slip workshop, april 2001 ken rose a comprehensive look at system level modeling ken rose, bibiche...

39
SLIP Workshop, April 2001 Ken Rose A Comprehensive Look at System Level Modeling Ken Rose, Bibiche Geuskens, Ramon Mangaser, Christopher Mark Center for Integrated Electronics and Electronics Manufacturing Department of Electrical, Computer and Systems Engineering Rensselaer Polytechnic Institute Troy, NY 12180-3590 [email protected] 518.276.2981

Upload: gerald-waters

Post on 18-Dec-2015

216 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: SLIP Workshop, April 2001 Ken Rose A Comprehensive Look at System Level Modeling Ken Rose, Bibiche Geuskens, Ramon Mangaser, Christopher Mark Center for

SLIP Workshop, April 2001 Ken Rose

A Comprehensive Look at System Level Modeling

Ken Rose, Bibiche Geuskens,

Ramon Mangaser, Christopher Mark

Center for Integrated Electronics and Electronics Manufacturing

Department of Electrical, Computer and Systems Engineering

Rensselaer Polytechnic Institute

Troy, NY 12180-3590

[email protected]

518.276.2981

Page 2: SLIP Workshop, April 2001 Ken Rose A Comprehensive Look at System Level Modeling Ken Rose, Bibiche Geuskens, Ramon Mangaser, Christopher Mark Center for

SLIP Workshop, April 2001 Ken Rose

Rensselaer Interconnect Performance Estimator

RIPE

RIPE 3.0 models are described in ‘Modeling Microprocessor Performance’by B. Geuskens and K. Rose, Kluwer, 1998.

It is available for use on line athttp://latte.cie.rpi.edu/ripe.html

RIPE was developed with partial support from IBM and SRC.

Page 3: SLIP Workshop, April 2001 Ken Rose A Comprehensive Look at System Level Modeling Ken Rose, Bibiche Geuskens, Ramon Mangaser, Christopher Mark Center for

SLIP Workshop, April 2001 Ken Rose

Co-Authors:

• Bibiche Geuskens (RIPE 1.0, 2.0, 3.0) PhD. June 1997

Intel Corporation, Hillsboro, Oregon

• Ramon Mangaser (RIPE 3.1, 4.0, 4.1) PhD. Nov. 1999

• Christopher Mark (RIPE 4.2) PhD. Sep. 2000

Sun Microsystems, Chelmsford, Massachusetts

Intel Corporation, Hillsboro, Oregon

Page 4: SLIP Workshop, April 2001 Ken Rose A Comprehensive Look at System Level Modeling Ken Rose, Bibiche Geuskens, Ramon Mangaser, Christopher Mark Center for

SLIP Workshop, April 2001 Ken Rose

RIPE Genesis:

• H.B. Bakoglu

‘Circuits, Interconnections, and Packaging for VLSI’

Addison-Wesley, 1990.

SUSPENS model coded in RIPE 1.0

• G. A. Sai-Halasz

Proc. IEEE, 83/1, p. 20, 1995.

Basis for RIPE 2.0

Page 5: SLIP Workshop, April 2001 Ken Rose A Comprehensive Look at System Level Modeling Ken Rose, Bibiche Geuskens, Ramon Mangaser, Christopher Mark Center for

SLIP Workshop, April 2001 Ken Rose

RIPE 3.0 Inputs and Outputs

System Description

Device/TechnologyDescription

Wiring density

Interconnect RC delay

Cycle time

Power dissipation

Capacitance

Resistance

Crosstalk

Electromigration

Interconnect Description

RIPE

System/Area

Performance

Reliability

Interconnect

Device

Wireability

Power Dissipation Yield

Page 6: SLIP Workshop, April 2001 Ken Rose A Comprehensive Look at System Level Modeling Ken Rose, Bibiche Geuskens, Ramon Mangaser, Christopher Mark Center for

SLIP Workshop, April 2001 Ken Rose

RIPE 3.0 Sample Benchmark

(DEC Alpha 21164)

