sliding frame‐solid interaction using bem/fem coupling · wilson sergio venturini b humberto...

24
1376 Abstract In this work it is presented a coupling between the Boundary Ele‐ ment Method ሺBEMሻ and the Finite Element Method ሺFEMሻ for two‐ dimensional elastostatic analysis of frame‐solid interaction. The BEM is used to model the matrix while the reinforcement is modeled by the FEM. Regarding the coupling formulation a third degree polyno‐ mial is adopted to describe the displacement and rotations of the reinforcement, while a linear polynomial is used to describe the contact force among the domain ሺmatrixሻ and the reinforcement. Perfect bounding contact forces are improved by means of redun‐ dant equations and Least squares method. Slip‐bounding with two and three paths written as function of relative displacement are used to calculate the transmitted contact forces. Examples are used to demonstrate that the proposed slip‐bounding procedure regularizes the contact force behavior. Keywords Boundary Element Method, Finite Element Method, BEM/FEM cou‐ pling, adherence models. Sliding frame‐solid interaction using BEM/FEM coupling 1 INTRODUCTION The combination of the finite element method ሺFEMሻ and boundary element method ሺBEMሻ to solve structural analysis is attractive because it allows for an optimal exploitation of the respective advantage of the methods ሺZienkiewicz et al., 1977ሻ. The main strength of the BEM for boundary‐value problems governed by linear, homogenous, and elliptic differential equations with constant coefficients is the reduction of the dimensionality of the problem by one unit for linear constitutive relations ሺBrebbia, 1978; Brebbia, 1980ሻ. Particularly, BEM is useful to model special situations such as very large or un‐ bounded domains, geometrical singularities ሺe. g. cracksሻ or to obtain very accurate results in regions of complicated shape ሺAliabadi, 1997; Bonnet, 1999; Frangi et al., 2002ሻ. Thus, coupling the BEM and the FEM allows exploiting their complementary advantages. By the other hand, the FEM is appropriate to solve a lot of problems, including e. g. those with heterogeneous or non‐linear constitutive properties, or finite deformations. The idea of combining these two methods goes back to Zienkiewicz et al. ሺ1977ሻ. One branch of BEM/FEM coupling is the iterative coupling in which the individual sub‐domains are treated inde‐ pendently by either method. The procedure starts with an initial guess of the interface unknowns that will be improved by solving each sub‐domain and returned to interface. This procedure repeats until an error tolerance is achieved. Although this iterative coupling is very attractive to software design, its convergence commonly depends on relaxation parameters which are rather empirical ሺEstorff and Hagen, 2005ሻ. For this reason, a direct coupling approach is adopted in this work. Standard BEM formulations to deal with solids stiffened by bars or fibers are derived by combining the BEM and FEM algebraic equations. The domain ሺcontinuum or matrixሻ is analyzed by BEM, while Fabio Carlos da Rocha a Wilson Sergio Venturini b Humberto Breves Coda c a,b,c University of São Paulo, School of Engineering of São Carlos, Department of Structural Engineering, Av. Trabalhador SãoCarlense, 400, 13566‐590 São Carlos‐ SP, Brazil; a Federal University of Sergipe, Depart‐ ment of Civil Engineering, Av. Marechal Rondon, s/n, 49100‐000 São Cristovão‐ SE, Brazil; a [email protected] b [email protected] c [email protected]

Upload: dinhthuy

Post on 06-Sep-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

1376 

AbstractIn thiswork it is presented a coupling between theBoundary Ele‐mentMethod BEM andtheFiniteElementMethod FEM fortwo‐dimensionalelastostaticanalysisofframe‐solidinteraction.TheBEMisused tomodel thematrixwhile thereinforcement ismodeledbytheFEM.Regardingthecouplingformulationathirddegreepolyno‐mial is adopted to describe the displacement and rotations of thereinforcement, while a linear polynomial is used to describe thecontact force among the domain matrix and the reinforcement.Perfect bounding contact forces are improved bymeans of redun‐dant equations and Least squaresmethod. Slip‐boundingwith twoandthreepathswrittenasfunctionofrelativedisplacementareusedto calculate the transmitted contact forces. Examples are used todemonstratethattheproposedslip‐boundingprocedureregularizesthecontactforcebehavior.KeywordsBoundaryElementMethod,FiniteElementMethod,BEM/FEMcou‐pling,adherencemodels.

Slidingframe‐solidinteractionusingBEM/FEMcoupling

1 INTRODUCTION

Thecombinationof the finiteelementmethod FEM andboundaryelementmethod BEM tosolvestructuralanalysisisattractivebecauseitallowsforanoptimalexploitationoftherespectiveadvantageofthemethods Zienkiewiczetal.,1977 .ThemainstrengthoftheBEMforboundary‐valueproblemsgoverned by linear, homogenous, and elliptic differential equationswith constant coefficients is thereductionof thedimensionalityof theproblembyoneunit for linearconstitutiverelations Brebbia,1978;Brebbia,1980 .Particularly,BEMisusefultomodelspecialsituationssuchasverylargeorun‐boundeddomains,geometricalsingularities e.g.cracks ortoobtainveryaccurateresultsinregionsofcomplicatedshape Aliabadi,1997;Bonnet,1999;Frangietal.,2002 .Thus,couplingtheBEMandtheFEMallowsexploitingtheircomplementaryadvantages.Bytheotherhand,theFEMisappropriatetosolvealotofproblems,includinge.g.thosewithheterogeneousornon‐linearconstitutiveproperties,orfinitedeformations. The idea of combining these twomethods goes back to Zienkiewicz et al. 1977 .OnebranchofBEM/FEM coupling is the iterative coupling in which the individual sub‐domains are treated inde‐pendentlybyeithermethod.Theprocedurestartswithaninitialguessoftheinterfaceunknownsthatwillbeimprovedbysolvingeachsub‐domainandreturnedtointerface.Thisprocedurerepeatsuntilanerror tolerance is achieved.Although this iterative coupling is very attractive to softwaredesign, itsconvergence commonly depends on relaxation parameters which are rather empirical Estorff andHagen,2005 .Forthisreason,adirectcouplingapproachisadoptedinthiswork. StandardBEMformulationstodealwithsolidsstiffenedbybarsorfibersarederivedbycombiningtheBEMandFEMalgebraicequations.Thedomain continuumormatrix isanalyzedbyBEM,while

FabioCarlosdaRochaaWilsonSergioVenturinibHumbertoBrevesCodaca,b,cUniversityofSãoPaulo,SchoolofEngineeringofSãoCarlos,DepartmentofStructuralEngineering,Av.TrabalhadorSãoCarlense,400,13566‐590SãoCarlos‐SP,Brazil;aFederalUniversityofSergipe,Depart‐mentofCivilEngineering,Av.MarechalRondon,s/n,49100‐000SãoCristovão‐SE,Brazil;[email protected]@[email protected]

F.C.Rocha,W.S.VenturiniandH.B.Coda/Slidingframe‐solidinteractionusingBEM/FEMcoupling1377

