slab reinforcement

10
Slab reinforcement 0.Initital data Dimensions n 8 := L 1 4.3m 0.1 m n + 5.1m = := L 2 6.4m 0.05 m n - 6m = := T 1 4m 0.05m n + 4.4m = := T 2 6.7m 0.1m n - 5.9m = := slab thickness t 13cm := 1.Loads Permanent load g t 25 kN m 3 3.25 kN m 2 = := Live load p 1.3 kN m 2 0.1n kN m 2 + 2.1 kN m 2 = := Total load F 1.35g 1.5p + ( )1m 7.537 kN m = := 2.Moments on each type of panel 2.1. Panel with 2 adiacent simple supported contour lines long- L .1 short- T .1 L 1 T 1 1.159 = Negative moment on fixed contour lines β sx1 0.0665 := β sy1 0.045 := M Rx.1 β sx1 F T 1 2 9.704 kN m = := M Ry.1 β sy1 F T 1 2 6.567 kN m = := Positive moment at the middle-span β sx1 0.0495 :=

Upload: abacus

Post on 20-Dec-2015

4 views

Category:

Documents


0 download

DESCRIPTION

Reinforced Concrete Slab Reinforcing Steps. Coefficients Method

TRANSCRIPT

Page 1: Slab Reinforcement

Slab reinforcement

0.Initital data

Dimensions

n 8:=

L1 4.3m 0.1 m⋅ n⋅+ 5.1m=:=

L2 6.4m 0.05 m⋅ n⋅− 6m=:=

T1 4m 0.05m n⋅+ 4.4m=:=

T2 6.7m 0.1m n⋅− 5.9m=:=

slab thickness

t 13cm:=

1.Loads

Permanent load

g t 25⋅kN

m3

3.25kN

m2

⋅=:=

Live load

p 1.3kN

m2

0.1nkN

m2

+ 2.1kN

m2

⋅=:=

Total load

F 1.35g 1.5p+( )1m 7.537kN

m⋅=:=

2.Moments on each type of panel

2.1. Panel with 2 adiacent simple supported contour lines

long- L.1short- T.1

L1

T1

1.159=

Negative moment on fixed contour lines

βsx1 0.0665:=

βsy1 0.045:=

MRx.1 βsx1 F⋅ T12

⋅ 9.704 kN m⋅⋅=:=

MRy.1 βsy1 F⋅ T12

⋅ 6.567 kN m⋅⋅=:=

Positive moment at the middle-span

βsx1 0.0495:=

Page 2: Slab Reinforcement

βsy1 0.034:=

MCx.1 βsx1 F⋅ T12

⋅ 7.223 kN m⋅⋅=:=

MCy.1 βsy1 F⋅ T12

⋅ 4.961 kN m⋅⋅=:=

2.2. Panel with a higher contour line simple supported

long- T2

short- L.1

T2

L1

1.157=

Negative moment on fixed contour lines

βsx2 0.053:=

βsy2 0.037:=

MRx.2 βsx2 F⋅ L12

⋅ 10.391 kN m⋅⋅=:=

MRy.2 βsy2 F⋅ L12

⋅ 7.254 kN m⋅⋅=:=

Positive moment at the middle-span

βsx2 0.0395:=

βsy2 0.028:=

MCx.2 βsx2 F⋅ L12

⋅ 7.744 kN m⋅⋅=:=

MCy.2 βsy2 F⋅ L12

⋅ 5.489 kN m⋅⋅=:=

2.3. Panel with a higher contour line simple supported(2)

long- L2

short- T.1

L2

T1

1.364=

Negative moment on fixed contour lines

βsx3 0.06:=

βsy3 0.037:=

MRx.3 βsx3 F⋅ T12

⋅ 8.756 kN m⋅⋅=:=

MRy.3 βsy3 F⋅ T12

⋅ 5.399 kN m⋅⋅=:=

Positive moment at the middle-span

βsx3 0.0495:=

βsy3 0.028:=

Page 3: Slab Reinforcement

MCx.3 βsx3 F⋅ T12

⋅ 7.223 kN m⋅⋅=:=