System Parameters:Chip Area [cm2]: 2.99

Number of Transistors [M]: 9.3SRAM [KBytes]: 112Signal I/O: 294(Logic Depth: 14, 15)

Technology Parameters:

Feature Size [m]: 0.5Number of Wire Levels: 4Power Supply [V]: 3.3

Interconnect Parameters:

Pitch [m]: 1.125, 1.125, 3.0, 3.0Rint [/cmCint [pF/cm]: 2.0, 2.0, 2.0, 2.0

Data: W.J. Bowhill et al., Dig. Tech. Journal; ISSCC 1996

RIPE INPUTS

Page 7: SLIP Workshop, April 2001 Ken Rose A Comprehensive Look at System Level Modeling Ken Rose, Bibiche Geuskens, Ramon Mangaser, Christopher Mark Center for

SLIP Workshop, April 2001 Ken Rose

Cycle Time Estimation Model (Ch. 7)

2%50 377.0693.0 lCRlCRlCRCCRT WWWdrLWLdrdrstageperdelay

Sai-Halasz (1995)Sakurai (1993)

Page 8: SLIP Workshop, April 2001 Ken Rose A Comprehensive Look at System Level Modeling Ken Rose, Bibiche Geuskens, Ramon Mangaser, Christopher Mark Center for

SLIP Workshop, April 2001 Ken Rose

RC Interconnect Parameters (Ch. 3)

CV

CL

Interconnect Resistance (3.1)R = eff lint /A wint

2

A = Aspect Ratio

Interconnect Capacitance (3.2) C = 2(CV + CL) 2eff 0 lint wint

(1/TILD + A/Swire)TILD = Thickness of Interlevel

Dielectric

Swire = Spacing between wires

Yang (1998)

Page 9: SLIP Workshop, April 2001 Ken Rose A Comprehensive Look at System Level Modeling Ken Rose, Bibiche Geuskens, Ramon Mangaser, Christopher Mark Center for

SLIP Workshop, April 2001 Ken Rose

Transistor Count and Area Models (Ch. 4)

Processor Logic, Memory, and I/O Buffers are treated separately

Transistors AreaAlpha 21164 9.3 M 299 mm2

Memory 6.7 101I/O -------- 17 Random Logic 2.6 M 181 mm2

# Transistors # GatesAverage LogicGate Size Logic Area

Page 10: SLIP Workshop, April 2001 Ken Rose A Comprehensive Look at System Level Modeling Ken Rose, Bibiche Geuskens, Ramon Mangaser, Christopher Mark Center for

SLIP Workshop, April 2001 Ken Rose

Logic Wireability (Ch. 5)

R(Ng ,p) = average interconnect length in gate pitches

Based on Rent’s rule for the number of pins, Np = Kp (Ng)p

lw = long wire length = 2 (Alogic)1/2

Nw = number of long wires = [fg/(fg+1)] Nptotal

where Nptotal is the total number of pins for functional

blocks and fg is the average logic gate fanout.

Page 11: SLIP Workshop, April 2001 Ken Rose A Comprehensive Look at System Level Modeling Ken Rose, Bibiche Geuskens, Ramon Mangaser, Christopher Mark Center for

SLIP Workshop, April 2001 Ken Rose

Device Parameters (Ch. 6)

We need to have values for transistor resistors and capacitors, Rdr and Cdr . These have been superseded in RIPE 4.0.

Cycle Time Estimation Model (Ch. 7)

Tcycle = (fld – 1) Tgavg + 2Tginv + time_of_flight

where fld is the logic depth

Page 12: SLIP Workshop, April 2001 Ken Rose A Comprehensive Look at System Level Modeling Ken Rose, Bibiche Geuskens, Ramon Mangaser, Christopher Mark Center for

SLIP Workshop, April 2001 Ken Rose

Power Dissipation (Ch. 8)

Ptot = fd Ctot Vdd Vswing fc + Isc Vdd + Ileak Vdd

fdi Csw,i) Vdd2 fc

where fd is the activity factor.

