slac, december 9, 2009

28
SLAC, December 9, 2009 Schematic of an MCP detector Charge cloud Charge distribution on strips MCP Pair Detector configuration Detector configuration • Photon/ion/atom/neutron counting • XY coordinates (<20 µm ) and timing (<130 ps) information for each registered particle • Selective detection of ions, electrons, photons • Count rate ~MHz with 10% dead time •No dark/readout noise!

Upload: others

Post on 05-Nov-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: SLAC, December 9, 2009

SLAC, December 9, 2009

Schematic of an MCP detector

Charge cloudCharge distribution on strips

MCP Pair

Detector configurationDetector configuration

• Photon/ion/atom/neutron counting

• XY coordinates (<20 µm ) and timing (<130 ps) information for each registered particle

• Selective detection of ions, electrons, photons

• Count rate ~MHz with 10% dead time

•No dark/readout noise!

Page 2: SLAC, December 9, 2009

SLAC, December 9, 2009

Detector hardware implementationsDetector hardware implementations

Page 3: SLAC, December 9, 2009

SLAC, December 9, 2009

Experimental setupExperimental setup

Synchrotron generated photon pulses

~ 70 ps wide, 2 ns apart

2D Imaging +time for each

detected photon

Scattered photons

Thin film samples

A. S. Tremsin, et al., Nucl. Instr. Meth. A 580 (2007) 853.

A. S. Tremsin, et al., IEEE Trans. Nucl .Sci. 54 (2007) 706.

Page 4: SLAC, December 9, 2009

SLAC, December 9, 2009

Timing resolutionTiming resolution

Elastically scattered photons

0

50

100

150

200

250

300

0 2 4 6 8 10

Time delay (ns)

Cou

nts

0

1000

2000

3000

4000

5000

6000

7000

8000

0.7 0.8 0.9 1 1.1 1.2 1.3

Time (ns)

Phot

on c

ount

s

MeasuredGaussian fit55 ps RMS

Timing accuracy 55 ps RMS (130 FWHM)

A. S. Tremsin, et al., Nucl. Instr. Meth. A 580 (2007) 853.

A. S. Tremsin, et al., IEEE Trans. Nucl .Sci. 54 (2007) 706.

Page 5: SLAC, December 9, 2009

SLAC, December 9, 2009

Time histograms for different filmsTime histograms for different films

Both elastic and inelastic scattering are present

Only elastic scattering

1

10

100

1000

10000

1 2 3 4 5

Time delay (ns)

Cou

nts

HOPG

Nex synchrotron pulse (very weak)

1

10

100

1000

10000

100000

1 2 3 4 5

Time delay (ns)

Cou

nts

BN

Nex synchrotron pulse (very weak)

A. S. Tremsin, et al., IEEE Trans. Nucl .Sci. 54 (2007) 706.

Page 6: SLAC, December 9, 2009

SLAC, December 9, 2009

Time histograms & images: photons vs. electrons

Time histograms & images: photons vs. electrons

0

500

1000

1500

2000

2500

50 70 90 110 130 150 170 190

Time delay (ns)

Cou

nts

I

II

III

IV

Time window selected for only electron detection

Photons detected, electrons repelled by input mesh

1

10

100

1000

10000

100000

-10 10 30 50 70 90

Time (ns)

Coun

ts

Photons detected

A. S. Tremsin, et al., Nucl. Instr. Meth. A 580 (2007) 853.

Page 7: SLAC, December 9, 2009

SLAC, December 9, 2009

Images: electrons from different peaksImages: electrons from different peaks

Only region I

Only region II

Only region III

Entire histogram

0

500

1000

1500

2000

2500

50 70 90 110 130 150 170 190

Time delay (ns)

Coun

ts

I

II

III

IV

A. S. Tremsin, et al., Nucl. Instr. Meth. A 580 (2007) 853.

Page 8: SLAC, December 9, 2009

SLAC, December 9, 2009

Synchrotron bunch diffusionSynchrotron bunch diffusion

Bunch population after injection

Diffusion of electrons between the adjacent bunches can be studied with the detection system

Bunch population ~76 min later

W. E. Byrne, C.-W. Chiu, J. Guo, F. Sannibale, J.S. Hull, O.H.W. Siegmund, A. S. Tremsin , J.V. VallergaProceedings EPAC’06, Edinburgh, June 2006

Page 9: SLAC, December 9, 2009

SLAC, December 9, 2009

Linearity of measured timingLinearity of measured timing

Measured timing histogram of electron pulses separated by 10 ns.

