slideshow van almaz-antey

Upload: nrc

Post on 07-Aug-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/20/2019 Slideshow van Almaz-Antey

    1/77

    RESULTS OFFull-scale Real-life Experiment to Analyze

    Causes of MH17 Aircraft Crash

    Moscow– 2 15

    ALMAZ • ANTEYCONCERN

    Concern VKO Almaz-Antey

  • 8/20/2019 Slideshow van Almaz-Antey

    2/77

    2

    1. ELABORATE ON TYPE OF MISSILE

    2. VALIDATE CONDITIONS AT WHICH MISSILE HITAIRCRAFT

    Main Objectives of Real-life Experiment

  • 8/20/2019 Slideshow van Almaz-Antey

    3/77

    3Damage Assessment of Boeing-777 MH17

    L E G E N D

    SEVERE DAMAGES

    MODERATE DAMAGES

    SLIGHT (RICOCHETING) DAMAGES

    DESTRUCTION OF AIRCRAFT SUPERSTRUCTURE

    INTENSITY OF STRUCTURAL DAMAGE TO AIRCRAFT:

    MAIN DAMAGES :

    1. Cockpit, primarily the left side

    2. Aircraft superstructure, primarily main frames

    4. Left wing

    5. Left engine

    6. Left section of the stabilizer and empennage (tail fin)

    3. Cockpit internals

  • 8/20/2019 Slideshow van Almaz-Antey

    4/77

    STA 212.5STA 204.5

    STA 212.5

    4

    STA 196.5

    STA 196.5 STA 212.5STA 212.5IN FRONT

    BEHIND STA 212.5

    STA 212.5

    Damages to Left-hand Side of Cockpit

    Fragment under the outermost left-hand side glass panel

    SUB-MUNITIONS WERE MOVING ALONGSIDEAIRCRAFT BODY

    RICOCHET(without penetration inside the

    body)

  • 8/20/2019 Slideshow van Almaz-Antey

    5/77

    FWD

    Side viewFWD

    View fromabove

    View from inside

    5Damages to Left-hand Side of Cockpit

    Fragment behind the outermost left-hand side glasspanel

    S T A 2 2 8 .5

    STA 228.5

    STA 228.5

    228.5

    Fragment location in the !" 17body L E G E N D228.5 LAYOUT OF AIRCRAFT SUPERSTRUCTURE ELEMENTS

    ENTRY HOLES IN FUSELAGE OUTER SKIN

    OPEN-END HOLES IN TRANSVERSAL ELEMENTS OF SUPERSTRUCTURE(MAINFRAMES)

    WHITE ARROWS INDICATE DIRECTION OF MOVING SUB-MUNIOTOINS (BY ALIGNINGWITH ENTRY HOLES IN OUTER SKIN WITH HOLES IN MAIN FRAMES)

    RED ARROWS INDICATE DIRECTION OF MOVING SUB-MUNIOTOINS THROUGHTRANSVERSAL ELEMENTS OF SUPERSTRUCTURE (MAINFRAMES)

  • 8/20/2019 Slideshow van Almaz-Antey

    6/77

    S TA 2 3 6

    . 5

    View from outside

    View from inside Side view

    FWD

    STA 236.5

    6Damages to Left-hand Side of Cockpit

    Fragment behind the outermost left-hand sideglass panel

    SUB-MUNITIONS WERE MOVING ALONGSIDEAIRCRAFT BODY

    ~ 1 3 m m

    Hole formDIAMOND

    (HIGH INTENSITY)

  • 8/20/2019 Slideshow van Almaz-Antey

    7/77

    STA 236.5

    Side view

    7Damages to Left-hand Side of Cockpit

    Fragment behind the outermost left-hand sideglass panel

    SUB-MUNITIONS WERE MOVING ALONGSIDEAIRCRAFT BODY

    Alignment of the entry hole with the hole the main frame STA 236.5 clearly illustrates thesubmunition

    FWD

    S T A 2 3 6 .5

    L E G E N D236.5 LAYOUT OF AIRCRAFT SUPERSTRUCTURE ELEMENTS

    ENTRY HOLES IN FUSELAGE OUTER SKIN

    OPEN-END HOLES IN TRANSVERSAL ELEMENTS OF SUPERSTRUCTURE(MAINFRAMES)

    WHITE ARROWS INDICATE DIRECTION OF MOVING FRAGMENTS (BY ALIGNING WITHENTRY HOLES IN OUTER SKIN WITH HOLES IN MAIN FRAMES)

    RED ARROWS INDICATE DIRECTION OF MOVING DETONATION PRODUCTS

    236.5

    Fragment location in the !" 17body

  • 8/20/2019 Slideshow van Almaz-Antey

    8/77

    STA 236.5

    STA 246

    STA 254.5

    STA 265.5

    STA 276.5

    STA 287.5

    S T A 2 3 6 .5

    S T A 2 4 6

    S TA 2 5 4

    . 5

    S TA 2 6 5 .

