simultaneous anhydrite dissolution and gypsum ... · that leaching of gypsum may occur at a later...

11
1. INTRODUCTION Swelling rocks exhibit the characteristic property of in- creasing their volume when they interact with water. This process constitutes a significant problem in founda- tion engineering [1] and tunneling [2]. Tunneling in swelling rocks in particular is one of the engineering tasks that still entails major inherent uncertainties today. Among the significantly problematic types of swelling rocks are the anhydritic claystones of the Gypsum Keu- per formation, i.e. rocks composed of a clay matrix comprising finely distributed anhydrite. This kind of rock is widely distributed in North-Western Switzerland and South-Western Germany and has caused serious damage, operational problems and very high repair costs in a number of tunnels. Anagnostou et al. [2] provided an overview of the theoretical models for the swelling problem and of recent or ongoing research works. Fur- thermore, they discussed the processes underlying the swelling phenomenon from a qualitative point of view and identified fundamental questions which are im- portant not only for understanding the phenomenon, but also from a tunnel design approach. More specifically, there are still open questions concerning the role of chemical reactions and transport processes, the role of the clay matrix and the relationship between swelling pressure and strain. The swelling of anhydritic rocks can be attributed to the transformation of anhydrite into gypsum crystals. This transformation takes place through the solution phase and occurs because, under the conditions prevailing in the field, the equilibrium concentration of anhydrite is higher than the equilibrium concentration of gypsum. The equilibrium concentration or solubility of a mineral is the maximum amount of solute that dissolves in a sol- vent. It depends on the pressure, temperature and pres- ence of foreign ions in the solution (see, e.g. [3, 4]). The minerals with lower solubility represent the stable min- erals in a system. In the present paper, conditions are chosen under which gypsum is a thermodynamically stable mineral. These include: atmospheric pressure; ab- sence of foreign ions; temperature lower than the transi- tion temperature between anhydrite and gypsum, which ranges between 42 and 60 °C, according to the literature [5]. Table 1 gives, among other parameters, the equilib- rium concentrations of anhydrite and gypsum at a tem- perature of 20 °C [6]. This temperature lies within the relevant range for tunnels in Gypsum Keuper. When anhydrite is in contact with pore water, it starts to dissolves into calcium and sulphate ions and once the equilibrium concentration of gypsum is reached, the lat- ter starts to precipitate. The growing gypsum crystals may cause loosening of the rock, increase its permeabil- ity and accelerate seepage flow with the consequence that leaching of gypsum may occur at a later stage be- cause the calcium and sulphate ions circulate with the water (advection). This has been observed in the field, for example in the Schanz railway tunnel [7]. It may, nevertheless, also happen that the gypsum crystals cause clogging of the pores, thereby reducing permeability and seepage flow rate. The present study disregards such transport processes by considering a closed system and by focusing on the two Simultaneous anhydrite dissolution and gypsum precipitation in a closed swelling rock system Serafeimidis, K. and Anagnostou, G. ETH Zurich, Zurich, Switzerland Copyright 2012 ARMA, American Rock Mechanics Association This paper was prepared for presentation at the 46 th US Rock Mechanics / Geomechanics Symposium held in Chicago, IL, USA, 24-27 June 2012. This paper was selected for presentation at the symposium by an ARMA Technical Program Committee based on a technical and critical review of the paper by a minimum of two technical reviewers. The material, as presented, does not necessarily reflect any position of ARMA, its officers, or members. Electronic reproduction, distribution, or storage of any part of this paper for commercial purposes without the written consent of ARMA is prohibited. Permission to reproduce in print is restricted to an abstract of not more than 300 words; illustrations may not be copied. The abstract must contain conspicuous acknowledgement of where and by whom the paper was presented. ABSTRACT: Anhydritic claystones are among the most problematic rocks for tunneling. Their swelling has led to serious dam- age and high repair costs in a number of tunnels. One cause of the swelling process is undoubtedly the formation of gypsum. An- hydrite dissolves into calcium and sulphate ions in the pore water and gypsum crystals subsequently precipitate. It is a markedly time-dependent process which in nature might take several decades to complete. Apart from the kinetics of the chemical reactions involved, advection and diffusion are also important factors in the evolution of swelling. The present paper focuses on simultane- ous anhydrite dissolution and gypsum precipitation while leaving aside the transport processes. Understanding such a so-called “closed system” represents the first step towards more complex models involving transport. The paper begins with the governing equations and presents estimates of the kinetic parameters. The model is calibrated with experimental results from the literature, and parametric studies are performed in order to investigate the role of the initial volumetric fractions of the constituents and the specific surface areas of the minerals involved. A simplified model of anhydrite hydration is proposed, which identifies the gov- erning process and possible orders of magnitude in terms of the swelling process duration.