MCy.3 βsy3 F⋅ T12

⋅ 4.086 kN m⋅⋅=:=

2.4. Panel with all contour lines fixed

long- L2

short- T.2

L2

T2

1.017=

Negative moment on fixed contour lines

βsx4 0.031:=

βsy4 0.032:=

MRx.4 βsx4 F⋅ T22

⋅ 8.134 kN m⋅⋅=:=

MRy.4 βsy4 F⋅ T22

⋅ 8.396 kN m⋅⋅=:=

Positive moment at the middle-span

βsx4 0.024:=

βsy4 0.024:=

MCx.4 βsx4 F⋅ T22

⋅ 6.297 kN m⋅⋅=:=

MCy.4 βsy4 F⋅ T22

⋅ 6.297 kN m⋅⋅=:=

2.5. Panel with a higher contour line simple supported(3)

long- L1

short- T.1

L1

T1

1.159=

Negative moment on fixed contour lines

βsx5 0.053:=

βsy5 0.037:=

MRx.5 βsx5 F⋅ T12

⋅ 7.734 kN m⋅⋅=:=

MRy.5 βsy5 F⋅ T12

⋅ 5.399 kN m⋅⋅=:=

Positive moment at the middle-span

βsx5 0.039:=

βsy5 0.028:=

MCx.5 βsx5 F⋅ T12

⋅ 5.691 kN m⋅⋅=:=

Page 4: Slab Reinforcement

MCy.5 βsy5 F⋅ T12

⋅ 4.086 kN m⋅⋅=:=

2.6. Panel with all contour lines fixed(2)

long- T2

short- L.1

T2

L1

1.157=

Negative moment on fixed contour lines

βsx6 0.0395:=

βsy6 0.032:=

MRx.6 βsx6 F⋅ L12

⋅ 7.744 kN m⋅⋅=:=

MRy.6 βsy6 F⋅ L12

⋅ 6.274 kN m⋅⋅=:=

Positive moment at the middle-span

βsx6 0.03:=

βsy6 0.024:=

MCx.6 βsx6 F⋅ L12

⋅ 5.882 kN m⋅⋅=:=

MCy.6 βsy6 F⋅ L12

⋅ 4.705 kN m⋅⋅=:=

3. Moment equilibration

3.1 Contour moment equilibration:

- on y direction:

from panel 1 (L.1/T.1) to panel 2 (L.1/T.2)

M12

MRy.1 MRy.2+

26.91 kN m⋅⋅=:=

from panel 3 (L.2/T.1) to panel 4 (L.2/T.2)

M34

MRy.3 MRy.4+

26.898 kN m⋅⋅=:=

from panel 5 (L.1/T.1) to panel 6 L.1/T.2)

M56

MRy.5 MRy.6+

25.836 kN m⋅⋅=:=

- on x direction:

from panel 1 (L.1/T.1) to panel 3 (L.2/T.1)

M13

MRx.1 MRx.3+

29.23 kN m⋅⋅=:=

from panel 2 (L.1/T.2) to panel 4 (L.2/T.2)

Page 5: Slab Reinforcement

M24

MRx.2 MRx.4+

29.262 kN m⋅⋅=:=

from panel 3 (L.2/T.1) to panel 5 (L.1/T.1)

M35

MRx.3 MRx.5+

28.245 kN m⋅⋅=:=

from panel 4 (L.2/T.2) to panel 6 L.1/T.2)

M46

MRx.4 MRx.6+

27.939 kN m⋅⋅=:=

3.2 Central moment equilibration:

for interior panels,equilibration is made from both senses.

-on y:

Section 1 (panels 1-2-1)

panel 1

MCy1 MCy.1 M12− MRy.1+ 4.618 kN m⋅⋅=:=

panel 2(interior panel)

MCy2 MCy.2 2M12− 2MRy.2+ 6.177 kN m⋅⋅=:=

Section 2 (panels 3-4-3)

panel 3

MCy3 MCy.3 M34− MRy.3+ 2.587 kN m⋅⋅=:=

panel 4(interior panel)

MCy4 MCy.4 2M34− 2MRy.4+ 9.294 kN m⋅⋅=:=

Section 3 (panels 5-6-5)

panel 5

MCy5 MCy.5 M56− MRy.5+ 3.649 kN m⋅⋅=:=

panel 6(interior panel)

MCy6 MCy.6 2M56− 2MRy.6+ 5.58 kN m⋅⋅=:=

Verifications :

Section 1 (panels 1-2-1)