    5

    S T A

    2 7 6 . 5

    8Damages to Roof above Cockpit

    C L A

    A

    A

    CLA

    STA 276.5

  • 8/20/2019 Slideshow van Almaz-Antey

    9/77

    9

    236.5287.5 309.5

    212.5 332.5246.5

    204.5

    STA 228.5 STA 236.5

    STA 246 – 254.5

    STA 265.5 – 276.5

    STA 287.5 – 309.5

    STA 212.5

    STA 228,5

    STA 246 – 276.5

    STA 287.5 – 309.5

    STA 196.5 – 204.5

    Damages to Traverse Superstructure (Main Frames)

    DAMAGES TO SUPERSTRUCTURE (MAIN FRAMES) ARE LOCATED MUCHFURTHER AWAY FROM DAMAGES TO OUTER SKIN

  • 8/20/2019 Slideshow van Almaz-Antey

    10/77

    !

    BREAKUP OF MAINFRAMES

    10

    ENTRY HOLES IN COCKPIT FLOOR

    SUPERSTRUCTURE ELEMENTS (MAIN FRAMES)

    OPEN-END HOLES IN MAIN FRAMES

    BREAKUP OF MAIN FRAMES

    LEFT VIEW REAR VIEW

    A

    A

    FWD FWD

    FWD

    PIC'S CONTROL COLUMN

    212.5

    WHITE ARROWS INDICATE DIRECTION OF MOVING FRAGMENTS

    L E G E N D

    Damages to Cockpit’s Internals

    Distribution of the damage densityover the cockpit floor

    STA 212.5

    STA 204.5

    RIGHT VIEW

    COMPLETE DAMAGE AREA IN COCKPIT FLOOR

    FWD

    LEFT SIDE OFCOCKPIT FLOOR

    B

    "

    SUB-MUNITIONS WERE MOVING ALONGSIDEAIRCRAFT BODY

    Open-end holes on the right-hand side of the control

    column cannot be madewithout the body break-upunless the sub-munitions were

    moving from the left-handside.

  • 8/20/2019 Slideshow van Almaz-Antey

    11/77

    11Damages to the Left Wing and Left-hand Side of Stabilizer

    LEFT WING BORE BRUNT OF SHRAPNELS

  • 8/20/2019 Slideshow van Almaz-Antey

    12/77

    Front view

    12

    ~ 14 mm

    Rear view

    Damages to Left Engine

    LEFT ENGINE BORE BRUNT OF FRAGMENTS

  • 8/20/2019 Slideshow van Almaz-Antey

    13/77

    1

    2

    FRONT VIEW

    REAR VIEW

    REAR VIEW

    ~ 14 mm

    REAR VIEW

    ~ 14 mm

    FRONT VIEW

    13Damages to Left Engine

    Hole FormDIAMOND ~ 14 mm

    (HIGH INTENSITY)

    TWO OR MORE ELEMENTS OF THE AIRCRAFT BODY CAN BEPENETRATED ONLY BY HIGH-IMPACT ELEMENTS –PRE-FRAGMENTED ELEMENTS OF HIGH OR LOW DENSITY

  • 8/20/2019 Slideshow van Almaz-Antey

    14/77

    STA 196.5 – 204.5

    STA 212,5

    STA 228,5

    14Key Conclusions on Aircraft Damages

    1. The break-up of the structural members (main frames) in thearea of the left-hand side cockpit canopy could be caused only by asubmunition moving along the aircraft body.

    2. The damages to the left engine and left wing were inflicted by

    the impact of pre-armed submunitions and fragments of the missilebody.

