skema kertas 3 2015 ppt

6
SPM Fizik Tingkatan 4,5 - ppt form 5 2015 kertas 3 Kertas 3 1 . (a) A heavy load is harder to move and also harder to stop. [1 m] (b) The bigger the mass of the load is, the bigger the inertia will be. [1 m] (c) (i) To investigate the relationship between mass and inertia. [1 m] (ii) Manipulated variable: The mass of the load [1 m] Responding variable: The inertia (defined operationally by the period of oscillation of the saw) [1 m] Constant variable: The inertia spring (iii) Load, stopwatch and G-clamp [1 m] (iv) [1 m] (v) – The apparatus is set up as shown in the above diagram. A load of 100 g is used. [1 m] – Then, the inertia spring is moved. The time taken for 10 complete oscillations is measured. [1 m] – The experiment is repeated by using different loads, i.e. 200 g, 300 g, 400 g and 500 g. The time taken for 10 complete oscillations is measured for each load. [1 m] (vi) [1 m]

Upload: norlidar-yahya

Post on 10-Jul-2016

12 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Skema Kertas 3 2015 Ppt

SPM Fizik Tingkatan 4,5 - ppt form 5 2015 kertas 3 Kertas 31.

(a)  A heavy load is harder to move and also harder to stop. [1 m]

(b)  The bigger the mass of the load is, the bigger the inertia will be. [1 m]

(c)  (i) To investigate the relationship between mass and inertia. [1 m]     (ii) Manipulated variable: The mass of the load [1 m]          Responding variable: The inertia (defined operationally by the period of oscillation of the saw) [1 m]          Constant variable: The inertia spring    (iii) Load, stopwatch and G-clamp [1 m]    (iv)

                      [1 m]

     (v) – The apparatus is set up as shown in the above diagram. A load of 100 g is used. [1 m]          – Then, the inertia spring is moved. The time taken for 10 complete oscillations is measured. [1 m]          – The experiment is repeated by using different loads, i.e. 200 g, 300 g, 400 g and 500 g.             The time taken for 10 complete oscillations is measured for each load. [1 m]    (vi)

               [1 m]

   (vii) A graph of T2 against m is plotted. It seems that the bigger the mass of the load is, the longer the period          of oscillation will be. This shows that the bigger the mass of a load is, the bigger the inertia will be. The          hypothesis is proven true. [1 m]

2.

(a)  (i) Temperature,θ            Suhu, θ      (ii) The length of the column of air, l            Panjang turus udara, l     (iii) Pressure of the trapped air/diameter of the capillary tube               Tekanan udara yang terperangkap/diameter tiub rerambut

Page 2: Skema Kertas 3 2015 Ppt

(b)  (i) The eye must be at a position which is level with the top section of the meniscus of the trapped air column.            Mata harus berada pada satu kedudukan yang searas dengan bahagian atas meniskus                      turus udara yang terperangkap.      (ii)

            

(c)

       

(d)   l increases linearly with θ.       l bertambah secara linear dengan θ.

Page 3: Skema Kertas 3 2015 Ppt

(e)  The capillary tube and ruler must be parallel/ The trapped air column must be fully immersed in water.       Tiub rerambut dan skala pembaris mesti selari/ Turus udara yang terperangkap harus direndamkan            sepenuhnya dalam air.

3.

(a)  10 V

(b)  If the current, I, is bigger, the potential difference, V, passing through the terminals of the battery will be      smaller.

(c)  ( i) 

             

                  (ii) Internal resistance of battery = Gradient of graph

                                                      

(d)  Charge that flows through the battery in battery in       5 minutes, Q = It                           = 3.0 × 5 × 60                           = 900 C      Energy supplied by the battery = QE                                                    = 900 × 10                                                    = 9 000 J

(e)  The current should be limited to a small value because a large current will give out a bigger heating effect.

4.

(a) Distance between two consecutive antinodal lines depends on the distance between two vibrating sources

Page 4: Skema Kertas 3 2015 Ppt

Jarak antara dua garis antinod yang berturutan bergantung kepada jarak antara dua sumber yang bergetar

(b) The distance between two consecutive antinodal lines increases as the distance between two vibrating sources decreases.Jarak antara dua garis antinodal berturutan bertambah apabila jarak antara dua sumber yang bergetar berkurang

(c) (i) To investigate the relationship between the distance between two consecutive antinodal lines and the distance between two vibrating sourcesUntuk menyiasat hubungan antara jarak antara dua garis antinodal yang berturutan dengan jarak antara dua sumber yang bergetar

(ii) Manipulated variable:Pembolehubah manipulasikan:Distance between two vibrating sources, aJarak antara dua sumber yang bergetar, a

Responding variable:Pembolehubah bergerak balas:Distance between two antinodal lines, xJarak antara dua garis antinod yang berturutan, x

Constant variable:Pembolehubah dimalarkan:Distance between sources and the position where x is measuredJarak antara sumber dan kedudukkan di mana x diukur

(iii) Power supply, ripple tank with two spherical dippers, stroboscope and metre ruleBekalan kuasa, tangki riak dengan dua pencelup sfera, stroboskop dan pembaris meter

(iv) Arrangement of the apparatusSusunan radas

(v) – The apparatus is set up as shown in the diagram

Page 5: Skema Kertas 3 2015 Ppt

Radas disediakan seperti yang ditunjukkan dalam rajah– Power supply is switched on

Bekalan kuasa dihidupkan– Start the experiment with the distance of two vibrating sources, a = 2.0 cm

Eksperimen dimulakan dengan jarak antara dua sumber bergetar, a = 2.0 cm– Stroboscope is used to freeze the wave motion

Stroboskop digunakan untuk membekukan gerakan gelombang– The distance between two antinodal lines, x is measured using the metre rule

Jarak antara dua garis antinod berturutan, x diukur menggunakan pembaris meter– The experiment is repeated with a = 4.0 cm, 6.0 cm, 8.0 cm and 10.0 cm

Eksperimen diulang dengan a = 4.0 cm, 6.0 cm, 8.0 cm dan 10.0 cm 

(vi)

 (vii)