Upload: others

Post on 02-Aug-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Simultaneous anhydrite dissolution and gypsum ... · that leaching of gypsum may occur at a later stage be- ... two cases of initial porosity: a very high initial porosity (which

1. INTRODUCTION

Swelling rocks exhibit the characteristic property of in-creasing their volume when they interact with water. This process constitutes a significant problem in founda-tion engineering [1] and tunneling [2]. Tunneling in swelling rocks in particular is one of the engineering tasks that still entails major inherent uncertainties today. Among the significantly problematic types of swelling rocks are the anhydritic claystones of the Gypsum Keu-per formation, i.e. rocks composed of a clay matrix comprising finely distributed anhydrite. This kind of rock is widely distributed in North-Western Switzerland and South-Western Germany and has caused serious damage, operational problems and very high repair costs in a number of tunnels. Anagnostou et al. [2] provided an overview of the theoretical models for the swelling problem and of recent or ongoing research works. Fur-thermore, they discussed the processes underlying the swelling phenomenon from a qualitative point of view and identified fundamental questions which are im-portant not only for understanding the phenomenon, but also from a tunnel design approach. More specifically, there are still open questions concerning the role of chemical reactions and transport processes, the role of the clay matrix and the relationship between swelling pressure and strain.

The swelling of anhydritic rocks can be attributed to the transformation of anhydrite into gypsum crystals. This transformation takes place through the solution phase and occurs because, under the conditions prevailing in the field, the equilibrium concentration of anhydrite is

higher than the equilibrium concentration of gypsum. The equilibrium concentration or solubility of a mineral is the maximum amount of solute that dissolves in a sol-vent. It depends on the pressure, temperature and pres-ence of foreign ions in the solution (see, e.g. [3, 4]). The minerals with lower solubility represent the stable min-erals in a system. In the present paper, conditions are chosen under which gypsum is a thermodynamically stable mineral. These include: atmospheric pressure; ab-sence of foreign ions; temperature lower than the transi-tion temperature between anhydrite and gypsum, which ranges between 42 and 60 °C, according to the literature [5]. Table 1 gives, among other parameters, the equilib-rium concentrations of anhydrite and gypsum at a tem-perature of 20 °C [6]. This temperature lies within the relevant range for tunnels in Gypsum Keuper.

When anhydrite is in contact with pore water, it starts to dissolves into calcium and sulphate ions and once the equilibrium concentration of gypsum is reached, the lat-ter starts to precipitate. The growing gypsum crystals may cause loosening of the rock, increase its permeabil-ity and accelerate seepage flow with the consequence that leaching of gypsum may occur at a later stage be-cause the calcium and sulphate ions circulate with the water (advection). This has been observed in the field, for example in the Schanz railway tunnel [7]. It may, nevertheless, also happen that the gypsum crystals cause clogging of the pores, thereby reducing permeability and seepage flow rate.