1. random logic fd Csw,rl

2. clock distribution fd,clk Csw,clk

3. memory fd Csw,mem

4. interconnections fd Csw,int

5. off-chip drivers fd Csw,dr

For the Alpha 21164 fd,clk = 0.75, fd = 0.15 based on published details.

Page 13: SLIP Workshop, April 2001 Ken Rose A Comprehensive Look at System Level Modeling Ken Rose, Bibiche Geuskens, Ramon Mangaser, Christopher Mark Center for

SLIP Workshop, April 2001 Ken Rose

RIPE 3.0 Sample Benchmark

(DEC Alpha 21164)

Memory Transistors: 6.73 M 7.2M 6.73 MArea memory: 1.01 cm2 1.02 cm2 1.01 cm2

Pad ring area: 0.16 cm2 0.17 cm2 0.16 cm2

Clock frequency: 291 MHz 300 MHz 373 MHzPower Dissipation: 52 W 50 W 66 WPower clock distribution: 21 W 20 W 27 W

ActualRIPE Results

Al/SiO2

RIPE ResultsCu/SiO2

Page 14: SLIP Workshop, April 2001 Ken Rose A Comprehensive Look at System Level Modeling Ken Rose, Bibiche Geuskens, Ramon Mangaser, Christopher Mark Center for

SLIP Workshop, April 2001 Ken Rose

RIPE 3.0 Benchmark Results

Processor Chip Parameters Actual RIPE

Alpha 21164

(0.5 m

CMOS)

Clock frequency (MHz) 300 290

Power dissipation (W) 50 52

Number of metal levels 4 4

Pentium

(0.6 m

BiCMOS)

Clock frequency (MHz) 150 152

Power dissipation (W) 15-20 19

Number of metal levels 4 4

PowerPC 604

(0.5 m

static CMOS)

Clock frequency (MHz) 150 150

Power dissipation (W) 18 18

Number of metal levels 4 4

Page 15: SLIP Workshop, April 2001 Ken Rose A Comprehensive Look at System Level Modeling Ken Rose, Bibiche Geuskens, Ramon Mangaser, Christopher Mark Center for

SLIP Workshop, April 2001 Ken Rose

RIPE Simulation Modes: RIPE 3.0 to RIPE 4.0

Performance Estimator

RIPE 3.0WiringStrategy

WiringStrategy

ClockFrequency

ClockFrequency,

-n and -d modes

-aw mode

Wiring Allocator

RIPE 4.0

Power,Wireability

Page 16: SLIP Workshop, April 2001 Ken Rose A Comprehensive Look at System Level Modeling Ken Rose, Bibiche Geuskens, Ramon Mangaser, Christopher Mark Center for

SLIP Workshop, April 2001 Ken Rose

Intel Wiring Distribution Model

#Nets / ets B Lnets = -1.65

#Nets A (#Transistors), A 0.25

S. Yang, MRS Symposium on Advanced Interconnects, April 1998.

#Nets = [B/( + 1)] [Lmax - Lmin

Demand = [B/( + 2)] [Lmax

- Lmin

We have taken Lmax = 2 (Logic_Area)1/2

and solve the above equations for B and Lmin .

Page 17: SLIP Workshop, April 2001 Ken Rose A Comprehensive Look at System Level Modeling Ken Rose, Bibiche Geuskens, Ramon Mangaser, Christopher Mark Center for

SLIP Workshop, April 2001 Ken Rose

Algorithm for RIPE 4.0 Cycle-Time Based Wiring Allocation

1. Set the input clock frequency and logic depth.2. Use RIPE’s critical path model to estimate total average

delay, including gate and wire delay.3. Determine the maximum allowable long wire delay by

subtracting the total average delay from the target cycle time.