LatinAmericanJournalofSolidsandStructures11 2014 1376‐1399

finite elements areused to represent inclusions bars for instance .The coupling is alwaysdonebyenforcingdisplacementcompatibilityandtractionequilibriumatinterfacenodes.Practicalapplicationsfornon‐slippingorslippingcouplingusingBEM/FEMcouplingarepresented,forinstance,inBeerandWatson 1996 , Coda and Venturini 1995 , Coda 2001 , Leite et al. 2002 , Botta and Venturini2005,2003 ,Leonel 2009 ,Rocha 2010 . Ascontribution, thepresentwork isable tocapturebendingeffects in theanalysisof frame‐solidinteraction,which includesbending stiffness in reinforcements immersed in 2D continuum.For thispurpose,inthisstudyitisadoptedaRissner‐Mindlintypeframefiniteelementwiththirdorderofap‐proximation forbothdisplacementandrotationsresulting in fournodesand12degreesof freedom.However,thecontactforceismodeledbylinearapproximationresultinginonly4independentvalueswhich leads toanot square forcematrix.Theseapproximations displacementsand tractions wereusedbecauseitisthelowestorderthatsatisfiesthedifferentialequationgoverningtheproblem.Inthisapproach, theboundaryelement force linesarebuild inacompatibleway, that is thereare4sourcepointsgeneratingathirdorderapproximationfordisplacements,butthecontactforceapproximationislinear,alsoresultinginanotsquareforcematrix. The leastSquares technique isused toeliminate thedependentequationsdue to theabovemen‐tioneddifferenceinapproximationorderfordisplacementandtractions.Moreoversomeauthors,BottaandVenturini 2005,2003 andLeonel 2009 ,claimthatthisprocedurereducescontactforceoscilla‐tions. Thispaper isorganizedas follows. It ispresented insection2 theFEMformulation tomodel theframestructure,which isshownthekinematicsadopted. Insection3 isshowntheBEMformulationadaptedtodomainmodeling.Insection4itispresentedtheproposedcouplingformulationbetweenBEMandFEMconsideringbothperfectbondinganddebondingcases.Thissectionisdividedinsubsec‐tion4.1inwhichtherearepresentedthebasicequationstoperfectbondingandanexampletoverifythis formulation. In sub‐section4.3 it is presented the coupling formulation considering the slip be‐tweenreinforcementanddomain.Debondingmodels,basicequationsandthenon‐linearformulationtosolveslippingarepresentedinsub‐sections4.3.1,4.3.2and4.3.3,respectively.Thesub‐section4.4presentstwoexamples.Thefirstsimulatesapullouttestandthesecondsolveasoil‐structureinterac‐tioncase.Finally,insection5thefinalremarksandconclusionsaregiven.2 THEFRAMEELMENTMODELING–FEMFORMULATION

Asmentioned before, the FEM is used tomodel frame elements and structures. Here, elementswhichhavethreedegreesoffreedompernodeandcubicapproximationfordisplacementandrotationareemployed.Thisway,theelementshavefournodesandthesenodespresenttwotranslations verti‐calandhorizontal andonerotation.Moreover,thedistributedappliedforceswillfollowlinearapprox‐imation.2.1Kinematics

Foranypointonthestructure,thehorizontalandverticalcomponentsofdisplacementsaregivenby,respectively:

( ) ( ) ( )( ) ( )

= +=

0 0

0

,,

,p

p

U x y U x x y

V x y V x

q1

where x and y arethereferencesysteminthecenterofthelayer,asshowninfigure1and pU and

pV arethedisplacementsofpoint P .

1378F.C.Rocha,W.S.VenturiniandH.B.Coda/Slidingframe‐solidinteractionusingBEM/FEMcoupling

LatinAmericanJournalofSolidsandStructures11 2014 1376‐1399

Figure1:Kinematicsofpoint“P”.

Fromequation 1 ,onecanapplythedifferentialoperatortoobtainthelinearstraincomponents:

( )( ) ( ) ( )

( )( )

( )( ) ( )

( )( )

¶ ¶ ¶= = +

¶ ¶ ¶¶

= =¶

æ ö æ ö¶ ¶ ¶÷ ÷ç ç÷ ÷ç ç= + = +÷ ÷ç ç÷ ÷÷ç ç÷¶ ¶ ¶è øè ø

0 0

00

,,

,, 0

, ,1 1, .

2 2

px

py

p pxy

U x y U x xx y y

x x xV x y

x yyU x y V x y V x

x y xy x x

qe

e

e q

2

Applyingtheconstitutivelawfortheisotropicmaterials,thestresscomponentsatthepoint“p”areobtained:

( ) ( )( ) ( )

( ) ( )

( ) ( ) ( )( )

æ ö¶ ¶ ÷ç ÷ç= = + ÷ç ÷÷ç ¶ ¶è ø= =

æ ö¶ ÷ç ÷ç= = + ÷ç ÷÷ç ¶è ø

0 0

00

, ,

, , 0

, , ,2

x x

y y

xy xy

U x xx y E x y E y

x x

x y E x y

V xGx y G x y x

x

qs e

s e

t e q

3

whereEandGarethelongitudinalandshearelasticmoduli,respectively. TowritetheequilibriumequationitisusedthePrincipleofMinimumTotalPotentialEnergy.Usingequations 2 and 3 onewritestheTotalPotentialEnergyequationas,

( )( ) ( ) ( )

( )

-

-

= -æ é ù öæ ö æ ö ÷ç ¶ ¶ ¶ê ú ÷÷ ÷ç çç ÷÷ ÷ç ç= + + +ç ê ú ÷÷ ÷ç çç ÷÷ ÷÷ ÷ê ç ç ú¶ ¶ ¶ç ÷è ø è ø ÷çè øê úë û

= +

ò ò

ò

2 21 0 0 0

0 21

1

0 01

2 4

,

e p

e A

p x y

U U

V UEU G y dA d

L L

U t U t V dA

x x q xq x x

x x x 4

where eU and pU aretheinternalandpotentialenergyofexternalforces, xt and yt arethecompo‐

nentsof thedistributed loading contact tractions appliedtothestructure, L and A arethe lengthandcrosssectionalareaoftheframeelement,respectively.Forapproximateunknowns 0U , 0V e 0q

cubicindependentapproacheswereused,asshown:

F.C.Rocha,W.S.VenturiniandH.B.Coda/Slidingframe‐solidinteractionusingBEM/FEMcoupling1379

LatinAmericanJournalofSolidsandStructures11 2014 1376‐1399

( ) ( ) ( )

( ) ( )= = =

= =

= = =

= =

å å å

å å

4 4 4

0 0 0 0 0 01 1 1

2 2

1 1

, ,

,

i i ii i i

i i i

j jx j x y j y

i i

U u V v

t t t t

j x j x q j x q

y x y x

5

with 0

iu , 0iv e 0

iq beingthenodalvalues unknown .Since ( )ij x and ( )jy x areshapefunctions:

( ) ( ) ( ) ( ) ( )æ öæ ö æ ö÷ ÷ ÷ç ç ç= - + - - = + + - -÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷è øè ø è ø1 2

9 1 1 27 11 , 1 1

16 3 3 16 3j x x x x j x x x x

( ) ( ) ( ) ( ) ( )æ ö æ öæ ö÷ ÷ ÷ç ç ç= - + + - = + + - +÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷è ø è øè ø3 4

27 1 9 1 11 1 , 1

16 3 16 3 3j x x x x j x x x x

( ) ( )- += = - £ £1 2

1 1, 1 1

2 2and

x xy x y x x 6

Minimizingtheenergyfunctional,equation 4 ,onefindsthealgebraicequilibriumsystemgivenby:

= +3 ,3 3 ,1 3 ,2 3 ,12 ,1extr extr

E E E E

NF NF NF NF NF NFNF

K U G f F7

where: EK is stiffnessmatrix, EG is equivalence forcematrix, EU unknownvectorwithdisplace‐ments and rotations, Ef is the vector containing thenodal valuesof thedistributed load, F is theconcentratedforce.LabelsNF and extrNF arenodenumbersforthedisplacements androtations ,

fourperelement,andnodenumbersforforces twoperelement ,respectively3 THEDOMAINMODELING–BEMFORMULATION

LetusconsiderthedomainW anditsboundary G .ForanelasticbodydefinedbythedomainW ,theequilibriumequation,writtenintermsofdisplacements,isgivenby:

( ) + ⋅ + =-

2 10

1 2 Gnb

u u 8

whereurepresentsthedisplacementvector,G istheshearmodulusandn isthePoisson’sratio. ForadomainW withboundary G ,theintegralrepresentationofdisplacementsisderivedbyap‐plyingreciprocitytheorem orGreen’ssecondidentity .