  • 8/20/2019 Slideshow van Almaz-Antey

    15/77

    15

    SIMULATION

    Real-life Experiment

  • 8/20/2019 Slideshow van Almaz-Antey

    16/77

    Dynamic model of the warhead

    16

    * * * * ,

    11111-----1-1-1-1-1---

    7

    1

    -1

    -

    -

    -

    -

    -

    -7

    -

    -

    -1

    -11

    -1

    -1

    -1

    -1

    Static model of the warhead

    Distribution of density and kinetic energy

    NDP EDP

    Submunition distribution model

    LEGEND

    SCALPEL FORMATION SECTOR

    DIRECTION OF SCALPEL REAR FRONT

    SET-OFF POINT

    * * * * ,

    11111-----1-1-1-1-1----

    1

    1

    1

    1

    1

    11

    1

    7

    1

    -1

    -

    -

    -

    -

    -

    -7

    -

    -91

    -89

    -92

    -79

    -75

    -77

    -80

    -84

    -72

    -73

    -82

    -70

    -91

    -68

    -93

    -66

    -95

    -64-62

    -60-57

    -55-53

    -94

    -88

    -95

    -89

    -51

    -16-16-16-16

    40

    88

    98

    88

    95

    4346

    4952

    5558

    96

    60

    94

    63

    92

    65

    80

    69

    67

    83

    78

    74

    72

    76

    93

    88

    91-90

    -87

    -92-93

    -84

    -78

    -76

    -81

    -79

    -74-72

    -70-68

    -67-65

    -63-61

    -58-56

    -54 -51-50

    -48 -46 33 3638

    40 4346

    5053

    5658

    6163

    65

    6770

    76

    78

    72

    74

    83

    9492

    87

    90

    Specific distribution pattern of submunitions

    OVER 42 % OF WEIGHT OF SUBMUNITIONSOVER 50 % OF KINETIC ENERGY

    * * * * ,

    11111-----1-1-1-1-1---

    1500

    1400

    1300

    1200

    1100

    1000

    900

    800

    700

    600

    500

    400

    300

    200

    100

    0

    -100

    -200

    -300

    -

    -

    -

    -7

    -

    -

    -1

    -90

    -88

    -92

    -77

    -74

    -75

    -79

    -83

    -70

    -71

    -81

    -68

    -91

    -66

    -92

    -64

    -94

    -62 -59

    -57-54

    -52-50

    -93

    -87

    -95

    -88

    -47

    -5-5-5-5

    43

    87

    95

    87

    93

    4749

    5154

    57 60

    95

    62

    93

    64

    91

    66

    80

    70

    68

    82

    78

    74

    72

    76

    92

    88

    90-89

    -87

    -91-92

    -83

    -76

    -74

    -80

    -77

    -72

    -70-68

    -66-64

    -62-60

    -58-55

    -52-50 -47

    -46-44 -42 38 40

    4244 47

    4953

    5558

    6062

    646769

    71

    77

    79

    73

    75

    83

    9391

    86

    89

    V9 ! 38 ! 1= 600 m/s

    Launch from Snezhnoe scenario

    VB777 = 252 m/s

    V

    Version presented by Concern VKO Almaz-Antey

    V9 ! 38 ! 1= 730 m/s VB777 = 252 m/s

    - 42 #

    - 95 #

    - 46 #

    - 95 #

    VPE_MAX = 2580 m/s

    VPE_MAX = 2,400 m/s 38 #

    95 #

    33 #

    97 #

    - 88 #

    - 89 #

    V

    Specific Pattern of Fragments Front Generated by 9N314M WH

  • 8/20/2019 Slideshow van Almaz-Antey

    17/77

    X, km

    Z, km

    5

    10

    15

    5

    10

    15

    20

    5 km

    X, km

    Z, km

    144 6 8 10

    16

    18

    20

    9! 38 2

    22

    X, km

    Z, km

    144 6 8 10

    16

    18

    20

    9! 38 ! 1 2

    22

    0CONDITIONS AT WHICH MISSILE HITS AIRCRAFT

    QHOR = 72 "

    Q VER= 20-22 "

    + 6 °-– 6 °

    + 6 °-– 6 °

    X

    Q HOR

    Y

    Z

    Q VER

    17Simulated Results:Concern VKO Almaz-Antey’s Scenario

  • 8/20/2019 Slideshow van Almaz-Antey

    18/77

    X, km

    Z, km

    144 6 8 10

    16

    18

    20

    2

    22

    XL= 7,780

    ZL= 17,850

    X

    Q HOR

    Y

    Z

    Q VER

    9! 38 ! 1

    V9M38M1 ~ 685 m/s

    QHOR = 74.58 "