The present study disregards such transport processes by considering a closed system and by focusing on the two

Simultaneous anhydrite dissolution and gypsum precipitation in a closed swelling rock system Serafeimidis, K. and Anagnostou, G. ETH Zurich, Zurich, Switzerland

Copyright 2012 ARMA, American Rock Mechanics Association

This paper was prepared for presentation at the 46th US Rock Mechanics / Geomechanics Symposium held in Chicago, IL, USA, 24-27 June 2012.

This paper was selected for presentation at the symposium by an ARMA Technical Program Committee based on a technical and critical review of the paper by a minimum of two technical reviewers. The material, as presented, does not necessarily reflect any position of ARMA, its officers, or members. Electronic reproduction, distribution, or storage of any part of this paper for commercial purposes without the written consent of ARMA is prohibited. Permission to reproduce in print is restricted to an abstract of not more than 300 words; illustrations may not be copied. The abstract must contain conspicuous acknowledgement of where and by whom the paper was presented.

ABSTRACT: Anhydritic claystones are among the most problematic rocks for tunneling. Their swelling has led to serious dam-age and high repair costs in a number of tunnels. One cause of the swelling process is undoubtedly the formation of gypsum. An-hydrite dissolves into calcium and sulphate ions in the pore water and gypsum crystals subsequently precipitate. It is a markedly time-dependent process which in nature might take several decades to complete. Apart from the kinetics of the chemical reactions involved, advection and diffusion are also important factors in the evolution of swelling. The present paper focuses on simultane-ous anhydrite dissolution and gypsum precipitation while leaving aside the transport processes. Understanding such a so-called “closed system” represents the first step towards more complex models involving transport. The paper begins with the governing equations and presents estimates of the kinetic parameters. The model is calibrated with experimental results from the literature, and parametric studies are performed in order to investigate the role of the initial volumetric fractions of the constituents and the specific surface areas of the minerals involved. A simplified model of anhydrite hydration is proposed, which identifies the gov-erning process and possible orders of magnitude in terms of the swelling process duration.

Page 2: Simultaneous anhydrite dissolution and gypsum ... · that leaching of gypsum may occur at a later stage be- ... two cases of initial porosity: a very high initial porosity (which

more important chemical reactions: the anhydrite disso-lution and the gypsum precipitation.

The Authors presented the first results concerning the kinetics of these chemical reactions in [8]. More specifi-cally, they investigated the effects of the initial size and shape of the minerals on the time evolution separately for anhydrite dissolution and gypsum precipitation. They also proposed a simplified criterion allowing estimates to be made of whether anhydrite dissolution or gypsum precipitation is the limiting mechanism for the duration of the anhydrite-gypsum transformation process. The present paper investigates the coupled process of simul-taneous anhydrite dissolution and gypsum precipitation in a closed system, develops a criterion for the limiting mechanism more rigorously and presents a simplified formula for estimating the duration of the anhydrite hy-dration process.

Section 2 of the paper presents the computational model with an emphasis on the reaction kinetics of anhydrite dissolution and gypsum precipitation. The governing equations are presented in a dimensionless form which shows the significant parameters of the problem under investigation and is also advantageous with respect to the parametric studies in the later sections. Section 3 checks the predictive capacity of the computational model on the basis of existing experimental data from the literature. Section 4 presents parametric studies for two cases of initial porosity: a very high initial porosity (which is more characteristic of an aqueous solution) and a low initial porosity (which applies to a porous medi-um), respectively. The reason for discussing these two cases is to illustrate some general patterns of behaviour. Sections 5 and 6 present simplified prediction equations for the limiting mechanism (anhydrite dissolution or gypsum precipitation) and the duration of the anhydrite to gypsum transformation.