4. Allocate wires using this maximum total long wire delay as a constraint, but allowing a maximum number of repeaters.

Page 18: SLIP Workshop, April 2001 Ken Rose A Comprehensive Look at System Level Modeling Ken Rose, Bibiche Geuskens, Ramon Mangaser, Christopher Mark Center for

SLIP Workshop, April 2001 Ken Rose

Modifying the Cycle-Time Model for RIPE 4.0

Tcycle = fld Tavg + Tlong + time_of_flight

Tavg = 0.377(rint cint lint2) + 0.693{Rgout (Cgout + fg Cgin)

+ Rgout [(fg + 1)/2] cint lint + rint [(fg + 1)/2] lint Cgin}

Tlong = 0.377(rint cint llong2) + 0.693[R’gout (C’gout + C’gin)

+ R’gout cint llong + rint llong C’gin]

Page 19: SLIP Workshop, April 2001 Ken Rose A Comprehensive Look at System Level Modeling Ken Rose, Bibiche Geuskens, Ramon Mangaser, Christopher Mark Center for

SLIP Workshop, April 2001 Ken Rose

RIPE 4.0 Benchmark Results

Processor Chip Parameters Actual RIPE

Alpha 21164

(0.5 m

CMOS)

Clock frequency (MHz) 300 278

Power dissipation (W) 50 57

Number of metal levels 4 4

Pentium

(0.6 m

BiCMOS)

Clock frequency (MHz) 100 113

Power dissipation (W) 15-20 19

Number of metal levels 4 4

PowerPC 604

(0.5 m

static CMOS)

Clock frequency (MHz) 133 134

Power dissipation (W) 18 20

Number of metal levels 4 4

Page 20: SLIP Workshop, April 2001 Ken Rose A Comprehensive Look at System Level Modeling Ken Rose, Bibiche Geuskens, Ramon Mangaser, Christopher Mark Center for

SLIP Workshop, April 2001 Ken Rose

Katmai Wiring Strategy Calculated by RIPE 4.0

Level Pitch rint cint Lmax[x0.64m] [/cm] [pF/cm] [mm]

1 1.0 3451 2.37 0.006 2-3 1.45 891 2.61 4.4 4 2.5 365 2.40 12.3 5 4.0 158 2.34 20.5

Level Repeaters Level Wiring Total Wiringfor Lmax Efficiency Efficiency

1 0 0.02 0.02 2-3 0 0.30 0.18 4 2 0.50 0.23 5 3 0.52 0.25

Page 21: SLIP Workshop, April 2001 Ken Rose A Comprehensive Look at System Level Modeling Ken Rose, Bibiche Geuskens, Ramon Mangaser, Christopher Mark Center for

SLIP Workshop, April 2001 Ken Rose

RIPE Inclusions

• BEOL Yield• Signal Integrity• Electromigration• Cache Memory Performance• Repeater Insertion• Interconnect Inductance• Accurate MOSFET Models

Page 22: SLIP Workshop, April 2001 Ken Rose A Comprehensive Look at System Level Modeling Ken Rose, Bibiche Geuskens, Ramon Mangaser, Christopher Mark Center for

SLIP Workshop, April 2001 Ken Rose

BEOL Yield in RIPE

• Critical Area• Cube law distribution of defect sizes• Poisson distribution of faults

Ytotal = e-open e-short

Page 23: SLIP Workshop, April 2001 Ken Rose A Comprehensive Look at System Level Modeling Ken Rose, Bibiche Geuskens, Ramon Mangaser, Christopher Mark Center for

SLIP Workshop, April 2001 Ken Rose

Katmai (250 nm Pentium III) Transition to 180nm TechnologyKatmai Shrink (Katmai-180)• number of transistors 9.5M

• chip size 1.23 0.62 cm2

• clock frequency 600 850 MHz

• metal layers 5 6

4 wiring domains

Katmai Shrink and Doubling (Katmai2)• number of transistors 19M

• chip size 1.24 cm2

• clock frequency 850 MHz

• metal layers 10

9 wiring domains

Page 24: SLIP Workshop, April 2001 Ken Rose A Comprehensive Look at System Level Modeling Ken Rose, Bibiche Geuskens, Ramon Mangaser, Christopher Mark Center for