    QVER = 10,49 "

    9! 38

    V9M38 ~ 733 m/s

    QHOR = 73.03 "

    QVER= 20.89 "

    X

    Q HOR

    Y

    Z

    Q VER

    18Simulation Results:Concern VKO Almaz-Antey’s Scenario

  • 8/20/2019 Slideshow van Almaz-Antey

    19/77

    19Simulation Results:Concern VKO Almaz-Antey’s Scenario

    $%"$&"'( Damages :

    1. Left wing2. Left engine

    - a minimum of 4 submunitions- a minimum of 22 submunitions

    l l

  • 8/20/2019 Slideshow van Almaz-Antey

    20/77

    20Simulation Results:‘Launch from Snezhnoe’ Scenario

    $%"$&"'( Damages :

    1. Left wing2. Left engine

    - 0 submunition- 0 submunition

  • 8/20/2019 Slideshow van Almaz-Antey

    21/77

    21Simulation Results

    Concern VKO Almaz-Antey’s Scenario

    ‘Launch from Snezhnoe’ Scenario

  • 8/20/2019 Slideshow van Almaz-Antey

    22/77

    STAGE 1: 9N314M JUL 31, 2015 22

    Experiment’s Objectives:

    Confirm the submunition trajectory pathConfirm the mechanical (penetrating) impact of submunitions

    Run a comparative analysis of damages and submunitions

  • 8/20/2019 Slideshow van Almaz-Antey

    23/77

    23Experiment. Stage 1

  • 8/20/2019 Slideshow van Almaz-Antey

    24/77

    24

    High-speed camera No. 1 10,000 frames/s

    Solid obstacle (trap)

    High-speed camera No. 2 10,000 frames/s

    T – 0.445 ms

    T + 12.055 ms T + 59.855 ms

    T + 0.483 ms T + 2.183 ms

    Confirm Mechanical (Penetrating) Impact of Submunitions

  • 8/20/2019 Slideshow van Almaz-Antey

    25/77

    25

    1: Aluminum – 2.0 mm

    2: Solid foam – 260.0 mm

    3: Boards – 750.0 mmI-BEAM

    13 # 13 # 8.2mm

    7. 63 g 7.73 g

    7.91 g

    6.84 g 6.27 g 6.86 g 5.23 g 5.90 g

    6.58 g 6.79 g

    DIAMOND8x8x5 mm

    1.88 g 2.01 g

    1.82 g 1.76 g 1.85 g 1.73 g 1.59 g 1.87 g

    Solid obstacle (trap)

    Collected fragments

    DIAMOND6x6x8.2 mm

    Confirm Mechanical (Penetrating) Impact of Submunitions

  • 8/20/2019 Slideshow van Almaz-Antey

    26/77

    26

    Retrieval of the submunitions from the solid obstacle(trap)

    Confirm Mechanical (Penetrating) Impact of Submunitions

    MECHANICAL (PENETRATING) IMPACT BY I-BEAM FRAGMENTS INDURAL EQUIVALENT:

    12.2 – 26.3 mm (DEPENDING ON ENTRY ANGLE)

    9 3 3 20

  • 8/20/2019 Slideshow van Almaz-Antey

    27/77

    DIAMOND (8x8x5 mm)

    I-BEAM (13 # 13 # 8.2 mm)

    DIAMOND (6x6x8.2 mm)

    7.91 g

    8.10+ 0,6-–

    0.1G

    6.02 g 4.53 g6.53 g 7.51 g 7.37 g 7.91 g 7.73 g

    2.06 g 1.93 g 2.19 g 2.01 g 1.77 g 1.85 g 2.05 g1.89 g

    1.82 g 1.76 g 1.85 g 1.73 g 1.59 g 1.87 g 1.27 g 1.07 g

    2.35+ 0.15

    -– 0.15 G

    2.10+ 0.01

    -– 0.17 G

    1.89 g

    6.35 g 2.44 g 1.93 g + 0.52 g 2.31 g 2.34 g 16.05 g 1.59 g3.62 g 0.74 g 0.57 g

    BODY FRAGMENTS

    A

    B

    A B

    9N314M JUL 31, 2015 27

    9N314M JUL 31 2015

  • 8/20/2019 Slideshow van Almaz-Antey

    28/77

    9N314M JUL 31, 2015 28

    DIAMOND (8x8x5 mm)

    I-BEAM (13 # 13 # 8.2 mm)