MCy.1 MRy.1+ MRy.2+ MCy.2+ MCy.1 MRy.1+ MRy.2+( )+ 43.053 kN m⋅⋅=

MCy1 M12+ M12+ MCy2+ MCy1 M12+ M12+( )+ 43.053 kN m⋅⋅=

Section 2 (panels 3-4-3)

MCy.3 MRy.3+ MRy.4+ MCy.4+ MCy.3 MRy.3+ MRy.4+( )+ 42.06 kN m⋅⋅=

MCy3 M34+ M34+ MCy4+ MCy3 M34+ M34+( )+ 42.06 kN m⋅⋅=

Section 3 (panels 4-5-4)

MCy.5 MRy.5+ MRy.6+ MCy.6+ MCy.5 MRy.5+ MRy.6+( )+ 36.223 kN m⋅⋅=

MCy5 M56+ M56+ MCy6+ MCy5 M56+ M56+( )+ 36.223 kN m⋅⋅=

Page 6: Slab Reinforcement

-on x:

Section 1 (panels 1-3-5-3-1)

panel 1

MCx1 MCx.1 M13− MRx.1+ 7.698 kN m⋅⋅=:=

panel 3 (interior panel)

MCx3 MCx.3 M13− MRx.3+ M35+ MRx.5− 7.26 kN m⋅⋅=:=

panel 5 (interior panel)

MCx5 MCx.5 2M35− 2MRx.5+ 4.67 kN m⋅⋅=:=

Section 2 (panels 2-4-6-4-2)

panel 2

MCx2 MCx.2 M24− MRx.2+ 8.872 kN m⋅⋅=:=

panel 4(interior panel)

MCx4 MCx.4 M24− MRx.4+ M46 MRx.6−+ 5.364 kN m⋅⋅=:=

panel 6(interior panel)

MCx6 MCx.6 2M46− 2MRx.6+ 5.492 kN m⋅⋅=:=

Section 1 (panels 1-3-5-3-1)

2 MCx.1 MRx.1+ MRx.3+ MCx.3+ MRx.3+( ) MRx.5+ MCx.5+ MRx.5+ 104.483 kN m⋅⋅=

2 MCx1 M13+ M13+ MCx3+ M35+( ) M35+ MCx5+ M35+ 104.483 kN m⋅⋅=

Section 2 (panels 2-4-6-4-2)

2 MCx.2 MRx.2+ MRx.4+ MCx.4+ MRx.4+( ) MRx.6+ MCx.6+ MRx.6+ 102.768 kN m⋅⋅=

2 MCx2 M24+ M24+ MCx4+ M46+( ) M46+ MCx6+ M46+ 102.768 kN m⋅⋅=

So, after equilibration we have:

on y:

Section 1(1-2-1) Section 2(3-4-3) Section 1(5-6-5)

MCy1 4.618 kN m⋅⋅= MCy3 2.587 kN m⋅⋅= MCy5 3.649 kN m⋅⋅=

M12 6.91 kN m⋅⋅= M34 6.898 kN m⋅⋅= M56 5.836 kN m⋅⋅=

MCy2 6.177 kN m⋅⋅= MCy4 9.294 kN m⋅⋅= MCy6 5.58 kN m⋅⋅=

M12 6.91 kN m⋅⋅= M34 6.898 kN m⋅⋅= M56 5.836 kN m⋅⋅=

MCy1 4.618 kN m⋅⋅= MCy3 2.587 kN m⋅⋅= MCy5 3.649 kN m⋅⋅=

on x:

Section 1 (1-3-5-3-1) Section 2 (2-4-6-4-2)

MCx1 7.698 kN m⋅⋅= MCx2 8.872 kN m⋅⋅=

M13 9.23 kN m⋅⋅= M24 9.262 kN m⋅⋅=

Page 7: Slab Reinforcement

MCx3 7.26 kN m⋅⋅= MCx4 5.364 kN m⋅⋅=

M35 8.245 kN m⋅⋅= M46 7.939 kN m⋅⋅=

MCx5 4.67 kN m⋅⋅= MCx6 5.492 kN m⋅⋅=

M35 8.245 kN m⋅⋅= M46 7.939 kN m⋅⋅=

MCx3 7.26 kN m⋅⋅= MCx4 5.364 kN m⋅⋅=

M13 9.23 kN m⋅⋅= M24 9.262 kN m⋅⋅=

MCx1 7.698 kN m⋅⋅= MCx2 8.872 kN m⋅⋅=

4. Reinforcements

4.1 Initital data

Choose C25/30 XC1 and S500 and on both direction we'll use:

ϕ 8mm:=

Resistances

fcd 16.67N

mm2

:=

fyd 435N

mm2

:=

Coverings :

For XC1:

cmin 15mm:=

cnom cmin 15 mm⋅=:=

Design height

dx t cnom−ϕ

2− 0.111m=:=

dy t cnom− ϕ−ϕ

2− 0.103m=:=

The reinforcement is computed on strips of 1m.

b 1m:=

The supporting resistance structure is considered of confined masonry having

the thickness 0.3m.The columns cross section have the dimension 0.3m x 0.3m.

4.2 Inferior reinforcement(in the field)

Note. For the greater moment we put the reinforcement down and for the lower

moment above the other one.Maximum distance between reinforcements is

0.3-0.4m.

All the central moments have values below 10kNm and they are close to each other.

So, we will find the reinforcement for maximum central moment on each

direction.The obtained reinforcement will be used in all panels.

( )

Page 8: Slab Reinforcement

MCymax max MCy1 MCy2, MCy3, MCy4, MCy5, MCy6, ( ) 9.294 kN m⋅⋅=:=

MCxmax max MCx1 MCx2, MCx3, MCx4, MCx5, MCx6, ( ) 8.872 kN m⋅⋅=:=

µy

MCymax

b dy2

⋅ fcd⋅

0.053=:=

ωy 0.0545:=

Ay ωy b⋅ dy⋅fcd

fyd

⋅ 2.151 cm2

⋅=:=

Choose 5ϕ8 over 1m. So the distances between them will be 0.2m .

As.eff 2.51cm2

:=

µx

MCxmax

b dx2

⋅ fcd⋅

0.043=:=

ωx 0.0438:=

Ax ωx b⋅ dx⋅fcd

fyd

⋅ 1.863 cm2

⋅=:=

Choose 5ϕ8 over 1m. So the distances between them will be 0.2m .

As.eff 2.51cm2

:=

4.3 Superior reinforcements(in the supports)

In the same manner,we will find the reinforcement for maximum support moment

on each direction

MCymax max M12 M34, M56, ( ) 6.91 kN m⋅⋅=:=

MCxmax max M13 M24, M35, M46, ( ) 9.262 kN m⋅⋅=:=

µy

MCymax

b dy2

⋅ fcd⋅

0.039=:=

ωy 0.0398:=

Ay ωy b⋅ dy⋅fcd

fyd

⋅ 1.571 cm2

⋅=:=

Because hf<30cm,maximum distance between reinforcements is 0.2m.

Choose 5ϕ8 over 1m. So the distances between them will be 0.2m .

As.eff 2.51cm2

:=

µx

MCxmax

b dx2

⋅ fcd⋅

0.045=:=

ωx 0.0461:=

Page 9: Slab Reinforcement

Ax ωx b⋅ dx⋅fcd

fyd

⋅ 1.961 cm2

⋅=:=

Choose 5ϕ8 over 1m. So the distances between them will be 0.2m .

As.eff 2.51cm2

:=

Besides inferior and superior reinforcement we will have repartition reinforcement of ϕ6/25 on

both directions.

4.4 Anchorage length

for C25/30 we have:

fbd 2.7N

mm2

:=

lbrqd 0.25 ϕ⋅fyd

fbd

⋅ 0.322m=:=

α1 1:=

α2 1 0.15cnom ϕ−( )

ϕ− 0.869=:=

take

α2 0.7:=

α3 1:=

α4 0.7:=

α5 1:=

lbd α1 α2⋅ α3⋅ α4⋅ α5⋅ lbrqd⋅ 0.158m=:=

Take

lbd 16cm:=

4.5 Elevation lengths over supports

Elevation lenths is given by the smallest distance(on x or y) from one wall face to the next

divided with 5 .

The ends bend at t - 2 x cnom = 10cm

Panels 1,3,5

ln1 T1 0.15m− 0.15m− 4.1m=:=

ln1

50.82m=

Panels 2,6

ln2 L1 0.15m− 0.15m− 4.8m=:=

ln2

50.96m=

Panel 4

ln3 T2 0.15m− 0.15m− 5.6m=:=

Page 10: Slab Reinforcement

ln3

51.12m=