G G⋅ = - ⋅ G + ⋅ Gò ò* *d dc u P u U p 9

Wherethesymbols“*”isusedtoindicatefundamentalsolution equation10 and p representbound‐arytractionvalues.

1380F.C.Rocha,W.S.VenturiniandH.B.Coda/Slidingframe‐solidinteractionusingBEM/FEMcoupling

LatinAmericanJournalofSolidsandStructures11 2014 1376‐1399

( )( )

( )

( )( ) ( ) ( )( ){ }

ì ü-ï ïï ïé ù= - - - Ä +í ýë ûï ï- ï ïî þé ù= - ⋅ - + Ä + - Ä - Äë û-

*

*

7 81ˆ ˆ3 4 ln

8 1 2

1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 2 2 1 2

4 1

rG

r

nn

p n

n np n

U I r r I

P n r I r r n r r n

10

where ,ˆ i ir r r= =r with r beingthedistancebetweenthesourceandfieldpoints, ( )1 2i ir rr= , ir are

componentsofthevector r , n̂istheboundarynormalunitvectorand I isthesecondorderidentitytensor orKroneckerdelta . For numerical solution, u and p are approximate by polynomial functions over boundary ele‐ments,inthisworklinearpolynomialsareusedforboundaryelements internalforcelinesarefurtherdiscussed ,andtheintegralequation 9 isconvertedintoanequivalentalgebraicsystemasfollows:

=U PH G 11wherematrix H isobtainedfromthelefttermsinequation 9 andmatrixG fromthetermsontherightside.U isavectorwhichcontainsthenodalvaluesofdisplacementsforallboundarynodesandP isthenodaltractionvector. Aftersubstitutionoftheprescribedboundaryconditions,thealgebraicequationsmaybewrittenas

= =X YA B F 12Thevector X containsalltheunknownboundarydisplacementsandtractions, A isacoefficientma‐trixwhichisusuallynon‐symmetricanddenselypopulated,andB isamatrixwhichcontainsthecoef‐ficientscorrespondingtotheprescribedboundaryconditionsY . Onecandifferentiateequation 9 toderivetheintegralrepresentationofstrainsandthenapplytheHooke’slawtoobtainthestressintegralequation,writtenforinternalpoints,asfollows,

G G= - ⋅ G + ⋅ Gò ò* *d dS u D ps 13

Where *S and *D arewellknownthird‐ordertensorforthestressequationobtainedbyapplyingtheHooke’slawonthefundamentalsolutionatthesourcepoint BrebbiaandDomingues,1992 .4 BEM/FEMCOUPLINGFORMULATION

Inthissection,additionaltermsinsertedintheclassicalformulationsofBEMandFEMaswellasthecouplingbetweenBEMandFEMareshown.4.1Basicequations–perfectbonding

Inthissubsectiontheperfectboundingsituationisdescribed. It impliesadirectcompatibilitybe‐tweendisplacementsandcontactforceequilibrium orcontinuity .Thus:

= -R Df f 14

=D RU QU 15

Where RU and DU arevectors containingnodaldisplacements for frameelementanddomain, re‐

spectively; Rf and Df arenodaldistributedforcevectorappliedontheframefiniteelementsandon

theforcelineboundaryelement inthe2Ddomain ,respectively.Oncevector RU containsthreecom‐

F.C.Rocha,W.S.VenturiniandH.B.Coda/Slidingframe‐solidinteractionusingBEM/FEMcoupling1381

LatinAmericanJournalofSolidsandStructures11 2014 1376‐1399

ponents twotranslationsandonerotation andvector DU contains twocomponents two transla‐tions ,thecorrelationbetweenthesetwovectorsisdonebyQ matrix.

Thecomponentsofthevectors , ,R D RU U f and Df areshowninfigure2.

Figure2:Forceanddisplacementapproximationatframeinterface.

For3Dsolidstheunknownforces, Df ,wouldbedistributedover internalsurfaces.For2Dsolidsthisforcesappearsdistributedalonginternallines,which,roughly,workasinternal“boundaries”dedi‐catedonlyfortractions.Thus,theintegralequation 9 ismodifiedtoincludetheadditionalterm:

G G G⋅ = - ⋅ G + ⋅ G + ⋅ Gò ò ò* * *

R

DRd d dc u P u U p U f 16

where Df is the internal forceactingalong the interface, GR ,between the twomaterialsandrepre‐

sents the fibereffectapplied in thedomain.Similarly, the integralequation 13 including thisaddi‐tionaleffectiswrittenas:

G G G= - ⋅ G + ⋅ G + ⋅ Gò ò ò* * *

R

DRd d ds S u D p D f 17

Selectingapropernumberofcollocationpoints sourcepoints attheboundaryandattheframeelement,twosetsofalgebraicequationsare,respectively,writtenfromequation 16 ,asfollows:

1382F.C.Rocha,W.S.VenturiniandH.B.Coda/Slidingframe‐solidinteractionusingBEM/FEMcoupling

LatinAmericanJournalofSolidsandStructures11 2014 1376‐1399

= + Dbb b bb b brU P fH G G 18

= - + +D D

rb b rb b rrU U P fH G G 19

whereindexb denotesboundaryandindex r denotesframe,respectively.Additionally,thefirstindexdenotessourcepointsandthesecondindexdenotesfieldpoints,which,areonboundaryorloadline. The superimposed frame element reinforcement and load line representations can be seen infigure3 inwhich n elements finiteand line areemployed.Thedisplacementnodes foreach finiteelement are represented by squares and crosses represent the collocation points of equation 19 wheredisplacementsarecalculated.ItisobservedthatforfiberendsBEMequationsarenotwritteninthesamepositionofthefiniteelementnodestoavoidsingularities;howeverdisplacementsareextrap‐olated to thenodalpositions inorder tomake themcompatible.Moreover, thismodelingallows thereinforcement frame endstoreachthebodyboundarywithoutinterferinginbasicBEMequations.

Figure3:CompatibilitybetweenBEMandFEMnodes.

