slide chpt07 (1)

Upload: akh-il

Post on 05-Apr-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/2/2019 Slide Chpt07 (1)

    1/56

    1

    Finite Element Method

    FEM FOR 2D SOLIDS

    for readers of all backgrounds

    G. R. Liu and S. S. Quek

    CHAPTER 7:

  • 8/2/2019 Slide Chpt07 (1)

    2/56

    Finite Element Method by G. R. Liu and S. S. Quek2

    CONTENTS INTRODUCTION

    LINEAR TRIANGULAR ELEMENTS Field variable interpolation

    Shape functions construction

    Using area coordinates Strain matrix

    Element matrices

    LINEAR RECTANGULAR ELEMENTS

    Shape functions construction

    Strain matrix

    Element matrices

    Gauss integration

    Evaluation ofme

  • 8/2/2019 Slide Chpt07 (1)

    3/56

    Finite Element Method by G. R. Liu and S. S. Quek3

    CONTENTS

    LINEAR QUADRILATERAL ELEMENTS

    Coordinate mapping

    Strain matrix

    Element matrices

    Remarks

    HIGHER ORDER ELEMENTS

    COMMENTS (GAUSS INTEGRATION)

  • 8/2/2019 Slide Chpt07 (1)

    4/56

    Finite Element Method by G. R. Liu and S. S. Quek4

    INTRODUCTION

    2D solid elements are applicable for the analysisof plane strain and plane stress problems.

    A 2D solid element can have a triangular,rectangular or quadrilateral shape with straight orcurved edges.

    A 2D solid element can deform only in the plane

    of the 2D solid. At any point, there are two components in the x

    and y directions for the displacement as well asforces.

  • 8/2/2019 Slide Chpt07 (1)

    5/56

    Finite Element Method by G. R. Liu and S. S. Quek5

    INTRODUCTION

    For plane strain problems, the thickness of the

    element is unit, but for plane stress problems, the

    actual thickness must be used. In this course, it is assumed that the element has a

    uniform thickness h.

    Formulating 2D elements with a given variation ofthickness is also straightforward, as the procedure

    is the same as that for a uniform element.

  • 8/2/2019 Slide Chpt07 (1)

    6/56

    Finite Element Method by G. R. Liu and S. S. Quek6

    2D solids plane stress and plane strain

    Plane stress Plane strain

  • 8/2/2019 Slide Chpt07 (1)

    7/56Finite Element Method by G. R. Liu and S. S. Quek7

    LINEAR TRIANGULAR

    ELEMENTS Less accurate than quadrilateral elements

    Used by most mesh generators for complex

    geometry A linear triangular element:

    x, u

    y, v

    1 (x1, y1)

    (u1, v1)

    2 (x2, y2)

    (u2, v2)

    3 (x3, y3)

    (u3, v3)

    sxsy

  • 8/2/2019 Slide Chpt07 (1)

    8/56Finite Element Method by G. R. Liu and S. S. Quek8

    Field variable interpolation

    ( , ) ( , )he

    x y x yU N d

    3nodeatntsdisplaceme

    2nodeatntsdisplaceme

    1nodeatntsdisplaceme

    3

    3

    2

    2

    1

    1

    v

    u

    v

    u

    v

    u

    ed

    31 2

    31 2

    Node 2Node 1 Node 3

    00 000 0

    NN N

    NN N

    N

    where

    x, u

    y, v

    1 (x1, y1)

    (u1, v1)

    2 (x2, y2)

    (u2, v2)

    3 (x3, y3)

    (u3, v3)

    Asx

    sy

    (Shape functions)

  • 8/2/2019 Slide Chpt07 (1)

    9/56Finite Element Method by G. R. Liu and S. S. Quek9

    Shape functions construction

    1 1 1 1N a b x c y

    2 2 2 2N a b x c y

    3 3 3 3

    N a b x c y

    i i i iN a b x c y

    Assume,

    i= 1, 2, 3

    1 T

    T

    i

    i i

    i

    a

    N x y b

    c

    p

    p

    or

  • 8/2/2019 Slide Chpt07 (1)

    10/56Finite Element Method by G. R. Liu and S. S. Quek10

    Shape functions construction

    Delta function property:

    1 for( , )