SLIP Workshop, April 2001 Ken Rose

Contributions of Different Metal Levels to Random Defect Yields for Katmai and Katmai2

Katmai250 nm

Katmai2180 nm

M1 3.9% M1 2.7 M6 3.8M2 34.8 M2 34.3 M7 2.4M3 34.8 M3 34.3 M8 1.6M4 18.8 M4 13.4 M9 1.1M5 7.7 M5 6.0 M10 0.4

TotalFaults 0.105

TotalFaults 0.464

PoissonYield 90%

PoissonYield 63%

Page 25: SLIP Workshop, April 2001 Ken Rose A Comprehensive Look at System Level Modeling Ken Rose, Bibiche Geuskens, Ramon Mangaser, Christopher Mark Center for

SLIP Workshop, April 2001 Ken Rose

Signal Integrity Limits

dd

p

cint

pint

dd

p

V

Vc

c

V

V

21

2

fraction of victim wire

parallel to attacker

cintpint

cintddp C+C

C

2

1VV

Cpint

Ccint

Sakurai (1993)

Page 26: SLIP Workshop, April 2001 Ken Rose A Comprehensive Look at System Level Modeling Ken Rose, Bibiche Geuskens, Ramon Mangaser, Christopher Mark Center for

SLIP Workshop, April 2001 Ken Rose

Vp Comparison between SPICE, Sakurai Model, and the Modified HP Model for Deschutes (250 nm Pentium II)

Metal

Levels

Line Lengths

(mm)

SPICE

(mV)

Sakurai

(mV)

%

Error

Modified HP

(mV)

%

Error

M2-M3 0.01 1.3 643 Big 1.25 4

6 403 643 60 436 8

M4 6 300 578 93 314 5

10 369 578 57 399 8

M5 12 321 532 66 335 4

21 382 532 39 411 8

Page 27: SLIP Workshop, April 2001 Ken Rose A Comprehensive Look at System Level Modeling Ken Rose, Bibiche Geuskens, Ramon Mangaser, Christopher Mark Center for

SLIP Workshop, April 2001 Ken Rose

Cache Memory Performance

We assume that the cycle time is defined by the logic subsystem. Calculated cache access times greater than this cycle time will be flagged and reported by RIPE. RIPE will then assume that the cache requires multiple clock cycles for proper operation.

RIPE 4.1 implements the model of Wada et al. (1992) IEEE JSSC, 27, p. 1147. It can be linked to the more accurate CACTI model of Wilton and Jouppi (1996) IEEE JSSC, 31, p. 677.

Page 28: SLIP Workshop, April 2001 Ken Rose A Comprehensive Look at System Level Modeling Ken Rose, Bibiche Geuskens, Ramon Mangaser, Christopher Mark Center for

SLIP Workshop, April 2001 Ken Rose

Inductance in RIPE 4.2 • RIPE has good estimates of wire capacitance (per unit length)

[Geuskens and Rose, 98, Mangaser (Ph.D. Thesis), 99]

• Estimate wire inductance from wire capacitance Assume homogeneous medium and TEM mode propagation

• Inductance analysis performed in two steps– Identification of wiring levels with significant inductance effects

Incorporate Ismail’s formulas for an inductance figure of merit (FOM) to define upper and lower bounds for wire lengths that are susceptible to inductance effects on each wiring level

Use constant RC values to estimate rise times needed in FOM

– Optimization of inductance-susceptible levels Revert to wire pitch from the last, previous wiring level without

inductance effects Given long-wire delay constraint, use Ismail’s RLC-based formulas to

determine maximum wire length (per level)

Page 29: SLIP Workshop, April 2001 Ken Rose A Comprehensive Look at System Level Modeling Ken Rose, Bibiche Geuskens, Ramon Mangaser, Christopher Mark Center for

SLIP Workshop, April 2001 Ken Rose

RIPE 4.2 wire level projections using Cu/low-K(=2) • Using ITRS’99 scaling trends