0

2

4

6

8

10

12

0 50 100 150 200

Event time (ns)

Mea

sure

d de

lay

betw

een

cons

ecut

ive

puls

e (n

s)

0

500

1000

1500

2000

2500

3000

0 50 100 150 200

Event time (ns)

Num

ber o

f cou

nts

A. S. Tremsin, et al., Nucl. Instr. Meth. A 582 (2007) 168.

Page 10: SLAC, December 9, 2009

SLAC, December 9, 2009

Spatial resolution: photons and electrons Spatial resolution: photons and electrons

0

20

40

60

80

100

120

140

0 1 2 3 4

Position along cut (mm)

Num

ber

of d

etet

ed e

lect

rons

Phothon imageFull field illumination

25 mm active areaMesh with 250 µm rectangular cells

Electrons imaged25 µm wires on 250 µm grid resolved

Cross section of electron image25 µm wires are resolved

A. S. Tremsin, et al., Nucl. Instr. Meth. A 582 (2007) 168.

Page 11: SLAC, December 9, 2009

SLAC, December 9, 2009

Spatial resolution of MCP detectorsSpatial resolution of MCP detectors

•XDL readout•Very linear images•Resolutions ~25µm FWHM•Large Formats (10cm x 10cm)•Event rates ~0.5 MHz

•XS readout•Very high resolution ~12 µm FWHM @ <100 kHz~20 µm FWHM @ few MHz •CMOS readout

•Resolution ~55µm FWHM•Very high event rates >1 GHz

Page 12: SLAC, December 9, 2009

SLAC, December 9, 2009

MCP thermal runawayMCP thermal runaway

Stable operation when

A.S. Tremsin et al., Proc. SPIE 2808 (1996) pp.86-97.A.S. Tremsin et al., Nucl. Instr.Meth. 379 (1996) pp.139-151.

Page 13: SLAC, December 9, 2009

SLAC, December 9, 2009

Thermal Stability of MCPsThermal Stability of MCPs

A.S. Tremsin et al., Rev. Sci. Instr. 75 (2004) pp.1068-1072

Page 14: SLAC, December 9, 2009

SLAC, December 9, 2009

Count rate limitation per illuminated areaCount rate limitation per illuminated area

Count rate limitation is dependent on the area illuminated: larger area can sustain less counts per pore!

100101.1.010.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

25µm50µm75µm

800µm530µm350µm

Rate (Events/pore/sec)

Rel

ativ

e G

ain

R = 600 MΩ/cm2, initial gain ≈1 x 107.

O.H.W. Siegmund and Joseph M. Stock, Proc. SPIE 1549, 81 (1991)

Gain drop as a function of event rate for six different sized holes illuminated with 2537Å light. 60mm MCP Z stack.

R = 120 MΩ/cm2, initial gain ≈3 x 106.

Page 15: SLAC, December 9, 2009

SLAC, December 9, 2009

MCP gain reduction effect: ageing under irradiationMCP gain reduction effect: ageing under irradiation

Uniform flat fieldimage

Long integration imageGain~105

Rate >10 MHz/cm2

Accumulated dose~0.01 C/cm2

Almost uniform flat field illumination

Normalized by initialflat field

No preconditioning of the detector was performed

Page 16: SLAC, December 9, 2009

SLAC, December 9, 2009

MCP gain reduction effect: ageing under irradiationMCP gain reduction effect: ageing under irradiation

14 mm

Uniform flat fieldimage (neutrons)

Resolution mask imageGain~105

Rate ~ 3 MHz/cm2

Accumulated dose~0.001 C/cm2

Almost uniform flat field illuminaiton

UV photons

No preconditioning of the detector was performed

Preconditioning is required for stable gain operation!

It is always done during standard tube manufacturing process.

Page 17: SLAC, December 9, 2009

SLAC, December 9, 2009

Optimization of counting rateOptimization of counting rate

Enabled events

Gate

Arriving photons

(one axis)

Only portion of image is enabled. The rest of events are ignored.

1

10

100

1000

10000

100000

-10 0 10 20 30 40 50 60

Time (ns)

Cou

nts

Prompt photons from the beam

Signal of interest(only 5% of all events)

Timing histogram of detected photons. Secondary peak (~50 ns delayed) seen. A. S. Tremsin, et al., Nucl. Instr. Meth. A 582 (2007) 168.