    0 for

    i j j

    i jN x y

    i j

    1 1 1

    1 2 2

    1 3 3

    ( , ) 1

    ( , ) 0

    ( , ) 0

    N x y

    N x y

    N x y

    Therefore, 1 1 1 1 1 1 1 1

    1 2 2 1 1 2 1 2

    1 3 3 1 1 3 1 3

    ( , ) 1

    ( , ) 0

    ( , ) 0

    N x y a b x c y

    N x y a b x c y

    N x y a b x c y

    Solving, 2 3 3 2 2 3 3 21 1 1, ,

    2 2 2e e e

    x y x y y y x xa b c

    A A A

  • 8/2/2019 Slide Chpt07 (1)

    11/56Finite Element Method by G. R. Liu and S. S. Quek11

    Shape functions construction

    1 1

    2 2 2 3 3 2 2 3 1 3 2 1

    3 3

    11 1 1

    1 [( ) ( ) ( ) ]2 2 2

    1

    e

    x y

    A x y x y x y y y x x x y

    x y

    P

    Area of triangle Moment matrix

    Substitute a1, b1 and c1 back intoN1= a1+ b1x + c1y:

    1 2 3 2 3 2 2

    1[( )( ) ( )( )]

    2 eN y y x x x x y y

    A

  • 8/2/2019 Slide Chpt07 (1)

    12/56Finite Element Method by G. R. Liu and S. S. Quek12

    Shape functions construction

    Similarly,

    2 1 1

    2 2 2

    2 3 3

    ( , ) 0

    ( , ) 1

    ( , ) 0

    N x y

    N x y

    N x y

    2 3 1 1 3 3 1 1 3

    3 1 3 1 3 3

    1[( ) ( ) ( ) ]

    2

    1 [( )( ) ( )( )]2

    e

    e

    N x y x y y y x x x yA

    y y x x x x y yA

    3 1 1

    3 2 2

    3 3 3

    ( , ) 0

    ( , ) 0

    ( , ) 1

    N x y

    N x y

    N x y

    3 1 2 1 1 1 2 2 1

    1 2 1 2 1 1

    1[( ) ( ) ( ) ]

    2

    1 [( )( ) ( )( )]2

    e

    e

    N x y x y y y x x x yA

    y y x x x x y yA

  • 8/2/2019 Slide Chpt07 (1)

    13/56Finite Element Method by G. R. Liu and S. S. Quek13

    Shape functions construction

    i i i iN a b x c y

    1( )2

    1( )

    2

    1 ( )2

    i j k k j

    e

    i j k

    e

    i k j

    e

    a x y x yA

    b y yA

    c x xA

    where

    i

    jk

    i= 1, 2, 3

    J, kdetermined from cyclic

    permutationi = 1, 2

    j = 2, 3k= 3, 1

  • 8/2/2019 Slide Chpt07 (1)

    14/56Finite Element Method by G. R. Liu and S. S. Quek14

    Using area coordinates

    Alternative method of constructing shape

    functions

    i,1

    , 2

    k, 3

    x

    P

    A1

    1 2 2 2 3 3 2 2 3 3 2

    3 3

    1

    1 11 [( ) ( ) ( ) ]2 2

    1

    x y

    A x y x y x y y y x x x y

    x y

    1

    1

    e

    AL

    A

    2-3-P:

    Similarly, 3-1-P A2

    1-2-P A3

    22

    e

    ALA

    3

    3

    e

    AL

    A

  • 8/2/2019 Slide Chpt07 (1)

    15/56Finite Element Method by G. R. Liu and S. S. Quek15

    Using area coordinates

    1 2 31L L L Partitions of unity:

    3 2 2 32 2

    1 2 3 1e e e e

    A A A AA AL L L

    A A A A

    Delta function property: e.g.L1 = 0 at if P at nodes 2 or 3

    Therefore, 1 1 2 2 3 3, ,N L N L N L

    ( , ) ( , )h

    ex y x yU N d

  • 8/2/2019 Slide Chpt07 (1)

    16/56Finite Element Method by G. R. Liu and S. S. Quek16

    Strain matrix

    xx

    yy

    xy

    ux

    v

    y

    u vy x

    LU where

    0

    0

    x

    y

    y x

    L

    ee BdLNdLU

    0

    0

    x

    y

    y x

    B LN N

    1 2 3

    1 2 3

    1 1 2 2 3 3

    0 0 0

    0 0 0

    a a a

    b b b

    b a b a b a

    B

    (constant strain element)

  • 8/2/2019 Slide Chpt07 (1)

