small coupled oscillations. types of motion each multi-particle body has different types of degrees...

22
Small Coupled Oscillations

Upload: giles-campbell

Post on 16-Dec-2015

220 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Small Coupled Oscillations. Types of motion Each multi-particle body has different types of degrees of freedom: translational, rotational and oscillatory

Small Coupled Oscillations

Page 2: Small Coupled Oscillations. Types of motion Each multi-particle body has different types of degrees of freedom: translational, rotational and oscillatory

Types of motion

• Each multi-particle body has different types of degrees of freedom: translational, rotational and oscillatory

Rf

CV 2

Page 3: Small Coupled Oscillations. Types of motion Each multi-particle body has different types of degrees of freedom: translational, rotational and oscillatory

Formulation of the problem

• Let us consider a many-particle Lagrangian

• The system is stable, if each particle has a stable equilibrium position

• We assume small deviations from equilibrium ηi

6.1

),...,(),...,(2

11

1,1 n

n

jijinij qqVqqqqmL

iq0

iii qq 0

Page 4: Small Coupled Oscillations. Types of motion Each multi-particle body has different types of degrees of freedom: translational, rotational and oscillatory

Formulation of the problem

• Kinetic energy of the system

• Potential energy of the system

6.1

n

jijinij qqqqmT

1,1 ),...,(

2

1

iii qq 0

n

jiji

kk

qqk

ijnij

nq

mqqm

1, ),...,(

001 ...),...,(2

1

001

...2

1

1,

n

jijiijT ...

2

~

ηTη

i

i

qqinn

nq

VqqVqqV

),...,(

0011

001

),...,(),...,(

...2

1

,),...,(

2

001

j

jii

qqjin

qq

V

V

qi

Page 5: Small Coupled Oscillations. Types of motion Each multi-particle body has different types of degrees of freedom: translational, rotational and oscillatory

Formulation of the problem

• We assume that this term does not vanish

• The Lagrangian of the system

• Equations of motion

6.1

...2

~

Vηη...

2

1

,),...,(

2

001

j

jii

qqjin

qq

VV

V

qi

...2

1

1,

n

jijiijV

2

~

2

~VηηηTη

L 0L

n

jijiij

n

jijiij VTL

1,1,0 2

1

2

1

ii

LL

dt

d

00

0

11

n

jjij

n

jjij VT

Page 6: Small Coupled Oscillations. Types of motion Each multi-particle body has different types of degrees of freedom: translational, rotational and oscillatory

Normal coordinates

• We have a system of linear ordinary differential equations of the 2nd order

• A natural choice of a trial solution

• Equations of motion result in

6.26.3

011

n

jjij

n

jjij VT 0VηηT

tik

n

kjkj

keCa

1

tik

n

kkjkj

keCia

1

2)( tik

n

kkjk

keCa

1

2

k

n

kjka

1

aζη

ζaλη 2kjkjk

VaζζTaλ VaTaλ VaaTaλa ** ~~

Page 7: Small Coupled Oscillations. Types of motion Each multi-particle body has different types of degrees of freedom: translational, rotational and oscillatory