• Using RPI and Bohr scaling trends with ITRS’99 clock frequencies

Technology Node (nm) 180 130 100 70 50 35RC 0 Repeaters 7 12 24 40 >50 >50

RC 5 Repeaters 6 11 22 35 >50 >50RLC 0 Repeaters 5 11 17 29 >50 >50

RLC 5 Repeaters 6 10 18 25 42 >50* 40%/60% Logic area to memory area ratio assumed

Technology Node (nm) 180 130 100 70 50 35RC 0 Repeaters 6 7 8 10 12 18

RC 5 Repeaters 6 6 7 8 10 15RLC 0 Repeaters 6 7 8 9 10 12

RLC 5 Repeaters 6 6 6 7 7 10* 20%/80% Logic area to memory area ratio assumed

• ITRS’99 scaling trends for MOSFETs, chip size and transistor counts are overly aggressive !!

Page 30: SLIP Workshop, April 2001 Ken Rose A Comprehensive Look at System Level Modeling Ken Rose, Bibiche Geuskens, Ramon Mangaser, Christopher Mark Center for

SLIP Workshop, April 2001 Ken Rose

A Constant RC Input-Signal-Transition-Inherent (CRISTI) gate delay model:

Vdd

Rpu1

Rpd1 Cnode1 Cnode2 Cnode3

Rpu2

Rpd2 Rpd3

Rpu3

Constant RC model of an inverter chain

1*1*2*2*7.0 CnodeRpdCnodeRputpdr

1*1*2*2*7.0 CnodeRpuCnodeRpdtpdf

CnodeRKCnodeRtpd drdrav **7.0**

(assuming rf)

For Inverter 2

Page 31: SLIP Workshop, April 2001 Ken Rose A Comprehensive Look at System Level Modeling Ken Rose, Bibiche Geuskens, Ramon Mangaser, Christopher Mark Center for

SLIP Workshop, April 2001 Ken Rose

• Resistance

5ln5090

effdr C

ttR

(1) ,

PMOS

VddVout

PMOS

Vout Ids

Vds

Ids

VdsRpu

2/02

1(2)

Previous approaches to estimating constant RC values

Gate Length (m) 1.2 0.9 0.6Rpu (K)This work 12.1 11.7 9.5Step input gate delay/Load capacitance [Weste et al.] 8.0 8.2 6.7Equation (1) [Menezes et al., Qian et al.] 6.7 6.1 5.51/(maximum drain conductance) [Sakurai] 4.1 3.9 2.91/(minimum drain conductance) [Sakurai] 667 909 167Slope-chord technique at Vgs=Vds=Vdd [Watt et al.] 15.7 16.7 13.2Equations (2) [Rabaey] 8.9 8.7 6.7Rpd (K)This work 7.7 13.0 11.4Step input gate delay/Load capacitance [Weste et al.] 6.6 9.1 8.0Equation (1) [Menezes et al., Qian et al.] 4.0 5.6 5.11/(maximum drain conductance) [Sakurai] 1.8 2.5 2.21/(minimum drain conductance) [Sakurai] 233 667 317Slope-chord technique at Vgs=Vds=Vdd [Watt et al.] 12.8 18.1 16.1Equations (2) [Rabaey] 5.6 7.9 7.1

Page 32: SLIP Workshop, April 2001 Ken Rose A Comprehensive Look at System Level Modeling Ken Rose, Bibiche Geuskens, Ramon Mangaser, Christopher Mark Center for

SLIP Workshop, April 2001 Ken Rose

Two general methods of determining constant RC values

• Method 1- Given a full set of SPICE parameters, determine R and C from SPICE simulations of inverter chains

- Use actual gates, not step or ramp inputs, to drive inverters

under investigation better characterization of RC values - Use a constant RC input-signal-transition-inherent gate

delay model for inverters

• Method 2- Given limited MOSFET information, determine R and C from the “CV/I” metric

- Use this method to project RC values for deep sub-micron CMOS technologies

Page 33: SLIP Workshop, April 2001 Ken Rose A Comprehensive Look at System Level Modeling Ken Rose, Bibiche Geuskens, Ramon Mangaser, Christopher Mark Center for