    17/56Finite Element Method by G. R. Liu and S. S. Quek

    17

    Element matrices

    0d ( d ) d d

    e e e

    hT T T

    e

    V A A

    V z A h A k B cB B cB B cB

    Constant matrix

    Te ehAk B cB

    0d d d d

    e e e

    hT T T

    eV A AV x A h A

    m N N N N N N

  • 8/2/2019 Slide Chpt07 (1)

    18/56Finite Element Method by G. R. Liu and S. S. Quek

    18

    Element matrices

    1 1 1 2 1 3

    1 1 1 2 1 3

    2 1 2 2 2 3

    2 1 2 2 2 3

    3 1 3 2 3 3

    3 1 3 2 3 3

    0 0 0

    0 0 0

    0 0 0 d0 0 0

    0 0 0

    0 0 0

    e

    e

    A

    N N N N N N

    N N N N N N

    N N N N N Nh AN N N N N N

    N N N N N N

    N N N N N N

    m

    For elements with uniform density and thickness,

    Apnm

    pnmALLL

    pn

    A

    m 2)!2(

    !!!d321

    Eisenberg and Malvern (1973):

  • 8/2/2019 Slide Chpt07 (1)

    19/56Finite Element Method by G. R. Liu and S. S. Quek

    19

    Element matrices

    2

    02.

    102

    0102

    10102

    010102

    12

    sy

    hAe

    m

    x, u

    , v

    1 (x1, y1)

    (u1, v1)

    2 (x2, y2)

    (u2, v

    2)

    3 (x3, y3)

    (u3, v3)

    Asx

    sy

    l

    f

    f

    lsy

    sx

    e d][32

    T

    Nf

    y

    x

    y

    x

    e

    f

    f

    f

    fl

    0

    0

    2

    132fUniform distributed load:

  • 8/2/2019 Slide Chpt07 (1)

    20/56Finite Element Method by G. R. Liu and S. S. Quek

    20

    LINEAR RECTANGULAR

    ELEMENTS

    Non-constant strain matrix More accurate representation of stress and strain

    Regular shape makes formulation easy

  • 8/2/2019 Slide Chpt07 (1)

    21/56Finite Element Method by G. R. Liu and S. S. Quek

    21

    Shape functions construction

    x, u

    y, v

    1 (x1,y1)(u1, v1)

    2 (x2,y2)(u2, v2)

    3 (x3,y3)(u3, v3)

    2a

    sy

    sx

    4 (x4,y4)(u4, v4)

    2b

    Consider a rectangular element

    1

    1

    2

    2

    3

    3

    4

    4

    displacements at node 1

    displacements at node 2

    displacements at node 3

    displacements at node 4

    e

    u

    v

    u

    u

    u

    u

    u

    u

    d

  • 8/2/2019 Slide Chpt07 (1)

    22/56Finite Element Method by G. R. Liu and S. S. Quek

    22

    Shape functions construction

    x, u

    y, v

    1 (x1,y1)

    (u1, v1)

    2 (x2,y2)

    (u2, v2)

    3 (x3,y3)

    (u3, v3)

    2a

    sy

    sx

    4 (x4,y4)

    (u4, v4)

    2b

    1 (1, 1)(u1, v1)

    2 (1, 1)(u2, v2)

    3 (1, +1)

    (u3, v3)

    2a

    4 (1, +1)(u4, v4)

    2b

    , byax

    ( , ) ( , )hex y x yU N d

    31 2 4

    31 2 4

    Node 2 Node 3Node 1 Node 4

    00 0 0

    00 0 0

    NN N N

    NN N N

    Nwhere

    (Interpolation)

  • 8/2/2019 Slide Chpt07 (1)

    23/56

    Finite Element Method by G. R. Liu and S. S. Quek23

    Shape functions construction

    )1)(1(

    )1)(1(

    )1)(1(

    )1)(1(

    4

    14

    4

    13

    4

    12

    4

    11

    N

    N

    NN

    1 13 4at node 11

    113 4at node 2

    1

    113 4at node 31

    11

    3 4at node 4 1

    (1 )(1 ) 0

    (1 )(1 ) 0

    (1 )(1 ) 1

    (1 )(1 ) 0

    N

    N

    N

    N

    Delta function

    property

    4

    1 2 3 4

    1

    14

    14

    [(1 )(1 ) (1 )(1 ) (1 )(1 ) (1 )(1 )]