    DIAMOND (6x6x8.2 mm)

    Typical holes from pre-armed submunitions

    9N314M JUL 31 2015

  • 8/20/2019 Slideshow van Almaz-Antey

    29/77

    9N314M JUL 31, 2015 29

    Typical holes frompre-armed I-BEAM type submunitions

    Obstacle No. 2 Obstacle No. 4

    Obstacle No. 5

    A

    B

    A B CC

  • 8/20/2019 Slideshow van Almaz-Antey

    30/77

    30

    !" 17

    !" 17

    !" 17

    !" 17!" 17

    !" 17

    TARGET

    Fragments of Missile Bay Body TARGET

    TARGET

    TARGETTARGET

    TARGET

    Exterior Appearance of Holes from Warhead Fragments

  • 8/20/2019 Slideshow van Almaz-Antey

    31/77

    31

    1.0 1.1

    1.0

    1.1

    Damage Assessment

    1.3

    1.5

    1.3

    1.5

  • 8/20/2019 Slideshow van Almaz-Antey

    32/77

    32

    Computer Simulation Experiment’s Resuls

    Stage One Results of Experiment

    d b ( )

  • 8/20/2019 Slideshow van Almaz-Antey

    33/77

    33Pre-armed Submunitions (Experiment: Stage 1)

    DIAMOND (6x6x8.2 mm)

    Original exterior view of pre-armed SM

    DIAMOND (8x8x5 mm)

    Original exterior view of pre-armed SM

    I-BEAM (13 # 13 # 8.2 mm) I-BEAM (13 # 13 # 8.2 mm)

    Original exterior view of pre-armed SM

    top view &)* %+$,-

    STAGE 2 9 ! 38M1 OCT 07 2015

  • 8/20/2019 Slideshow van Almaz-Antey

    34/77

    STAGE 2: 9 ! 38M1 OCT 07, 2015 34

    Experiment’s Objectives:

    Assess the damages the full-size aircraft by submunitionsConfirm the mechanical (penetrating) impact of submunitions

    Run a comparative analysis of damages and submunitions

    35V l i A l i f P d SM Mi il d Ai f

  • 8/20/2019 Slideshow van Almaz-Antey

    35/77

    V9 ! 38 ! 1= 0 m/s VB777 = 0 m/s

    35

    FRAGMENTS FRONT: Static Position

    Velocity Analysis of Pre-armed SM, Missile and Aircraft

    36C l l i f F V l i d Di i R di

  • 8/20/2019 Slideshow van Almaz-Antey

    36/77

    "Geometry Textbook for 7-11-year schoolstudents,

    5 th edition, A. V. Pogorelov, 1995 8 year, paragraph 10,

    Addition of Vectors – page 159

    "LAUNCHING ANTI-AIRCRAFT MISSILES ,3 rd Edition, F.K. Neupokoev, 1991, Chapter

    5. Area of Potential Damage to Target – page188

    for (int i = 0; i < size; ++i){

    V.push_back(Point((LightSplintersInitialPositionType1VectorAfterTurn[i].x + time *(LightSplintersVelocityType1VectorAfterTurn[i].x + MissileVelocityArray.x + PlaneVelocityArray.x)),(LightSplintersInitialPositionType1VectorAfterTurn[i].y + time * (LightSplintersVelocityType1VectorAfterTurn[i].y +MissileVelocityArray.y + PlaneVelocityArray.y)), (LightSplintersInitialPositionType1VectorAfterTurn[i].z + time *

    (LightSplintersVelocityType1VectorAfterTurn[i].z + MissileVelocityArray.z + PlaneVelocityArray.z))));}

    "

    "

    Fragment of the program code that includes the addition of the projected velocity vectors of low-intensity

    submunitions of a surface-to-air missile and aircraft

    36Calculation of Fragment Velocity and Dispersion Radius

    !"#$% '(% )*+(%*, -. ,%'/#*'%,0'+*1%2 .3%%, )-22 4%/5%'+-$*226 7% *,,%, '/ '(%

    '*+4%'8. /)# .3%%, 4%#%+*'%, 76 9+*45%#'.:.-#4 '(% )*+(%*, 3/)%+; !

