONS

• Ubiquitous computing presents challenges across computer science: in systems design and engineering, in systems modeling, and in user interface design. Contemporary devices that lend some support to this latter idea include mobile phones, digital audio players, radio-frequency identification tags, GPS, and interactive whiteboards.

Page 13: Smart Playing Cards A Ubiquitous Computing Game

Few ApplicationsFew Applications

Wearable User Interface:• Head mounted display

“Intelligent” Jewelry/smart jewlery:

• Emotional user interfaces,affective computing

Page 14: Smart Playing Cards A Ubiquitous Computing Game

Wearable User Interface• “hug shirt”: a wearable user interface for emotions

and feelings of presence

Emotional Communication• Emotional communication using everyday objects. The object, a picture frame, already is connected to the person whose image is inside it

Page 15: Smart Playing Cards A Ubiquitous Computing Game

Smart Paper and PensSmart Paper and Pens

• left: Anoto digital pen (camera, Bluetooth, paper with special grid printed on)

• middle and right: flexible, bendable, digital paper displays

Page 16: Smart Playing Cards A Ubiquitous Computing Game

PlaceLab PlaceLab

Page 17: Smart Playing Cards A Ubiquitous Computing Game

Smart Playing Cards: A Ubiquitous Computing GameSmart Playing Cards: A Ubiquitous Computing Game• We present the “Smart Playing Cards”

application, a ubiquitous computing game that augments a classical card game with information–technological functionality by attaching RFID tags to the cards. We also mention the requirements such an application makes on a supporting software infrastructure for ubiquitous computing.

Page 18: Smart Playing Cards A Ubiquitous Computing Game

RequirementsRequirements

• RFID tags

• RFID reader device

• Antenna (of size 70x50 cm)

• CPU

• Monitor for Display

• PDAs for each player

Page 19: Smart Playing Cards A Ubiquitous Computing Game

Prototype DescriptionPrototype Description

Page 20: Smart Playing Cards A Ubiquitous Computing Game

Further IdeasFurther Ideas

• Replacing the desktop PC with a small embedded computer that runs the RFID driver software and main Smart Playing Cards application.

• On the software side we intend to improve the playing hints.

• supporting players in learning and remembering the rules of the game.

• Replacing PDAs with small wearable display appliances.

Page 21: Smart Playing Cards A Ubiquitous Computing Game

LimitationsLimitations If we just start to play the game without explaining the

technical setting at first the first reaction will always be a great surprise on the part of the spectators, since it is not obvious how the actions on the display are technically linked to the physical game play.

When placing two or more tags exactly on top of each other the RFID system no longer able to detect any of the tags. A possible solution to this problem is to place two or more tags randomly on each card.

Figure 3: Single tag vs. randomly placed multiple tags on one playing card

Page 22: Smart Playing Cards A Ubiquitous Computing Game

Contd…Contd…

The detection range of such an antenna is about a sphere with a diameter of the length of the antenna. This gives us a reasonable area on the table where cards are detected, but players have to take care to keep the cards in their hands out of the detection range. Therefore we would prefer a large but flat detection area, which can be achieved with an array of smaller antennas.

Figure 4: Detection range of one large antenna vs. an array of small antennas

Page 23: Smart Playing Cards A Ubiquitous Computing Game

Figure 5: Smart Playing Cards in action.

Page 24: Smart Playing Cards A Ubiquitous Computing Game

OutlookOutlook

Further research will focus on new functionality of the smart gaming environment and on studying whether our approach can be generalized to other card games and classical games. However, the major topic of our research is the development of a software infrastructure for ubiquitous computing applications in general.

Page 25: Smart Playing Cards A Ubiquitous Computing Game

CONCLUSIONCONCLUSION

The promise of ubiquitous computing is of a life in which our endeavors are powerfully, though subtly, assisted by computers. The idealistic visions painted by the ubiquitous computing movement stand in stark contrast to what we see when we boot up our computers each day. The real goal for ubicomp is to provide many single-activity interactions that together promote a unified and continuous interaction between humans and computational services. The focus for the human at any one time is not a single interface to accomplish some task. Rather, the interaction is more free-flowing and integrative, akin to our interaction with the rich physical world of people, places, and objects in our everyday lives.

Page 26: Smart Playing Cards A Ubiquitous Computing Game

REFERENCESREFERENCES

• Smart Playing Cards: A Ubiquitous Computing Game by Kay R¨omer, Svetlana Domnitcheva, Department of Computer Science ETH Zurich 8092 Zurich, Switzerland in 2004.

• Ubiquitous and Pervasive Computing: Concepts, Methodologies, Tools, and Applications By Judith Symonds, Auckland University of Technology, New Zealand, First Edition by Information science reference, Hershey-New York.

Web site: http://www.igi-global.com/reference• Distributed Ubiquitous Systems Group Institute of Operating

Systems and Computer Networks16.07.2007 By Matthias Kranz, TU Braunschweig, Institute of Operating Systems and Computer Networks.

http://www.ibr.cs.tu-bs.de/dus

Page 27: Smart Playing Cards A Ubiquitous Computing Game

Also see….Also see….

• www.siop.org/tip/backissues/TIPApr02/pdf/394_044to052.pdf

• www.cc.gatech.edu/classes/cs6751_97_fall/.../mfinal.html

• www.en.wikipedia.org/wiki/Ubiquitous_computing

• www.rcet.org/ubicomp/what.htm

Page 28: Smart Playing Cards A Ubiquitous Computing Game
Page 29: Smart Playing Cards A Ubiquitous Computing Game