    [2(1 ) 2(1 )] 1

    i

    i

    N N N N N

    Partition of

    unity

    )1)(1(4

    1 jjjN

    1 (1, 1)(u1, v1)

    2 (1, 1)(u2, v2)

    3 (1, +1)

    (u3, v3)

    2a

    4 (1, +1)(u4, v4)

    2b

  • 8/2/2019 Slide Chpt07 (1)

    24/56

    Finite Element Method by G. R. Liu and S. S. Quek24

    Strain matrix

    abababab

    bbbb

    aaaa

    11111111

    1111

    1111

    0000

    0000

    LNB

    Note: No longer a constant matrix!

  • 8/2/2019 Slide Chpt07 (1)

    25/56

    Finite Element Method by G. R. Liu and S. S. Quek25

    Element matrices

    , byax dxdy = ab dd

    Therefore,

    ddd T1

    1

    1

    1

    TcBBcBBk habAh

    A

    e

    dddddd1

    1

    1

    10

    NNNNNNNNmTT

    A

    T

    A

    hT

    V

    e abhAhAxV

  • 8/2/2019 Slide Chpt07 (1)

    26/56

    Finite Element Method by G. R. Liu and S. S. Quek26

    Element matrices

    lf

    f

    lsy

    sx

    e d][32

    T

    Nf

    x, u

    , v

    1 (x1,y1)

    (u1, v1)

    2 (x2,y2)

    (u2, v2)

    3 (x3,y3)

    (u3, v3)

    2a

    sy

    sx

    4 (x4,y4)

    (u4, v4)

    2b

    For uniformly distributed load,

    0

    0

    0

    0

    y

    x

    y

    x

    e

    f

    f

    f

    f

    bf

  • 8/2/2019 Slide Chpt07 (1)

    27/56

    Finite Element Method by G. R. Liu and S. S. Quek27

    Gauss integration

    For evaluation of integrals in ke and me (in practice)

    In 1 direction: )()d(1

    1

    1 jj

    m

    j

    fwfI

    m gauss points gives exact solution of

    polynomial integrand ofn = 2m - 1

    1 1

    1 11 1

    ( , )d d ( , )yxnn

    i j i j

    i j

    I f ww f

    In 2 directions:

  • 8/2/2019 Slide Chpt07 (1)

    28/56

    Finite Element Method by G. R. Liu and S. S. Quek28

    Gauss integrationm j wj Accuracy n1 0 2 1

    2 -1/3, 1/3 1, 1 3

    3 -0.6, 0, 0.6 5/9, 8/9, 5/9 5

    4 -0.861136, -0.339981,

    0.339981, 0.861136

    0.347855, 0.652145,

    0.652145, 0.347855

    7

    5 -0.906180, -0.538469, 0,

    0.538469, 0.906180

    0.236927, 0.478629,

    0.568889, 0.478629,

    0.236927

    9

    6 -0.932470, -0.661209,

    -0.238619, 0.238619,

    0.661209, 0.932470

    0.171324, 0.360762,

    0.467914, 0.467914,

    0.360762, 0.171324

    11

  • 8/2/2019 Slide Chpt07 (1)

    29/56

    Finite Element Method by G. R. Liu and S. S. Quek29

    Evaluation of me

    404.

    204

    0204

    10204

    010204

    2010204

    02010204

    9

    sy

    habe

    m

  • 8/2/2019 Slide Chpt07 (1)

    30/56

    Finite Element Method by G. R. Liu and S. S. Quek30

    Evaluation of me

    E.g.

    )1)(1(4

    )1)(1()1)(1(

    16

    31

    31

    1

    1

    1

    1

    1

    1

    1

    1

    jiji

    jiji

    jiij

    hab

    ddhab

    ddNNhabm

    94)111)(111(43

    1

    3

    133

    habhab

    m

    Note: In practice, Gauss integration is often used

  • 8/2/2019 Slide Chpt07 (1)

    31/56

    Finite Element Method by G. R. Liu and S. S. Quek31

    LINEAR QUADRILATERAL

    ELEMENTS Rectangular elements have limited application

    Quadrilateral elements with unparallel edges are

    more useful Irregular shape requires coordinate mapping

    before using Gauss integration

  • 8/2/2019 Slide Chpt07 (1)