Therefore,thedisplacementcompatibilityisrewrittenas:

=

=

D RU TU

T TQ20

Where T̂ is thematrix that relates thenodalpositionsanddirectionof the DU vectorwith the RU vector.Furthermore,the

T matrixhasdimension 3NF columnsby int2N rows,forwhich intN isthe

amountofBEMinterfacepoints. Accordingtofigure3,theamountoffiniteelementnodesisequaltotheamountofboundaryinter‐facenodes,i.e. intNF N= ,thereforethedeterminationofthecouplingparametersandtheboundary

valuescanbesummarizedbythefollowingsystemofequations:

ìïïï = +ïïïïïïï + = +íïïïï= +

î

intintint int

int int int int int

2 ,12 ,2 2 ,1 2 ,2 2 ,22 ,1

2 ,1 2 ,12 ,22 ,2 2 ,1 2 ,2 2 ,1

3 ,3 3 ,1 3 ,3 3 ,13 ,1

extrextr

extrextr

extr extr

Dbb b bb b br

NN N N N N N NND D

rb b rb b rrN NFN NFN N N N N N

R R R R

N N N N NF NNF

U P f

U U P f

K U G f F

H G G

H G G

ïïïïïï

21

F.C.Rocha,W.S.VenturiniandH.B.Coda/Slidingframe‐solidinteractionusingBEM/FEMcoupling1383

LatinAmericanJournalofSolidsandStructures11 2014 1376‐1399

The 1N valuesof bU and 2N valuesof bP areknownon 1G and 2G ( )1 2G=G +G respectively,

hence there are only 2N unknowns in the system of equations 21 . As usual, to introduce theseboundaryconditionsinto 21 onehastorearrangethesystembymovingcolumnsof bbH , rbH with

bbG , rbG fromonesidetotheother,respectively.Onceallunknownsarepassedtotheleft‐handside

andapplyingconditionsofequations 14 and 20 onecanwritethenewsystemofequationsas:

ìïïï = +

+ = +í

= - +

int int intint intint

int int int int int

2 ,1 2 ,12 ,2 2 ,2 2 ,22 ,1

2 ,3 3 ,12 ,1 2 ,12 ,2 2 ,22 ,2 2 ,1

3 ,3 3 ,1 3 ,2 3 ,12 ,1

extrextr

extrextr

extr extr

Dbb bb b br

N NN N N N N NNR D

rb rb b rrN N NN NFN N N NFN N NR R R D

N N N N NF NNF

X F f

X T U F f

K U G f F

A B G

A B G

ïïïïïïïïïïïïïïïïïî

22

Orinmatrixform,

{ } { }

+ ++ + + + +

ì üé ù é ù ì üï ï- ï ïï ï ï ïê ú ê úï ï ï ïï ïê ú ï ï ï ïê ú= +í ý í ýê ú ê úï ï ï ïê ú ê úï ï ï ï- ï ï ï ïê ú ê úï ï ï ïë û î þë û ï ïî þ

int iint int int

2 ,1

2 5 ,2 2 52 5 ,2 3 2 2 3 2 ,1

0 0

0 0

0

extr extr

bb br bbR R R

bD Nrbrb rr

N N N N NN N N N NF N N NF

X

K G U F F

T f

A G B

BA G

nt,1

23

Asdescribedabove,atthefiberelementlevel,thenumberofdisplacementvaluesislargerthanthenumberofbonding orcontact forcenodalvalues.Thisoccursbecauseinequation 19 thenumberofalgebraic relations ismuch larger than thenumberof forcevalues in Df . To reduce thenumberofequationstothesameasthenumberofunknownsonecanapplytheLeastSquareMethod LSM .InthisworktheLSMisappliedoverequation 21 or 19 ,asfollows:

+ = +

intint int int int intint int

2 ,1 2 ,12 ,2 2 ,2 2 ,2 2 ,2 2 ,22 ,2 2 ,1 2 ,2 2 ,1 extrextr extr extr extr extr

D Drr rb b rr rr rb b rr rr

N NFNF N NF N NF N NF N N NFN N N N N N

U U P fG H G G G G G 24

Or,

+ = +

int int intint int int int int intint

2 ,3 3 ,12 ,1 2 ,12 ,2 2 ,2 2 ,2 2 ,2 2 ,2 2 ,22 ,2 2 ,1 extrextr extr extr extr extr

R Drr rb rr rr rb b rr rr

N N NN NFNF N NF N NF N N N NF N N NFN N N

X T U F fG A G G B G G 25

Wherethematrix

rrG definedforeachfiberand

rrG isthetransposematrixof rrG ,i.e. =

T

rr rrG G .

Therefore,thesystemofequations 23 turnsintoasquaresystemas:

+ ++ + + + + +

ì üé ù é ùï ï- ï ïê ú ê úï ïï ïê ú ê úï ï =í ýê ú ê úï ïê ú ê úï ïï ï-ê ú ê úï ï ë ûë û ï ïî þ

intint int int2 3 2 ,2 3 2 ,2 3 2 2 3 2 ,1

0

0 0

extrextr extr extr

bb br bbR R R

Drr rb rr rr rr rr rb

N N NFN N NF N N NF N N NF

X

K G U

T f

A G B

G A G G G G B

{ } { }

+ +

ì üï ïï ïï ïï ï+ í ýï ïï ïï ïï ïî þint

2 ,1

2 3 2 ,12

0

0

extr

b

N

N N NFN

F F 26

1384F.C.Rocha,W.S.VenturiniandH.B.Coda/Slidingframe‐solidinteractionusingBEM/FEMcoupling

LatinAmericanJournalofSolidsandStructures11 2014 1376‐1399

4.2Numericalexample–perfectbonding

In this section,onenumerical example isanalyzed to check theperformanceandaccuracyof theproposedBEM/FEMcouplingfortwo‐dimensionalreinforcedsolids. The reinforced simple supported beam subjected to homogeneous transversal surface load

710q N= - ,showninfigure4,isanalyzed.Thisplanestructureisfivemeterlength ( )L ,onemeter

height ( )H andthepositionofthereinforcementis25centimeter 0( )h fromthelowerpartofthema‐

trixandisfourmeterslong 0L .Thefollowingpropertiesfordomain ( )D andreinforcement ( )R are

considered: Elasticity modulus 2.8DE = 10 210 N m and 2.8RE = 11 210 N m , Poisson’s ration

0.2Dn = and 0.0n = , inertiamoment 1.78891RI = 7 410 m- andcross‐sectionalarea 1.29RS =2 210 m- .

Figure4:Geometryofthestructureunderanalysis.

Thebeamisdiscretizedby120 linearboundaryelementswiththesame length.Threediscretiza‐tionsareemployedtomodelthereinforcement,with25,50and100finiteelements.Thesamenumberof force line BEM elements is employed tomodel the interface. The results are comparedwith thecommercial softwareANSYSemploying100BEAM3elements tomodel the reinforcement and2800PLANE422Dsolidelementstomodelthedomain.Figures5,6and7compareresults axial,transversedisplacementsandrotations achievedusingtheBEM/FEMcouplingdiscretizationsandANSYS.

Figure5:Axialdisplacementgraphicsoninterface,BEM/FEM.

F.C.Rocha,W.S.VenturiniandH.B.Coda/Slidingframe‐solidinteractionusingBEM/FEMcoupling1385

LatinAmericanJournalofSolidsandStructures11 2014 1376‐1399

Figure6:Transversedisplacementgraphicsoninterface,BEM/FEM.

Figure7:Graphicshowstherotationoninterface,BEM/FEM.