    37V l it A l i f P d SM Mi il d Ai ft

  • 8/20/2019 Slideshow van Almaz-Antey

    37/77

    V9 ! 38 ! 1= 600 m/s VB777 = 0 m/s

    37

    FAGMENTS FRONT : Based on Missile velocity 600 m/s

    V9M38M1

    Velocity Analysis of Pre-armed SM, Missile and Aircraft

    38V l it A l i f P d SM Mi il d Ai ft

  • 8/20/2019 Slideshow van Almaz-Antey

    38/77

    V9 ! 38 ! 1= 600 m/s VB777 = 252 m/s

    V

    38

    FAGMENTS FRONT : Dynamic Position(Missile Velocity 600 m/s, &777 Velocity 252 m/s)

    Velocity Analysis of Pre-armed SM, Missile and Aircraft

    39Obt i i g Adj t t C ti

  • 8/20/2019 Slideshow van Almaz-Antey

    39/77

    39

    Dynamic Position(Missile Velocity 600 m/S,Aircraft Velocity 252 m/s)

    Static Position(Missile Velocity 0 m/s),Aircraft Velocity 0 m/s)

    X

    QHOR

    Y

    Z

    Q VER

    COLLISION PARAMETERS

    V9M38M1 ~ 600 m/s

    QHOR = 17 " QVER = 7"

    V AIRCRAFT = 252 m/s

    . Q VER

    . Q HOR

    Obtaining Adjustment Corrections

    Dynamic to Static Position Conversion 40

  • 8/20/2019 Slideshow van Almaz-Antey

    40/77

    Dynamic-to-Static Position Conversion 40

    Calculations results of Target-86 airframe damage to provide dynamic-to-static position conversion(9M38M1 SAM and IL-86 airframe)

    Number of triangular areas forming the cockpit canopy surface

    Number of calculated fragments (pre-armed fragments + body fragments)

    Number of processed options–OVER 14 millions

    Fragment Coverage Area 41

  • 8/20/2019 Slideshow van Almaz-Antey

    41/77

    Fragment Coverage Area 41

    Dynamic Position (Missile Velocity 600 m/s, Aircraft Velocity 252 m/s)

    Static Position (Missile Velocity 0 m/s, Aircraft Velocity 0 m/s)

    V9M38 ! 1 ~ 600 m/s

    Q HOR = 17 " Q VER= 7"

    V AIRCRAFT ~ 252 m/s

    V9M38 ! 1 - 0 m/s

    Q HOR = 33.5 " Q VER= 16.5 "

    V AIRCRAFT - 0 m/s

    QHOR = + 16.5 " QVER= + 9.5 "

    ADJUSTMENTCORRECTIONS

    Fragment Coverage Area 42

  • 8/20/2019 Slideshow van Almaz-Antey

    42/77

    Dynamic Position (Missile Velocity 600 m/s, Aircraft Velocity 252 m/s)

    Static Position (Missile Velocity 0 m/s, Aircraft Velocity 0 m/s)

    Fragment Coverage Area 42

    V9M38 ! 1 ~ 600 m/s

    Q HOR = 17 " Q VER= 7"

    V AIRCRAFT ~ 252 m/s

    V9M38 ! 1 - 0 m/s

    Q HOR = 33.5 " Q VER= 16.5 "

    V AIRCRAFT - 0 m/s

    QHOR = + 16.5 " QVER= + 9.5 "

    ADJUSTMENTCORRECTIONS

    Entry Hole Angles of Submunitions 43

  • 8/20/2019 Slideshow van Almaz-Antey

    43/77

    Dynamic Position (Missile Velocity 600 m/s, Aircraft Velocity 252 m/s)

    Static Position (Missile Velocity 0 m/s, Aircraft Velocity 0 m/s)

    Entry Hole Angles of Submunitions 43

    V9M38 ! 1 ~ 600 m/s

    Q HOR = 17 " Q VER= 7"

    V AIRCRAFT ~ 252 m/s

    V9M38 ! 1 - 0 m/s

    Q HOR = 33.5 " Q VER= 16.5 "

    V AIRCRAFT - 0 m/s

    QHOR = + 16.5 " QVER= + 9.5 "

    ADJUSTMENTCORRECTIONS

    Distribution of sub-munitions 44

  • 8/20/2019 Slideshow van Almaz-Antey

    44/77

    Distribution of sub munitions 44

    Dynamic Position(Missile Velocity 600 m/s,Aircraft Velocity 252 m/s)

    Static Position(Missile Velocity 0 m/s,Aircraft Velocity 0 m/s)