    32/56

    Finite Element Method by G. R. Liu and S. S. Quek32

    Coordinate mapping

    2 (x2,y2)

    x1 (1, 1) 2 (1, 1)

    3 (1, +1)4 (1, +1)

    3 (x3,y3)4 (x4,y4)

    1 (x1,y1)

    Physical coordinates Natural coordinates

    ( , ) ( , )he

    U N d (Interpolation of displacements)

    ( , ) ( , ) e X N x (Interpolation of coordinates)

  • 8/2/2019 Slide Chpt07 (1)

    33/56

    Finite Element Method by G. R. Liu and S. S. Quek33

    Coordinate mapping

    ( , ) ( , ) e X N x

    wherex

    y

    X ,

    1

    1

    2

    2

    3

    3

    4

    4

    coordinate at node 1

    coordinate at node 2

    coordinate at node 3

    coordinate at node 4

    e

    xy

    x

    y

    x

    y

    x

    y

    x

    )1)(1(

    )1)(1(

    )1)(1(

    )1)(1(

    41

    4

    41

    3

    41

    2

    41

    1

    N

    N

    N

    N

    ii

    i

    xNx ),(4

    1

    ii

    i

    yNy ),(4

    1

  • 8/2/2019 Slide Chpt07 (1)

    34/56

    Finite Element Method by G. R. Liu and S. S. Quek34

    Coordinate mapping

    Substitute 1 into iii

    xNx ),(4

    1

    2 (x2,y2)

    x1 (1, 1) 2 (1, 1)

    3 (1, +1)4 (1, +1)

    3 (x3,y3)4 (x4,y4)

    1 (x1,y1)

    321

    221

    321

    221

    )1()1(

    )1()1(

    yyy

    xxx

    or

    )()(

    )()(

    232

    1322

    1

    232

    1322

    1

    yyyyy

    xxxxx

    Eliminating , )()}({)(

    )(322

    1322

    1

    23

    23 yyxxxyy

    xxy

  • 8/2/2019 Slide Chpt07 (1)

    35/56

    Finite Element Method by G. R. Liu and S. S. Quek35

    Strain matrix

    y

    y

    Nx

    x

    NN

    y

    y

    Nx

    x

    NN

    iii

    iii i i

    ii

    N N

    x

    NN

    y

    Jor

    x y

    x y

    Jwhere (Jacobian matrix)

    1 131 2 4

    2 2

    3 331 2 4

    4 4

    x yNN N N

    x y

    x yNN N N

    x y

    JSince ( , ) ( , ) e X N x ,

  • 8/2/2019 Slide Chpt07 (1)

    36/56

    Finite Element Method by G. R. Liu and S. S. Quek36

    Strain matrix

    1

    ii

    i i

    NN

    x

    N N

    y

    JTherefore,

    NLNB

    xy

    y

    x

    00

    Replace differentials ofNiw.r.t.x andy

    with differentials ofNiw.r.t. and

    (Relationship between differentials of shape

    functions w.r.t. physical coordinates and

    differentials w.r.t. natural coordinates)

  • 8/2/2019 Slide Chpt07 (1)

    37/56

    Finite Element Method by G. R. Liu and S. S. Quek37

    Element matrices

    Murnaghan (1951) : dA=det |J | dd

    1 1T

    1 1 det d de h

    k B cB J

    dddet

    dddd

    1

    1

    1

    1

    0

    JNN

    NNNNNNm

    T

    T

    A

    T

    A

    hT

    V

    e

    h

    AhAxV

  • 8/2/2019 Slide Chpt07 (1)

    38/56

    Finite Element Method by G. R. Liu and S. S. Quek38

    Remarks

    Shape functions used for interpolating the coordinates are

    the same as the shape functions used for interpolation of

    the displacement field. Therefore, the element is called an

    isoparametric element.

    Note that the shape functions for coordinate interpolation

    and displacement interpolation do not have to be the same.

    Using the different shape functions for coordinate

    interpolation and displacement interpolation, respectively,

    will lead to the development of so-called subparametric or

    superparametric elements.