Normal coordinates

• Let us consider diagonal terms l = k

6.26.3

VaaTaλa ** ~~ ***** ~~ aVaλaTa *** ~~ VaaλTaa VV

TT

*

*

~~*** ~~ VaaλTaa aVaaTaλ

~~~~ *** VV

TT~

~

VaaTaaλ *** ~~

TaaλTaλa *** ~~

n

jijlij

*ki

*kk

n

jilljlij

*ki aTaλλaTa

1,1,

~~

0)(~1,

n

ji

*kklljlij

*ki λλaTa 0~)(

1,

n

jijlij

*ki

*kkll aTaλλ

0~)(1,

n

jijkij

*ki

*kkkk aTaλλ jkjkjk ia

n

jijkij

*ki aTa

1,

~

n

jijkjkijkiki iTi

1,

)()~~(

Page 8: Small Coupled Oscillations. Types of motion Each multi-particle body has different types of degrees of freedom: translational, rotational and oscillatory

Normal coordinates

• If real α and β are assumed to be some velocities, then this expression has a form of a kinetic energy, which is always positively defined

• Thus if

6.26.3

n

jijkij

*ki aTa

1,

~

n

jijkjkijkiki iTi

1,

)()~~(

n

jijkijkijkijkijkijkijkijki TiTiTT

1,

)~~~~(

n

jijkijkiT

1,

~

n

jikjjiikT

1,

~

n

jikiijjkT

1,

~

n

jijkijkijkijki

n

jijkij

*ki TTaTa

1,1,

)~~(~ 0

0~)(1,

n

jijkij

*ki

*kkkk aTaλλ

*kkkk λλ

0)Im( kkλ

Page 9: Small Coupled Oscillations. Types of motion Each multi-particle body has different types of degrees of freedom: translational, rotational and oscillatory

Normal coordinates

• Equations of motion do not have exponentially growing solutions

• This can be true only for two diagonal matrices

• We have a freedom of normalization for matrix a; let us impose the following normalization:

• Recall

• Then

6.26.3

0)Im( kkλ 0)Im( 2 k 0)Im( k tik

n

kjkj

keCa

1

TaaλTaλa *** ~~ 0)~()~( ** TaaλλTaa

ikiiik )~()~( ** TaaTaa

ikik )~( *Taa

VaaTaλa ** ~~

λVaa *~

Page 10: Small Coupled Oscillations. Types of motion Each multi-particle body has different types of degrees of freedom: translational, rotational and oscillatory

Normal coordinates

• Equations of motion :

• We completely diagonalized our problem

• We have a generalized eigen-value problem

• Eigen-values of the problem are solutions of the secular equation:

• Eigen-vectors:

6.26.3

1Taa *~ λVaa *~

0VηηT

aζη

tik

n

kjkj

keCa

1

0VaζζTa 0~~ ** VaζaζTaa 0 λζζ

TaλVa

0

.........

......

...

...

312

31

222

22212

21

122

12112

11

TV

TVTV

TVTV

1Taa *~VaTaλ

TaVa λ

Page 11: Small Coupled Oscillations. Types of motion Each multi-particle body has different types of degrees of freedom: translational, rotational and oscillatory

Normal coordinates

• Secular equation

• As the number of generalized coordinates increases, the power of the secular equation grows

• For very large systems, there are two ways to calculate eigen-values: analytical application of the group theory and computer calculations

• Modern applications: molecular vibrational spectroscopy, solid-state vibrational spectroscopy, etc.

6.26.3

0

.........

......

...

...

312

31

222

22212

21

122

12112

11

TV

TVTV

TVTV

Page 12: Small Coupled Oscillations. Types of motion Each multi-particle body has different types of degrees of freedom: translational, rotational and oscillatory

Example: longitudinal oscillations of a CO2 molecule

• CO2 is a linear molecule; we will model it as follows:

• The Lagrangian

6.4

223

212

22

23

21 )(

2

1)(

2

1

2

1)(

2

1xxkxxkxMxxmL

Page 13: Small Coupled Oscillations. Types of motion Each multi-particle body has different types of degrees of freedom: translational, rotational and oscillatory

Example: longitudinal oscillations of a CO2 molecule

• Secular equation:

6.4

223

212

22

23

21 )(

2

1)(

2

1

2

1)(

2

1xxkxxkxMxxmL

)222(2

))((2

13221

23

22

21

22

23

21 xxxxxxx

kxMxxm

0

332

33322

32312

31

232

23222

22212

21

132

13122

12112

11