Page 18: SLAC, December 9, 2009

SLAC, December 9, 2009

Bioimaging applications (FRET, FLIM, etc)Bioimaging applications (FRET, FLIM, etc)

Page 19: SLAC, December 9, 2009

SLAC, December 9, 2009

Astrophysics and Earth observing missionsAstrophysics and Earth observing missions

ImageWIC1

Page 20: SLAC, December 9, 2009

SLAC, December 9, 2009

Other applications: neutron imagingOther applications: neutron imaging

In collaboration with Nova Scientific, Inc. Sturbridge, MA,In collaboration with Nova Scientific, Inc. Sturbridge, MA,

Page 21: SLAC, December 9, 2009

SLAC, December 9, 2009

Other applications: strain mappingOther applications: strain mapping

1

23

4

14 mm

0

100

200

300

400

500

600

700

800

900

-1500 -1000 -500 0 500 1000 1500

Strain values (µε)

Coun

ts

NoLoad

0

50

100

150

200

250

300

-1500 -1000 -500 0 500 1000 1500

Strain values (µε)Co

unts

Load3

In collaboration with Nova Scientific, Inc. Sturbridge, MA,In collaboration with Nova Scientific, Inc. Sturbridge, MA,

Page 22: SLAC, December 9, 2009

SLAC, December 9, 2009

Other applications: magnetic field imagingOther applications: magnetic field imaging

N. Kardjilov et al., Nature Phys. 4 (2008) 399–403

Magnetic field produced by 3 kHz AC current in a coil imaged

In collaboration with Nova Scientific, Inc. Sturbridge, MA,In collaboration with Nova Scientific, Inc. Sturbridge, MA,

Page 23: SLAC, December 9, 2009

SLAC, December 9, 2009

Possible MCP improvementsPossible MCP improvements

•Novel MCP substrates (micromachined)

•Increased lifetime

•Engineered conduction and emission layers

•Controlled saturation and resistance profile (higher dynamic range by offset of saturation to higher input currents)

•Better uniformity / spatial resolution

•Novel photocathode materials / opaque mode / photocathode

•Withstand much higher processing temperature

•Very Low noise

Page 24: SLAC, December 9, 2009

SLAC, December 9, 2009

Silicon MCP GeometrySilicon MCP Geometry

Top view of a hexagonal pore MCP with ~7µm pores showing >75% open area

Square pore MCP 2 kx 6 µm

Page 25: SLAC, December 9, 2009

SLAC, December 9, 2009

Diamond photocathode on Si MCPDiamond photocathode on Si MCP

Small grain polycrystalline diamond photocathode

Larger grain diamond photocathode

Page 26: SLAC, December 9, 2009

SLAC, December 9, 2009

MCPs with nano-engineered filmsMCPsMCPs with with nanonano--engineered filmsengineered films

100

1000

10000

100000

0.001 0.01 0.1 1

Iout (pA/pore)

Gai

n

880 V new880 V treated1000V new1000 V treated

Applied over commercial glass MCPs:50:1 L/D, 4.8 µm pores, ~250 MΩ resistance

5x-10x gain increase

Photograph of the phosphor screen.Full field illumination image.

MCP is irradiated by a uniform electron flux.

Arradiance, Inc, Sudbury, MAD. R. Beaulieu, et al., Nucl. Instr. Meth. A 607 (2009) 81.

Page 27: SLAC, December 9, 2009

SLAC, December 9, 2009

Nano-engineered conduction and emission films

Nano-engineered conduction and emission films

Stable resistanceTypical exponential gain increase with biasGood gain ~ 40000 at 1000V biasGood TCR (comparable to glass MCP values)

10 µm pore NO LEAD glass substrate, 40:1 L/D, R~280 MΩ,gain under electron bombardment

10

100

1000

10000

100000

1000000

500 600 700 800 900 1000

MCP bias (V)

Gai

n

0

50

100

150

200

250

300

350

R (M

Ω)

GainResistance

100

1000

10000

0.001 0.01 0.1 1Iout (pA/pore)

Gai

n

800V

700V

Arradiance, Inc, Sudbury, MAD. R. Beaulieu, et al., Nucl. Instr. Meth. A 607 (2009) 81.

Page 28: SLAC, December 9, 2009

SLAC, December 9, 2009

MCP performance tied to glass composition

ALD:Device optimization is de-coupled from substrate. Semiconductor processes & process control.Materials engineering at the nanoscaleFunctional films composed of abundant,non-toxic materials.Advantages:

– High conformality (>500:1)– Scalable to large areas – Digital thickness control– Pure films– Control over film composition– Low deposition temperatures (50-300°C)

Thin film growth that relies on self-limiting surface reactionsGas A reacts with a surface

– excess precursor & reaction by-product removed.

Gas B is introduced to the evacuated chamber – reacts with surface bound A

– excess precursor & reaction by-product removed.

Repetition of A – B pulse sequence to build film layer-by-layer

ALD MCP TechnologyALD MCP TechnologyVapor inlets

Depositionregion

Alternating layers

A

B

Arradiance, Inc, Sudbury, MA