TheaboveresultsmakeevidentthateventhepoorestBEM/FEMcouplingdiscretizationhasgoodaccuracywhencomparedwiththereferenceresult. Regardingtractionsattheinterface,theBEM/FEMresultscanbeseeninFigures8and9.

Figure8:Axialcontactforcegraphicsoninterface,BEM/FEM.

1386F.C.Rocha,W.S.VenturiniandH.B.Coda/Slidingframe‐solidinteractionusingBEM/FEMcoupling

LatinAmericanJournalofSolidsandStructures11 2014 1376‐1399

Figure9:Transversecontactforcegraphicsoninterface,BEM/FEM.

According toFigures8 and9, forperfect bonded elastic reinforcement, it’s observed that for thethreeBEM/FEMdiscretizationsthere isaperturbationinthetractionvaluesattheendsof thefiber.Thebehaviorofaxialforces,asshowninFigure8,hadbeenobservedbyBottaandVenturini 2005 ,however,thebehaviorshowninFigure9hasnotbeenreportedbefore.Moreover,theuseofLSMpar‐tiallysmoothesthebehaviorofcontactforcewhencomparedwithresultsthatdonotapplythisstrate‐gy for the coupling, Leite et al. 2003 .At thispoint an important resultof this study shouldbe ad‐vanced; when debondig is allowed always occurs in a small vicinity of infinity contact stress theaboveperturbationdisappears. Whenusingnonlinearconstitutiverelationsformatrix,thereareevidencesofsmoothsolutionsforthiskindofproblemswhichwerereportedbyCoda 2001 .Moreover,onemaynote,inFigure9,thattheextensionofthecontactforceperturbationreducesasdiscretizationincreases. 4.3Couplingformulation–debonding

Inthissection,thepreviouscouplingisextendedtoaccomplishdebonding.Theadoptedmodelstorepresent debonding aswell as the nonlinear formulation to simulate the slip betweendomain andframeelementsarepresented.Thefeasibilityofthisformulationisshownthroughnumericalexamples.4.3.1Debondingmodels

Fibersembeddedinthedomainplayanimportantroletoimprovesolidstiffnessandloadingcapaci‐tyifenoughinternalforcesalongtheinterfacecanbesustained.Slidingalongtheinterfacemaybeal‐lowedwhenacertainamountofstrengthispreserved.Theidealsituationforwhichperfectbondingisassumed,asshowninprevioussection,isimpossibleinpractice;atleastinthevicinityoffiberends,asthe interface forcesapproachthe infinity Radtkeetal,2011 .Therefore,acertainamountofslidingoccursaccordingtothebondingcarryingcapacity. Tomodeltheslipthatmayoccurinthefiber‐domaininterface,adebondingcriterionshouldbecon‐sidered.Inthiswork,twomodelswereimplementedtogetherwiththeproposedBEM‐FEMcoupling. ThecurvesshowninFigure10and11representthedebondingcriterionthatrelatesthebondingforce f withtherelativedisplacementatinterface slip s .Thefollowingparametersdefinethetwomodels:model1dependsonlyonthemaximumbondingforce maxf andmodel2dependsonthemax‐

imumforce maxf ,residualbondingforce resf andslipcharacteristicvalues 1s and 2s .

F.C.Rocha,W.S.VenturiniandH.B.Coda/Slidingframe‐solidinteractionusingBEM/FEMcoupling1387

LatinAmericanJournalofSolidsandStructures11 2014 1376‐1399

FromtheFigure10and11,thefollowingrelationshipsarewrittenfortheadoptedmodels,respec‐tively: Model1

max 0f f for s= > 27 Model2

max 1[0, ]f f for s= 28

max 1 max 21 2

1 2 1 2[ , ]res resf f f s f s

f s for s ss s s s

- -= +

- - 29

2resf f for s s= > 30

Figure10:DebodingModel1

Figure11:DebodingModel2

1388F.C.Rocha,W.S.VenturiniandH.B.Coda/Slidingframe‐solidinteractionusingBEM/FEMcoupling

LatinAmericanJournalofSolidsandStructures11 2014 1376‐1399

4.3.2Basicequations

Theslipconsideration introducesanewvariable inequations 20 .Thisnewvariable representstherelativedisplacement, s ,betweenthedomainandframeelements.Thecompatibilityequationsarenowexpressedby:

( )= -D Rf f s 31

= +

D RU TU TS 32Wherevector S contains thenodal relativedisplacementvalues,T relates thenodalpositions DU with S .Furthermore,T matrixhasdimension 2 extrNF columnsby int2N rows.Theothertermsin

equations 31 and 32 havealreadybeenexplained,butnowtractionsoninterfacedependonrela‐

tivedisplacements s .Inthiswork, DU and RU havebeenapproximatedbycubicpolynomialand S bylinearpolynomial. From the introduction of relative displacements, the equilibrium equation 19 of the boundaryelementmethodmayberewrittenas:

+ = - + +R D

rb b rb b rrTU TS U P fH G G 33

Therefore,theBEMcouplingequationcanberewrittenas,:

( )

( )

= +

+ + = +

int int int int

intint int

int int in

2 ,2 2 ,1 2 ,2 2 ,22 ,1 2 ,1

2 ,3 3 ,1 2 ,2 2 ,1 2 ,22 ,2 2 ,1 2 ,2 2 ,1 2 ,1

3 ,3 3

extr extr

extr extrextr extr

Rbb b bb b br

N N N N N N NFN NFR R

rb b rb b rrN N N N NF NF N NFN N N N N N NF

R R

N N N

U P f s

U T U T S P f s

K U

H G G

H G G

( )

ìïïïïïïïïïïíïïïïïï = +ïïïïî

t int int,1 3 ,2 3 ,12 ,1

extrextr

R R

N NF NNF

G f s F

34

Applyingboundaryconditions,theequation 34 results:

( )

( )

= +

+ + = +

int int int int

int intint

int int int

2 ,12 ,2 2 ,2 2 ,22 ,1 2 ,1

2 ,3 3 ,1 2 ,2 2 ,12 ,1 2 ,2 2 ,22 ,2 2 ,1 2 ,1

3 ,3 3 ,

extr extr

extr extrextr extr

Rbb bb b br

NN N N N N NFN NFR R

rb rb b rrN N N N NF NFN N N N NFN N N NF

R R

N N N

X F f s

X T U T S F f s

K U

A B G

A B G

( )

ìïïïïïïïïïïíïïïïïï = +ïïïïî

int int1 3 ,2 3 ,12 ,1

extrextr

R R

N NF NNF

G f s F

35

If ( )Rf s isknown,thematrixformof 35 is:

F.C.Rocha,W.S.VenturiniandH.B.Coda/Slidingframe‐solidinteractionusingBEM/FEMcoupling1389

LatinAmericanJournalofSolidsandStructures11 2014 1376‐1399

( ){ }

{ }

++ + + + + +

é ù é ù é ù é ùê ú ê ú ê ú ê úê ú ê ú ê ú ê ú= +ê ú ê ú ê ú ê úê ú ê ú ê ú ê úê ú ê ú ê ú ê úë ûë û ë û ë û

intint int int int

22 ,1

2 5 ,22 5 ,2 3 2 2 3 2 2 5 ,2

0 0

0 0 0

extr

extr extr extr

bb br bbR R R R

b

NNFrr rbrb

N N NN N N N NF N N NF N N NF

X

K U G f s F

ST T

A G B

G BA

+

é ùê úê ú+ ê úê úê úë û

int

,1

2 5 ,1

0

0

N N

F 36

Bytheotherhand,ifS isknown,onewrites:

( )

{ }

+ ++ + + + +

é ùé ù é ù é ù- ê úê ú ê ú ê úê úê ú ê ú ê ú- = +ê úê ú ê ú ê úê úê ú ê ú ê ú- ê úê ú ê ú ê úë û ë ûë û ë û

int iint int int

2 ,1

2 5 ,2 2 52 5 ,2 3 2 2 3 2 ,1

0 0

0 0 0

extr

extrextr extr

bb br bbR R R

R NF rbrb rr

N N NF N NN N N N NF N N NF

X

K G U S

TT f s

A G B

BA G

{ }+

é ùê úê ú+ ê úê úê úë û

nt int

2 ,1

,2 2 5 ,1

0

0

b

N

N N N

F F 37

As can be seen, in equations 36 and 37 , there are more equations than unknowns, since

int extrN N³ . Thus, to reduce thenumber of equations to be equal to thenumber of unknowns the

LeastSquareMethod LSM isappliedoverinternalpointequations 35 .Thisway:

( )

+ + =

+

int int int intint int intint

int int int int

2 ,3 3 ,1 2 ,2 2 ,12 ,12 ,2 2 ,2 2 ,22 ,2

2 ,2 2 ,2 2 ,2 2 ,22 ,1 2 ,1

extr extrextr extr extr

extr extr extr extr

Rrr rb rr rr

N N N N NF NFNNF N NF N NF NN NR

rr rb b rr rr

NF N N N NF N N NFN NF

X T U T S

F f s

G A G G

G B G G 38

Where

rrG isthetransposematrixof rrG .

Therefore,equations 36 and 37 becomesquare,asfollows:

( ){ }

+ + + + + + + +

é ù é ù é ùê ú ê ú ê úê ú ê ú ê ú=ê ú ê ú ê úê ú ê ú ê úê ú ê ú ê úë û ë û ë û

int int int int

2

2 3 2 ,2 3 2 2 3 2 2 3 2 ,2

0 0

0 0

ext

extr extr extr extr extr

bb brR R R R

NFrr rb rr rr rr rr

N N NF N N NF N N NF N N NF NF

X

K U G f s

ST T

A G

G A G G G G

{ }

+ ++ +

é ù é ùê ú ê úê ú ê ú+ +ê ú ê úê ú ê úê ú ê úë ûë û

intint

,1

2 ,1

2 3 22 3 2 ,2

0

0

0

r

extrextr

bb

b

Nrr rb

N N NFN N NF N

F F

B

G B

39

Or:

1390F.C.Rocha,W.S.VenturiniandH.B.Coda/Slidingframe‐solidinteractionusingBEM/FEMcoupling

LatinAmericanJournalofSolidsandStructures11 2014 1376‐1399

( )+ ++ + + + + +

é ùé ù é ù- ê úê ú ê úê úê ú ê ú- =ê úê ú ê úê úê ú ê ú- ê úê ú ê úë ûë û ë û

intint int int2 3 2 ,22 3 2 ,2 3 2 2 3 2 ,1

0 0

0 0

extr exextr extr extr

bb brR R R

Rrr rb rr rr rr rr

N N NF NFN N NF N N NF N N NF

X

K G U

T Tf s

A G

G A G G G G

{ }

{ }

+ ++ +

é ù é ùê ú ê úê ú ê ú+ +ê ú ê úê ú ê úê ú ê úë ûë û

intint

2 ,1

2 ,1

2 3 22 3 2 ,2

0

0

0

extr

tr

extr

NF

bb

b

Nrr rb

N N NN N NF N

S

F F

B

G B

40

4.3.3Non‐linearformulation

Asonecansee,equations 39 and 40 arenonlinearregardingslip s .Tosolvethem,onehastotake into account the non‐linear relationship described by the debondingmodel presented in item4.3.1,inwhichtherelationbetweenthedebondingforce f andtheslip s isestablished.Theequilibri‐umequation 39 isthenrewrittenintermsofthevariableincrements,asfollows:

( ){ } { }é ù é ù é ù é ù é ùDê ú ê ú ê ú ê ú ê úê ú ê ú ê ú ê ú ê úD = D D + D + Dê ú ê ú ê ú ê ú ê úê ú ê ú ê ú ê ú ê úDê ú ê ú ê ú ê ú ê úë ûë ûë û ë û ë û

0 0 0

0 0 0

0

bb i br bbR R R R i

i i i b i

irr rb rr rr rr rr rr rb

X

K U G f s F F

ST T

A G B

G A G G G G G B

41

IsolatingD iX andD R

iU infirstandsecondequation,respectively,of 41 ,onehas:

( ){ } { }- -é ù é ù é ù é ù é ùD = D D + Dë û ë û ë û ë û ë û1 1R i

i bb br i i bb bb bX f s FA G A B 42

{ } ( ){ } { }- -é ù é ù é ùD = D D + Dê ú ê ú ê úë û ë û ë û

1 1R R R R Ri i i iU K G f s K F 43

whichcanbereplacedinequation 41 ,resulting:

( ) ( ){ } { } { } { }é ù é ù é ù é ùD = D D + D + D + D =ë û ë û ë û ë û1 2 3 4 0R ii i i b i iY s M f s M F M F M S 44

With

--

-

-

é ù é ùé ù é ù é ùé ù é ù é ù é ù= + -ê ú ê úë û ë û ë û ë û ë ûë û ë û ë û ë ûé ù é ùé ù é ù é ù é ù é ù= -ë û ë û ë û ë û ë ûë û ë û

é ùé ù é ùé ù = ê úë û ë ûë û ë ûé ùé ù é ù=ë û ë ûë û

11

11

21

3

4

R Rrr rb bb br rr

rr rb bb bb rr rb

Rrr

rr

M T K G I

M

M T K

M T

G A A G G

G A A B G B

G

G

45

Where I istheidentitymatrix.

F.C.Rocha,W.S.VenturiniandH.B.Coda/Slidingframe‐solidinteractionusingBEM/FEMcoupling1391

LatinAmericanJournalofSolidsandStructures11 2014 1376‐1399

Equation 44 represents a non‐linear system of equations given in terms of the slip increment{ }D iS .ItcanbesolvedbyapplyingtheiterativeNewton‐Raphsonscheme.Then,fromtheiterationn

thenexttry, 1n + ,forthetimeincrement itD isgivenby:

+D = D + D1n n ni i iS S Sd 46

Linearizingequation 44 andusingthefirsttermoftheTaylor’sexpansion,results:

( )( )

0nin n

i ini

Y sY s s

sd

¶ DD + D =

¶D 47

Thederivativethatappearsinequation 47 isdirectlyobtainedfromequation 44 usingthedebond‐ingmodelrelationshipsgivenbyequations 27 ‐ 30 .Then,onehas:

( ) ( ){ }¶ D ¶ D Dé ù é ù é ù= + =ë û ë û ë û¶D ¶D

1 4

n R nCTOi i i

n ni i

Y s f sM M W

s s48

Thematrix é ùë ûCTO

W ,inequation 48 ,istheconsistenttangentoperatoroftheproposedalgorithm.