TVTVTV

TVTVTV

TVTVTV

0

0

2

0

2

2

2

mkk

kMkk

kmk

Page 14: Small Coupled Oscillations. Types of motion Each multi-particle body has different types of degrees of freedom: translational, rotational and oscillatory

Example: longitudinal oscillations of a CO2 molecule

• Eigen-vectors:

6.4

0

0

2

0

2

2

2

mkk

kMkk

kmk

0))2()(( 222 mMMmkmk

M

m

m

k

m

k 21;;0 321

1Taa *~VaTaλ

0)(

0)2(

0)(

32

2

322

1

212

jjj

jjjj

jjj

amkka

kaaMkka

kaamk

1

)(2

2

23

21

j

jj

Ma

aam

Page 15: Small Coupled Oscillations. Types of motion Each multi-particle body has different types of degrees of freedom: translational, rotational and oscillatory

Example: longitudinal oscillations of a CO2 molecule

• Eigen-vectors:

6.4

Mm

mmMm

Mm

mMm

Mm

mmMm

212

1

2

1

2

1

212

20

2

1

212

1

2

1

2

1

a

Page 16: Small Coupled Oscillations. Types of motion Each multi-particle body has different types of degrees of freedom: translational, rotational and oscillatory

)2()2(2

)(2

)(2

1

231

31

321

xxxMm

mM

xxm

mxMxmxMm

ζ

Example: longitudinal oscillations of a CO2 molecule

• Normal coordinates:

6.4

aζη ηaζ 1

Page 17: Small Coupled Oscillations. Types of motion Each multi-particle body has different types of degrees of freedom: translational, rotational and oscillatory

Forced oscillations

• For open systems, we introduce generalized forces

• For each generalized coordinate, there is a component of a force

• We can introduce modified generalized forces for each normal coordinate

• Total work done

• Equations of motion:

6.5

ii F

j

n

jj

n

iii QF

11

ii Q

j

n

jiji a

1

j

n

jj

n

ij

n

jiji QaF

11 1

j

n

iiji QaF

1

Qλζζ

Page 18: Small Coupled Oscillations. Types of motion Each multi-particle body has different types of degrees of freedom: translational, rotational and oscillatory

Forced oscillations

• Let us consider a periodic external force

• We look for a solution in the following form:

• After substitution into the equation of motion

• For generalized coordinates

• Resonance

6.5

j

n

jiji a

1

)cos(0 iii tQQ

Qλζζ

)cos()( iii tB

220)(

i

ii

QB

n

jj

j

jij tQa

122

0 )cos(

Page 19: Small Coupled Oscillations. Types of motion Each multi-particle body has different types of degrees of freedom: translational, rotational and oscillatory

Questions?

Page 20: Small Coupled Oscillations. Types of motion Each multi-particle body has different types of degrees of freedom: translational, rotational and oscillatory

Normal coordinates6.26.3

VaaTaλa ** ~~ ***** ~~ aVaλaTa *** ~~ VaaλTaa VV

TT

*

*

~~*** ~~ VaaλTaa aVaaTaλ

~~~~ *** VV

TT~

~

VaaTaaλ *** ~~

TaaλTaλa *** ~~ βαa i

Taa*~Taa*~

~*~~ aTa~

*~Taa

Taa*~ )()~~( βαTβα ii )

~~(~~ TαβTβαTββTαα i

*~Taa )()~~( βαTβα ii )

~~(~~ TαβTβαTββTαα i

)~~(

~~ TβαTαβTββTαα i

Page 21: Small Coupled Oscillations. Types of motion Each multi-particle body has different types of degrees of freedom: translational, rotational and oscillatory

The independent coordinates of a rigid body

• Let us consider a many-particle Lagrangian

• The system is stable, if each particle has a stable equilibrium position

• We assume small deviations from equilibrium

6.1

),...,(),...,(2

11

1,1 n

n

jijinij qqVqqqqmL

iq0

iii qq 0

Page 22: Small Coupled Oscillations. Types of motion Each multi-particle body has different types of degrees of freedom: translational, rotational and oscillatory

The independent coordinates of a rigid body

• Let us consider a many-particle Lagrangian

• The system is stable, if each particle has a stable equilibrium position

6.1

),...,(),...,(2

11

1,1 n

n

jijinij qqVqqqqmL

V

qi