    45Baseline Data for Experiment’s Target Layout

  • 8/20/2019 Slideshow van Almaz-Antey

    45/77

    (X38 ! 1)- 250

    ( Y38 ! 1)

    + 7

    , 0 0 0 * *

    BAY CENTER 2 (ALIGNMENT POINT)

    PLACEMENT ON CRADLE

    MC

    PRODUCT MASS CENTER

    1,500

    QVER= 16.5 "

    1 , 2

    7 3

    1,000*

    190

    VERTICAL PLANE

    " Y0" EARTH

    ** - at a height of object cradle 500 mm at 8 m

    X0 X8 m

    + 500**

    "0" OF TARGET (CROSSING OF CENTER LINE ANDOBJECT'S NOSE PART)

    ! 38 ! 1 = 342.6 kg(with exhausted engines)

    * - all in mm

    45Baseline Data for Experiment s Target Layout

    46Baseline Data for Experiment’s Target Layout

  • 8/20/2019 Slideshow van Almaz-Antey

    46/77

    PLACEMENT ON CRADLE

    MC

    HORIZONTAL PLANE

    (X38 ! 1)- 250

    Q HOR = 33.5 "

    - 3

    , 3 5 0

    (Z38 ! 1)

    OBJECT "86" BODY CENTERLINE

    X0 OBJECT "86" BODY NOSE

    Z0

    * - all in mm

    BAY CENTER 2 (ALIGNMENT POINT)

    PRODUCT MASS CENTER

    "0" OF TARGET (CROSSING OF CENTER LINE ANDOBJECT'S NOSE PART)

    46Baseline Data for Experiment s Target Layout

    ! 38 ! 1 = 342.6 kg(with exhausted engines)

    47Baseline Data for Experiment’s Target Layout

  • 8/20/2019 Slideshow van Almaz-Antey

    47/77

    + 500 + 500

    6,080

    Q VER= 16.5 "

    QHOR = 33.5 "

    Y38 ! 1

    Z38 ! 1

    X38 ! 1

    X

    Q HOR

    Y

    Z

    Q VER

    9! 38 ! 1

    QHOR = 33.5 " Q VER= 16.5 "

    +7,000

    - 250

    - 3,350

    47Baseline Data for Experiment s Target Layout

    48Preparatory Work for Experiment

  • 8/20/2019 Slideshow van Almaz-Antey

    48/77

    Preparatory Work for Experiment

    Product 9M38M1

    Warheaf 9N314M

    9M38M1 MISSILE ARMED AND IS 40 SECONDS INTO FLIGHT

    49Preparatory Work for Experiment

  • 8/20/2019 Slideshow van Almaz-Antey

    49/77

    Preparatory Work for Experiment

    Installation of Target No. 1 (nose part)

    Target No. 2(left engine)

    50Preparatory Work for Experiment

  • 8/20/2019 Slideshow van Almaz-Antey

    50/77

    Preparatory Work for Experiment

    Installation of the test bench

    51Preparatory Work for Experiment

  • 8/20/2019 Slideshow van Almaz-Antey

    51/77

    Preparatory Work for Experiment

    Unloading of product 9 ! 38 ! 1

    Final preparation stage of warhead 9N314M

    52Preparatory Work for Experiment

  • 8/20/2019 Slideshow van Almaz-Antey

    52/77

    Preparatory Work for Experiment

    Insertion of the warhead into Product 9 ! 38 ! 1

    Final stage preparation of Product 9 ! 38 ! 1

    53Preparatory Work for Experiment

  • 8/20/2019 Slideshow van Almaz-Antey

    53/77

    p y p

    Installation of Product 9 ! 38 ! 1 onto the test bench

    54Preparatory Work for Experiment

  • 8/20/2019 Slideshow van Almaz-Antey

    54/77

    p y p

    Deployment of Product 9 ! 38 ! 1

    Target No. 1(nose part)

    Target No. 2(left engine)

    55Experiment: Stage 2

  • 8/20/2019 Slideshow van Almaz-Antey

    55/77

    p g

    56Damage Analysis

  • 8/20/2019 Slideshow van Almaz-Antey

    56/77

    Cockpit (left view) Cockpit (view from inside)

    Cockpit (front view) Cockpit (top view)

    g y

    57Hole in Starboard Side

  • 8/20/2019 Slideshow van Almaz-Antey

    57/77

    FRAGMENTS RETAINING HIGH VELOCITY FRAGMENTS LOSING HIGH VELOCITY

    58Damages

  • 8/20/2019 Slideshow van Almaz-Antey

    58/77

    Exit holes on the right-hand side

    59Damage Analysis

  • 8/20/2019 Slideshow van Almaz-Antey

    59/77

    Cockpit (left view)