Thederivativesontherighthandsideofequation 48 dependontheupdatedslipvalue,computedappropriately according to the adoptedmodeldefined inequations 27 ‐ 30 .Thesederivatives arelocallydefinedby:Tomodel1

( )¶ D= >

¶D0 0

R ni i

ni

f sfor s

s49

Tomodel2

( )¶ Dé ù= ë û¶D

10 0,R ni i

ni

f sfor s

s50

( )¶ D - é ù= ë û-¶Dmax

1 21 2

,R ni i res

ni

f s f ffor s s

s ss51

( )¶ D= >

¶D20

R ni i

ni

f sfor s s

s

52

Reachingtheconvergenceinequation 44 forthetimeincrement itD aftern iterations,onehastocomputetheslipvariable s tostartthenextincrement,asfollows:

+ = + D1n

i i is s s 53

1392F.C.Rocha,W.S.VenturiniandH.B.Coda/Slidingframe‐solidinteractionusingBEM/FEMcoupling

LatinAmericanJournalofSolidsandStructures11 2014 1376‐1399

After finding +D = -1i i is s s , othervariables aredirectlyobtained.The internal displacements, and

boundary tractions and displacements are computed from equation 41 . The debonding forces are

computedfromtheconstitutiverelation ( )D DRi if s .

4.4Numericalexample–debonding

Inthisitem,twonumericalexamplesareanalyzedtoexaminetheperformanceandaccuracyoftheproposedBEM/FEMcombinationusingtwomodelstoconsiderthedebondingbetweenastraightbarandatwo‐dimensionalsolid.4.4.1Example1

Inthisexamplethecapabilityoftheformulationtomodelthebondingshearcontactforcedistribu‐tionalongthebar‐matrixinterfaceduringaclassicalpullingtestisanalyzed.Infigure12,abarispar‐tiallyembedded intoa2Ddomainandasmallpart to thebar isnot immersedtoallowapplyingthepulling force. The adopted geometric dimensions are 1.0H m= , 0 4.0L m= and 5.0L m= , see

figure12.Nulldisplacementsareprescribedalongtheleftverticalsideofthetwo‐dimensionaldomain.Whereasattheoppositesidetheloadisappliedbyprescribingthedisplacement, 4.0U = 710 m- ,atthebarextremity;the2Ddomainrightendisfreetomove.AsU isapplied,itsconjugateforce P iscalculated. Theadopteddomainelasticpropertiesare:Young’smodulus, 2.8DE = 10 210 N m andPoisson’s

ratio 0.0n = . The bar properties are: Young’s modulus, 2.8RE = 11 210 N m , inertia moment,

1.79RI = 7 410 m- andcrosssectionalarea 1.29RA = 2 210 m- .Forthisexampleitisconsideredthe

debonding model 2, with the following parameters: 1 1.0s = 910 m- , 2 1.0s = 810 m- , max 1.40f =2 210 N m and 1.30resf = 2 210 N m .

Figure12:Pullouttest.

Aboundarymeshwith120 linearelements isadoptedtoapproximate thematrix,while100uni‐formcubicfiniteelementswereadoptedtomodelthesinglebar.Finermesheshavebeentestedtocon‐firmthatthediscretizationadoptedwasenoughfinetogiveaccurateresults.

IntheFigure13itispresentedthetractioncurves ( )N m alongtheinterface atbar toninedif‐

ferent imposed displacements, which shows the evolution of the bar pullout. As one can see, thedebondedregionkeepstheconstantvalue, resf ,atallincrements.Whenthepullingoutiscompleted

thefinalloadisexactlytheexpected.

F.C.Rocha,W.S.VenturiniandH.B.Coda/Slidingframe‐solidinteractionusingBEM/FEMcoupling1393

LatinAmericanJournalofSolidsandStructures11 2014 1376‐1399

Figure13:Shearcontactforcealongtheinterface,BEM/FEM.

Figure 14 shows thedisplacement curves, inmeter, at the bar‐domain interface. It is possible toverifyadecreaseontheslopeofdisplacementsforthepointslocatedneartheloadapplication,astheloadingprogresses.

Figure14:Evolutionofthedomaindisplacementsalongtheinterface,BEM/FEM.

Figure15shows therelativedisplacementsbetweenbaranddomain.According to thedefinitiongiveninequation 32 ,thebardisplacementsareobtainedbysubtractingtheresultsoffigure14fromfigure15. Theevolutionofdecouplingisillustratedinfigure16whereinthedomaindisplacementsareune‐qualtothebardisplacements.Atthefirstdisplacementincrementitisverifiedthatalmostallnodesareperfectlycoupled,excepttheendsnodes.Asthefreeenddisplacementisincreased,othernodesbegintodecoupleuntiltheninthincrementsituationinwhichthebardisplacementscontinueincreasinganddomaindisplacementdecreasing.

1394F.C.Rocha,W.S.VenturiniandH.B.Coda/Slidingframe‐solidinteractionusingBEM/FEMcoupling

LatinAmericanJournalofSolidsandStructures11 2014 1376‐1399

Figure15:Relativedisplacement s

Figure16:Decoupleevolutionbetweendomainandbar.

One important aspect shownby this example,more evident in figure13, is that the limitationofadherenceforcebythedebondingprocessregularizestheshearcontactforceandothervariables.

F.C.Rocha,W.S.VenturiniandH.B.Coda/Slidingframe‐solidinteractionusingBEM/FEMcoupling1395

LatinAmericanJournalofSolidsandStructures11 2014 1376‐1399

4.4.2Example2

ThestructureanalyzedinthisexampleisshowninFigure17,itisimportanttonotethatthisexam‐plecannotbesolvedwithoutconsideringbendingstiffnessandtransversecontactforcesasdidinthiswork.Thisstructureisa2Ddeepfoundation,i.e.,apileembeddedinaninfinitesoil.Inordertosimu‐late thepresenceofnearby structuresanda rigid supporting rockmass, somesoildisplacement re‐

strictionsareimposed.Thepileisconsideredinclinedatanangleof10 ( )a .Asoilregion,with5me‐

ters length ( )L and20metersdepth ( )H , is considered.Thepilehas4meters in length ( )0L anda

prescribedloadof 0.11xP kN= , 1.2yP kN= and 0.003 .M N m= - atitstop.Loadsincreasefrom

zerotothereferencevaluesin50equalincrements. Ameshof300linearelementsisusedtomodelthesoiland100finiteelements lineelements are

usedtomodelthepile.Thesoilelasticpropertiesare: 2.8DE = 10 210 N m and 0.2Dn = .Thepile

properties are: 2.8RE = 11 210 N m , 0.0Rn = , 1.79RI = 2 210 m- and 1.29RA = 2 210 m- . Both

adherence models are considered. The model 2 parameters are: 71 10s m-= , 2 8.0s = 610 m- ,

max 3.0f = 2 210 N m and 2.7resf = 2 210 N m .Formodel1itisadopted: max 2.0f = 2 210 N m .

Figure17:Inclinedpileembeddedininfinitedomain.

Figure17showstheanalyzedstructureandthereferencenodes forwhichresultsarepresented.Figure18showscurvesofthepile/soilinterfaceforcesatreferencenodes.Thisfigurealsoshowsthedevelopmentofthoseinterfaceforcesastheloadingstepsareincreasedforbothslip’smodels.