SLIP Workshop, April 2001 Ken Rose

C-IRSIM

• CRISTI model for inverters was extended to multi-transistor (>2) logic gates– 3-input NAND gates used initially

• Focus placed on transistors in series stacks Relative topological position and relative turn-on order

• These combined features determine the appropriate R and C value for each transistor in a series stack– Ignoring these features leads to significant errors in delay

estimation relative to SPICE

• Elmore delay terms included with RC term to account for distributed RC effects in complex gates

• CRISTI incorporated into IRSIM C-IRSIM

Page 34: SLIP Workshop, April 2001 Ken Rose A Comprehensive Look at System Level Modeling Ken Rose, Bibiche Geuskens, Ramon Mangaser, Christopher Mark Center for

SLIP Workshop, April 2001 Ken Rose

Bit PatternSet #

Slowest settlingproduct bit ->

final value

AIM-Spice(ns)

C-IRSIM(ns)

IRSIM(ns)

1 P4 -> 1 2.65 3.75 3.472 P8 -> 0 4.76 4.32 6.223 P8 -> 0 6.80 7.33 8.214 P7 -> 0 4.75 3.94 3.565 P6 -> 0 4.49 5.57 5.70

Totalmultiplication

time

23.45 24.91 27.16

% error relativeto AIM-Spice

+6.2 +15.8

C-IRSIM’S% Impr.

60.6

AIM-Spice C-IRSIM IRSIMTotal execution time (s) 405 1 1

C-IRSIM simulation examples • 1056-transistor, 6-bit DADDA multiplier circuit in 0.18m technology

Page 35: SLIP Workshop, April 2001 Ken Rose A Comprehensive Look at System Level Modeling Ken Rose, Bibiche Geuskens, Ramon Mangaser, Christopher Mark Center for

SLIP Workshop, April 2001 Ken Rose

Significance of good device models • Selected cycle-time components from RIPE 4.2

Technology Node (nm) 180 130 100 70 50 35Target cycle time (ns) 0.83 0.62 0.50 0.40 0.33 0.28

Ctrn (fF) 0.270 0.131 0.097 0.058 0.044 0.028Reff-trn (K) 20.5 27.3 28.3 30.3 28.2 40.8

Total logic-stagedelay (ns)

0.55 0.38 0.30 0.20 0.14 0.14

Total logic-stagedelay fraction oftarget cycle time

0.66 0.61 0.60 0.50 0.42 0.50ITRS '99

Total long-wiredelay (ns)

0.28 0.24 0.20 0.20 0.19 0.14

Ctrn (fF) 0.152 0.071 0.046 0.025 0.014 0.007Reff-trn (K) 27.8 34.8 41.1 51.4 65.6 88.8

Total logic-stagedelay (ns)

0.50 0.33 0.27 0.21 0.18 0.15

Total logic-stagedelay fraction oftarget cycle time

0.60 0.53 0.54 0.53 0.54 0.54RPI/Bohr

(ITRS ’99 clockfrequencies)

Total long-wiredelay (ns)

0.33 0.29 0.23 0.19 0.15 0.13

• Fraction of cycle time consumed by total logic delay can be relatively large (0.5-0.66) !! Devices cannot be neglected altogether

• Small change in device delay potentially big change in total wiring levels

Page 36: SLIP Workshop, April 2001 Ken Rose A Comprehensive Look at System Level Modeling Ken Rose, Bibiche Geuskens, Ramon Mangaser, Christopher Mark Center for

SLIP Workshop, April 2001 Ken Rose

Conclusions

• Reasonable estimates can be made of microprocessor performance on the basis of limited information.

• Models should be robust with a limited number of arbitrary fitting parameters.

• Interconnect limitations constrain design and manufacture.