    $/01/0/234 536784/72 2 59:7;4 70/463;? @63A9B9 ;9 75/1

    60Damage Analysis

  • 8/20/2019 Slideshow van Almaz-Antey

    60/77

    A

    A

    B

    B

    Typical holes from I-BEAM submunitions(13 # 13 # 8,2 mm)

    61Damage Analysis

  • 8/20/2019 Slideshow van Almaz-Antey

    61/77

    A

    A

    B

    B

    "

    "

    #

    #

    $

    $

    !

    E

    Typical holes from I-BEAM submunitions (13 # 13 # 8,2 mm)

    62Damage Analysis

  • 8/20/2019 Slideshow van Almaz-Antey

    62/77

    Fragment No. 1 Fragment No. 2

    Roof structural member (complete with the main frame)of the cockpit behind the left glass panel

    Roof structural member (complete with the stringer) ofabove the PIC’s seat

    Fragment No. 3

    Port side structural element in the area of the PIC’s sidewindow

    Fragment No. 4

    Roof structural member above the PIC’s seat

    63Damage Analysis

  • 8/20/2019 Slideshow van Almaz-Antey

    63/77

    Fragment No. 5

    Port side structural element behind the PIC’s seat

    64Locations of Fragments Collection

  • 8/20/2019 Slideshow van Almaz-Antey

    64/77

    65Damage Analysis

  • 8/20/2019 Slideshow van Almaz-Antey

    65/77

    Open-end hole in the stringers

    66Damages to Superstructure

  • 8/20/2019 Slideshow van Almaz-Antey

    66/77

    Main frames of port side behindthe cockpit canopy

    V9M38 ! 1 ~ 600 m/s

    QHOR = 17 "

    QVER = 7"

    Stimulation Results

    Break-up of main frames

  • 8/20/2019 Slideshow van Almaz-Antey

    67/77

    68Damage Analysis

  • 8/20/2019 Slideshow van Almaz-Antey

    68/77

    Before the experiment

    Port SideAfter the experiment

    69Key Conclusions on Damages to Aircraft

  • 8/20/2019 Slideshow van Almaz-Antey

    69/77

    1. On the left-had side the cockpit canopy the SM entered atangle without ricocheting

    3. The left engine and left wing are outside of the impact by thefragments front

    2. Nature of damages to the aircraft superstructure is totallydifferent from those sustained by !" 17

    70Missile Fragments

  • 8/20/2019 Slideshow van Almaz-Antey

    70/77

    71Missile Fragments

  • 8/20/2019 Slideshow van Almaz-Antey

    71/77

    72Verification of Simulation Results

  • 8/20/2019 Slideshow van Almaz-Antey

    72/77

    Experiment’s results Simulationresults

    SimulationExperiment’s layout

    Position of the missile and the target before the experument

    Damages to the nose part of the aircraft

    73Submunitions

  • 8/20/2019 Slideshow van Almaz-Antey

    73/77

    Retrieval of the I-BEAM submunition

  • 8/20/2019 Slideshow van Almaz-Antey

    74/77

    75Pre-armed Submunitions

  • 8/20/2019 Slideshow van Almaz-Antey

    75/77

    I-BEAM (13 # 13 # 8.2 mm)

    Experiment: Stage 1

    I-BEAM (13 # 13 # 8.2 mm)

    Original exterior view of IBEAM pre-armedSM

    Experiment: Stage 2

    I-BEAM (13 # 13 # 8.2 mm)

    Test report on warhead9" 314 !

    (archive records )

  • 8/20/2019 Slideshow van Almaz-Antey

    76/77

    !!Results of Full-size Real-life Experiment @60A453C4;/9

  • 8/20/2019 Slideshow van Almaz-Antey

    77/77

    Type of Missile – 9 ! 38 complete with warhead >9" 314 (without I-beams)

    ELABORATION ON TYPE OF MISSILE

    VALIDATION OF COLLISION PARAMETERS OFMISSILE AND AIRCRAFT

    The parameters of the missile colliding into the aircraft obtained by the

    Concern’s team have been validated during the full-size real lifeexperiment.

    The most probable location of the missile launch is "93>7