1396F.C.Rocha,W.S.VenturiniandH.B.Coda/Slidingframe‐solidinteractionusingBEM/FEMcoupling

LatinAmericanJournalofSolidsandStructures11 2014 1376‐1399

Figure18:Shearcontactforcealongthepile.

Figures19‐21showthedisplacementintheaxialandtransversedirections,aswellastherotationalongthepileforeachreferencenode.

Figure19:Axialdisplacementattheinterfacepile/soil.

Figure20:Transversedisplacementattheinterfacepile/soil.

F.C.Rocha,W.S.VenturiniandH.B.Coda/Slidingframe‐solidinteractionusingBEM/FEMcoupling1397

LatinAmericanJournalofSolidsandStructures11 2014 1376‐1399

Figure21:Rotation, q ,ofthepile.

As can be seen in figures 19‐21, the pile behavior for model 1 presents severe changes. Thesechangesoccurwhenthemaximumloadcapacityisreached increment35 ;thenslipoccurswithoutfurthergainofresistance.Itisimportanttomentionthatovertheloadcapacitythesolutionisunstableandthesystemlossobjectivity. Formodel2astheinterfaceforcesdonotreachtheresidualpartofthemodelthemaximumloadcapacity isnotachievedandnoabruptchangeoccurs in thepilebehavior.However, if the total loadcapacityisreached allcontactpointsreachtheresidualpartofthemodel thecollapseoccurs. Figure22 a and b show thedisplacements in the y direction, inmeters, for the soil internal

pointsconsideringthemodels1and2,respectively.Figures23 a and b showthestressvalues, ys ,

forthesoilinternalpointsformodels1and2.

Figure22:Soildisplacementintheydirection

1398F.C.Rocha,W.S.VenturiniandH.B.Coda/Slidingframe‐solidinteractionusingBEM/FEMcoupling

LatinAmericanJournalofSolidsandStructures11 2014 1376‐1399

Figure23:Soilstress, ys ,fordifferentadherencemodels.

5 CONCLUSIONS

InthisworkaBEM/FEMcouplingamongframebarsand2Dcontinuumissuccessfullydevelopedandimplemented.ThedomainismodeledbyBEMandreinforcementismodeledbyFEM.Thecombi‐nationof the twomethods ismadebywritingdisplacement compatibility and interfaceequilibrium.Themostimportantfeatureoftheformulationistheconsiderationofslidingatframe/continuuminter‐face.Thisprocedureisabletomodel,forexample,theprogressivefailureofpile‐soilinteractionuntilreachingthecollapse load,or theprogressive failureof fiberreinforcedbodiesconsideringthe influ‐enceofshearandnormalcontactforces. Regardingthesolutionbehavioranimportantconclusionshouldbestated.Asboundaryelementsareabletomodelhighstressconcentrations,thevaluesofcontactforcesatthebeginningorendingofanyperfectboundingregionpresentastrongperturbation.Theuseofredundantalgebraicequationsandtheleastsquaresmethodaretestedhereandresultinasmallimprovementofthisphenomenon.Theincreasingofdiscretizationreducestheextensionofperturbationbutincreasesthenearsingularstresses. Thecompletesolutionfor thisproblemresultswhenusingamorerealisticmodel thatallowsthenaturalstressrelaxationatsingularities.Thedevelopednonlinearbehaviorofcontactforces,consider‐ingtheslidingordecouplingbetweenreinforcementandcontinuum,completelyregularizesthecontactforcebehavior,leadingtoreliablesolutionsforloworhighloadsituations.Furtherdevelopmentsaretheconsiderationofnon‐linearbehaviorforbothcontinuumandframemedia.AcknowledgementsAuthorswouldliketoacknowledgeCNPq NationalCounselofTechnologicalandScientificDevelopment andFAPESP SãoPauloResearchFoundation forthefinancialsupport.References

Aliabadi,M.H., 1997 .Boundaryelementformulationsinfracturemechanics.ApplyMechanicsReview50:83–96.

Beer,G.,Watson,J., 1992 .Introductiontofiniteandboundaryelementmethodsforengineers.Wiley NewYork .

Bonnet,M. 1999 .Boundaryintegralequationmethodforsolidsandfluids.Wiley.

Botta,A.S. 2003 .MétododosElementosdeContornoparaanálisedecorposdanificadoscomênfasenofenômenodalocalizaçãodedeformações,Ph.D.Thesis inPortuguese ,UniversityofSaoPaulo,Brazil

F.C.Rocha,W.S.VenturiniandH.B.Coda/Slidingframe‐solidinteractionusingBEM/FEMcoupling1399

LatinAmericanJournalofSolidsandStructures11 2014 1376‐1399

Botta,A.S.,Venturini,W.S., 2005 .Reinforced2ddomainanalysisusingBEMandregularizedBEM/FEMcombina‐tion.ComputerModelinginEngineeringandSciences8 1 :15–28.

Brebbia,C.A. 1978 .Theboundaryelementmethodforengineers.PentechPress London .

Brebbia,C.A.,Domingues,J. 1992 .Boundaryelements:anintroductorycourse.Comp.Mech.Publ. Southampton .

Brebbia,C.A.,Walker,S. 1980 .Boundaryelementtechniquesinengineering.Newnes‐Butterworths London .

Coda,H.B., 2001 .Dynamicandstaticnon‐linearanalysisofreinforcedmedia:aBEM/FEMcouplingapproach.Com‐putersandStructures79:2751–2765.

Coda,H.B.,Venturini,W.S., 1999 .Onthecouplingof3DBEMandFEMframemodelappliedtoelastodynamicanaly‐sis.InternationalJournalofSolidsandStructures36 31/32 :4789–4804.

Estorff,O.,Hagen, C., Iterative coupling of FEMandBEM in3D transient elastodynamics, Eng.Anal. BoundaryEle‐ments29:775–787

Frangi,A.,Novati,G., Springhetti,R.,Rovizzi,M. 2002 .3D fractureanalysisbysymmetricGalerkingBEM.ComputMechanic28:220–232

Leite,L.G.S.,Coda,H.B.,Venturini,W.S., 2003 .Two‐dimensionalsolidsreinforcedbythinbarsusingtheboundaryelementmethod.EngineeringAnalysiswithBoundaryElements27:193–201

Leonel, E. D. 2009 .Nonlinear boundary elementmodels to analyze fracture problems and reliability / optimizationmodelsappliedtostructuressubmittedtofatigue,Ph.D.Thesis inPortuguese ,UniversityofSaoPaulo,Brazil

Pozrikidis,C., 2006 .Anoteon therelationbetweentheboundary‐and finite‐elementmethodwithapplication toLaplace’sequationsintwodimensions.EngineeringAnalysiswithBoundaryElements30:143–147.

Radtke, F.K. F., Simone,A., Sluys, L. J., 2011 .Apartitionof unity finite elementmethod for simulatingnonlineardebondingandmatrix failure in thin fiber composites. International Journal forNumericalMethods inEngineering86:453–476.

Rocha, FC., 2010 . Analysis of domains reinforced consideringmodels of adherence in Portuguese . Caderno deEngenhariadeEstruturas,12:93–105.

Zienkiewicz,O.,Kelly,D.,Bettess,P., 1977 .Thecouplingofthefiniteelementmethodandboundarysolutionproce‐dures.InternationalJournalforNumericalMethodsinEngineering11:355–375.