Page 37: SLIP Workshop, April 2001 Ken Rose A Comprehensive Look at System Level Modeling Ken Rose, Bibiche Geuskens, Ramon Mangaser, Christopher Mark Center for

SLIP Workshop, April 2001 Ken Rose

RIPE 4.0 Sample BenchmarkIntel’s Deschutes (Pentium II) processor

RIPE INPUTSSystem Parameters Technology Parameters Wire Parameters

Circuit Area (mm2): 1.31 Technology Generation Pitch (m): 0.64, 0.93

Number of Transistors (m): 0.25 0.93, 1.60, 2.56

(M): 7.5 LGATE(m): 0.18 rint (/cm): 3451, 891,

SRAM cells (m2): 10.26 Num. of wire levels: 5 891, 365, 158

SRAM (Kbytes): 32 (Aluminum) cint (pF/cm): 2.4, 2.6,

Signal I/O: 242 Core Supply (V): 1.8 2.6, 2.4, 2.3

RIPE RESULTS ACTUAL

Clock Frequency (MHz) 459 450

Power Dissipation (W) 18.7 18.9

Page 38: SLIP Workshop, April 2001 Ken Rose A Comprehensive Look at System Level Modeling Ken Rose, Bibiche Geuskens, Ramon Mangaser, Christopher Mark Center for

SLIP Workshop, April 2001 Ken Rose

Wiring strategy results from RIPE 4.1 for a 100nm, Cu/low-K(=2) technology using RPI/Bohr/ITRS’99 scaling

• No inductance analysis

• Repeaters chosen to maximize chip wireability Level # Pitch Repeaters Rw Lmax ew total_ew (xPmin) (for Lmax) (ohm/cm) (um)

------- ------- ---------- -------- ---- ---- --------

1 1.00 0 11000 2 0.0136 0.0136 2 2.00 0 2750 2774 0.3000 0.1568 3 2.00 0 2750 2774 0.3000 0.1568 4 3.00 2 1222 5938 0.2999 0.1772 5 5.00 1 440 8641 0.2999 0.1869 6 7.00 1 224 10992 0.2999 0.1929 7 8.00 3 172 13360 0.2999 0.1977 8 10.00 3 110 15477 0.3000 0.2012 9 13.00 1 65 17246 0.3000 0.2038 10 15.00 2 49 18880 0.3000 0.2059 11 17.00 2 38 20403 0.2999 0.2077 12 20.00 1 28 21759 0.2999 0.2091 13 23.00 1 21 22984 0.3000 0.2104 14 26.00 1 16 24105 0.2999 0.2114 15 29.00 1 13 25139 0.3000 0.2124 16 32.00 1 11 26800 0.2997 0.2132

Page 39: SLIP Workshop, April 2001 Ken Rose A Comprehensive Look at System Level Modeling Ken Rose, Bibiche Geuskens, Ramon Mangaser, Christopher Mark Center for

SLIP Workshop, April 2001 Ken Rose

Wiring strategy results from RIPE 4.2 for a 100nm, Cu/low-K(=2) technology using RPI/Bohr/ITRS’99 scaling • Inductance analysis performed• Repeaters again chosen to maximize chip wireability

– Compromise between maximizing chip wireability and minimizing RLC delay

Level # Pitch Repeaters Rw Lmax ew total_ew (xPmin) (for Lmax) (ohm/cm) (um)

------- ------- ---------- -------- ---- ---- -------- 1 1.00 0 11000 2 0.0136 0.0136 2 2.00 0 2750 2774 0.3000 0.1568 3 2.00 0 2750 2774 0.3000 0.1568 4 3.00 2 1222 5938 0.2999 0.1772 5 5.00 1 440 8641 0.2999 0.1869 6 7.00 1 224 10992 0.2999 0.1929 7 7.00 3 224 16863 0.3000 0.2033 8 7.00 3 224 16863 0.3000 0.2033 9 8.00 1 172 19964 0.2999 0.2072 10 10.00 2 110 25657 0.3000 0.2128 11 10.00 2 110 25657 0.3000 0.2128 12 32.00 1 11 26800 0.1372 0.2121

• Wire inductance reduces the effect of wire resistance Smaller wire pitches but longer wire lengths Reduction in total number of wire levels