  • 8/2/2019 Slide Chpt07 (1)

    39/56

    Finite Element Method by G. R. Liu and S. S. Quek39

    HIGHER ORDER ELEMENTS

    Higher order triangular elements

    i (I,J,K)

    (p,0,0) (0,p,0)

    (0,0,p)

    (p1,1,0)

    L1

    L3

    L2

    (0,p1,1)

    (0,1,p1)(1,0,p1)

    (2,0,p2)

    nd= (p+1)(p+2)/2

    I J K p Node i,

    Argyris, 1968 :

    1 2 3( ) ( ) ( )I J Ki I J K N l L l L l L

    0 1 ( 1)

    0 1 ( 1)

    ( )( ) ( )( )

    ( )( ) ( )I I I

    L L L L L Ll L

    L L L L L L

  • 8/2/2019 Slide Chpt07 (1)

    40/56

    Finite Element Method by G. R. Liu and S. S. Quek40

    HIGHER ORDER ELEMENTS

    Higher order triangular elements (Contd)

    x, u

    , v

    1

    2

    3

    4

    56

    1 2 2 1 1(2 1)N N N L L

    4 5 6 1 24N N N L L

    x, u

    , v

    1

    2

    3

    45

    6

    78

    9

    10

    1 2 3 1 1 1

    1(3 1)(3 2)

    2N N N L L L

    4 9 1 2 1

    9(3 1)

    2N N L L L

    10 1 2 327N L L L

    Cubic element

    Quadratic element

  • 8/2/2019 Slide Chpt07 (1)

    41/56

    Finite Element Method by G. R. Liu and S. S. Quek41

    HIGHER ORDER ELEMENTS

    Higher order rectangular elements

    (0,0)

    0

    (n,0)

    0,m (n,m)

    i n,m

    Lagrange type:

    1 1( ) ( )

    D D n m

    i I J I J N N N l l

    0 1 1 1

    0 1 1 1

    ( )( ) ( )( ) ( )( )

    ( )( ) ( )( ) ( )

    n k k nk

    k k k k k k k n

    l

    [Zienkiewicz et al., 2000]

  • 8/2/2019 Slide Chpt07 (1)

    42/56

    Finite Element Method by G. R. Liu and S. S. Quek42

    HIGHER ORDER ELEMENTS

    Higher order rectangular elements (Contd)

    1 2

    34

    5

    6

    7

    8 9

    1 1

    1 1 1

    1 1

    2 2 1

    1 1

    3 2 2

    1 1

    4 1 2

    1( ) ( ) (1 ) (1 )

    41

    ( ) ( ) (1 ) (1 )4

    1( ) ( ) (1 )(1 )

    4

    1

    ( ) ( ) (1 )(1 )4

    D D

    D D

    D D

    D D

    N N N

    N N N

    N N N

    N N N

    1 1

    5 3 1

    1 1

    6 2 3

    1 17 3 2

    1 1

    8 1 1

    1 1 2 2

    9 3 3

    1( ) ( ) (1 )(1 )(1 )

    2

    1( ) ( ) (1 )(1 )(1 )

    2

    1( ) ( ) (1 )(1 )(1 )2

    1( ) ( ) (1 )(1 )

    2

    ( ) ( ) (1 )(1 )

    D D

    D D

    D D

    D D

    D D

    N N N

    N N N

    N N N

    N N N

    N N N

    (nine node quadratic element)

  • 8/2/2019 Slide Chpt07 (1)

    43/56

    Finite Element Method by G. R. Liu and S. S. Quek43

    HIGHER ORDER ELEMENTS

    Higher order rectangular elements (Contd)

    Serendipity type:

    1 2

    34

    5

    6

    7

    8 0

    =1

    =1

    14

    212

    212

    (1 )(1 )( 1) 1, 2, 3, 4

    (1 )(1 ) 5, 7

    (1 )(1 ) 6,8

    j j j j j

    j j

    j j

    N j

    N j

    N j

    (eight node quadratic element)

  • 8/2/2019 Slide Chpt07 (1)

    44/56

    Finite Element Method by G. R. Liu and S. S. Quek44

    HIGHER ORDER ELEMENTS

    Higher order rectangular elements (Contd)

    1 2

    34

    5 6

    7

    8

    910

    11

    12

    2 21

    32

    29

    32

    13

    29

    32

    (1 )(1 )(9 9 10)

    for corner nodes 1, 2, 3, 4

    (1 )(1 )(1 9 )

    for side nodes 7, 8, 11, 12 where 1 and

    (1 )(1 )(1

    j j j

    j j j

    j j

    j j

    N

    j

    N

    j

    N

    13

    9 )

    for side nodes 5, 6, 9, 10 where and 1

    j

    j jj

    (twelve node cubic element)

  • 8/2/2019 Slide Chpt07 (1)

    45/56

    Finite Element Method by G. R. Liu and S. S. Quek45

    ELEMENT WITH CURVED

    EDGES

    4

    2

    3

    8

    1

    5

    7

    6

    1

    4 2

    5

    3

    6

    1

    2

    3

    4

    56

    1 2

    34

    5

    6

    7

    8

  • 8/2/2019 Slide Chpt07 (1)

    46/56

    Finite Element Method by G. R. Liu and S. S. Quek46

    COMMENTS (GAUSS

    INTEGRATION) When the Gauss integration scheme is used, one has to

    decide how many Gauss points should be used.

    Theoretically, for a one-dimensional integral, using m

    points can give the exact solution for the integral of a

    polynomial integrand of up to an order of (2m1).

    As a general rule of thumb, more points should be used for

    a higher order of elements.

  • 8/2/2019 Slide Chpt07 (1)

    47/56

    Finite Element Method by G. R. Liu and S. S. Quek47

    COMMENTS (GAUSS

    INTEGRATION) Using a smaller number of Gauss points tends to

    counteract the over-stiff behaviour associated with thedisplacement-based method.

    Displacement in an element is assumed using shapefunctions. This implies that the deformation of the elementis somehow prescribed in a fashion of the shape function.This prescription gives a constraint to the element. The so-constrained element behaves stiffer than it should. It is

    often observed that higher order elements are usually softerthan lower order ones. This is because using higher orderelements gives fewer constraint to the elements.

  • 8/2/2019 Slide Chpt07 (1)

    48/56

    Finite Element Method by G. R. Liu and S. S. Quek48

    COMMENTS ON GAUSSINTEGRATION

    Two Gauss points for linear elements, and two or three

    points for quadratic elements in each direction should be

    sufficient for most cases.

    Most of the explicit FEM codes based on explicitformulation tend to use one-point integration to achieve the

    best performance in saving CPU time.

  • 8/2/2019 Slide Chpt07 (1)

    49/56

    Finite Element Method by G. R. Liu and S. S. Quek49

    CASE STUDY

    Side drive micro-motor

  • 8/2/2019 Slide Chpt07 (1)

    50/56

    Finite Element Method by G. R. Liu and S. S. Quek50

    CASE STUDY

    Elastic Properties of Polysilicon

    Youngs Modulus, E 169GPa

    Poissons ratio, 0.262

    Density, 2300kgm-3

    10N/m

    10N/m

    10N/m

  • 8/2/2019 Slide Chpt07 (1)

    51/56

    Finite Element Method by G. R. Liu and S. S. Quek51

    CASE STUDY

    Analysis no. 1: Von Mises stress

    distribution using 24 bilinear

    quadrilateral elements (41 nodes)

  • 8/2/2019 Slide Chpt07 (1)

    52/56

    Finite Element Method by G. R. Liu and S. S. Quek52

    CASE STUDY

    Analysis no. 2: Von Mises stress

    distribution using 96 bilinear

    quadrilateral elements (129 nodes)

  • 8/2/2019 Slide Chpt07 (1)

    53/56

    Finite Element Method by G. R. Liu and S. S. Quek53

    CASE STUDY

    Analysis no. 3: Von Mises stress

    distribution using 144 bilinear

    quadrilateral elements (185 nodes)

  • 8/2/2019 Slide Chpt07 (1)

    54/56

    Finite Element Method by G. R. Liu and S. S. Quek54

    CASE STUDY

    Analysis no. 4: Von Mises stress

    distribution using 24 eight-nodal,

    quadratic elements (105 nodes)

  • 8/2/2019 Slide Chpt07 (1)

    55/56

    Finite Element Method by G. R. Liu and S. S. Quek55

    CASE STUDY

    Analysis no. 5: Von Mises stress

    distribution using 192 three-nodal,

    triangular elements (129 nodes)

  • 8/2/2019 Slide Chpt07 (1)

    56/56

    CASE STUDYAnalysis

    no.

    Number / type of

    elements

    Total number

    of nodes inmodel

    Maximum

    Von MisesStress (GPa)

    124 bilinear,

    quadrilateral41 0.0139

    2 96 bilinear,quadrilateral

    129 0.0180

    3144 bilinear,

    quadrilateral185 0.0197

    424 quadratic,

    quadrilateral105 0.0191

    5 192 linear,

    triangular129 0.0167