2. COMPUTATIONAL MODEL

2.1. Mass balance The system under consideration consists of minerals and water under isothermal conditions. In the most general case, the constituents of the solid phase are anhydrite (A), gypsum (G) and inert minerals (S), i.e. minerals which do not participate in the chemical reactions. The water (W) generally contains calcium and sulphate ions (I). The mass of the constituent i per unit volume of the mixture is denoted by mi:

i i totm M V , (1)

where the subscript refers to the constituent (i = A, G, W, S or I); Mi [kg] denotes the mass of the i-th constituent at a given time and Vtot [m

3] is the volume of the mixture which (for small volume changes) can be taken approx-imately equal to the initial mixture volume Vtot,0.

Table 1. Model parameters (potential deviations will be men-tioned in the text)

Parameter Anhydrite Gypsum

Densities AGkg/m3 2960 2320 Equilibrium concentrations ceq,Aceq,G mol/m3 21 15.5

Orders of reactions aA aG 2 2

Reaction rate constants kA, kG kg/m2/s 3·10-6 5·10-7

The volume fractions of the mixture constituents are de-noted by i:

/i i tot i iV V m , (2)

where Vi andi is the volume and the density of the con-stituent i, respectively. The symbolw thus denotes the porosity of the medium. Obviously, the sum of the vol-ume fractions i should equal unity at all times. The ion concentration, which is important for calculating the re-action rates (see Section 2), can be expressed as a func-tion of the ion and water masses per unit volume:

c MI

VW

Wm

Im

W. (3)

In a closed system, the masses only change due to chem-ical reactions. In the current study, the dissolution of anhydrite decreases the anhydrite mass and increases the ion concentration, while the precipitation of gypsum in-creases the gypsum mass and decreases the ion concen-tration and the water content. The masses involved in these chemical reactions are:

4 4

0.136 0.136

CaSO Ca SO

kg mol kg mol

. (4)

and

4 2 4 2 2 2

0.136 0.036 0.172

Ca SO H O CaSO H O

kg mol kg mol kg mol

. (5)

The mass balance equation for the ions and the water therefore read as follows:

0 0 0

136

172I I A A G Gm m m m m m , (6)

0 0

36

172W W G Gm m m m , (7)

where mA0, mW0, mG0 and mI0 denote the initial masses per unit volume.

Page 3: Simultaneous anhydrite dissolution and gypsum ... · that leaching of gypsum may occur at a later stage be- ... two cases of initial porosity: a very high initial porosity (which

2Dtirmthmti

watiisti(oioepti

wawfpdrElas

a

w(pthle

Irwgti

2.2Diio

ratmihe

maio

whal ios imk

of on

eqpriv

whanwhforpoderatEqas

su

an

whsu

paheen

t repwigeio

2.iffonteinerason

he(

oni

mei

f Ani

quec

ve

hendhir

osersteqsst

um

nd

heurarte ng

cprithenon

. ffen es nermssn i

er(pn)n e)nAric

uilcie s

erd icc itsae s.

sm p

d

errfaticsp

gt

canreh

nern a

errag

eramos cis

re po; Ac

); crrr

c libipsu

re

h >

tivatuis(

sepr

re facclpeth

n esthraan

Renatgealodch:

dosiAcok

rerhc

brit

up

c t

a> veurs n8)

ecre

Fceleec

h)-

eenheal,nd

Renttesenl, dyha

dMiti

A [onk eaheonriutatpe

ceq

tharce

e rane)

ctiec

FA

e s,ci-1,

eante , d p

eat fs

nert

ynan

M/iv[mnt[k

asenincumti

ers

f

q ie e eq

anateegan

iocip

A

p, rifi, r

ast twA

pr

acfocrathnang

M/dvem2

tackgesiucemonsa

f

isos

q, fndedgand

onpi

aperreicre

silth

waAFre

ctorcaallhe amge

dt e 2] ctg/s usen

m, n

atu

c

s torsuf(d d atd

n, ita

d

anr

esp s

esp

lyheateFA

ec

iorman ly

mio

t [fod

t /mw

s, nt

ia

ur

c

thrdup(c)

ps

tiv(th

at

dm

d

dm

d

d

vpesupe

y be erA

cip

onmu

by dteicof

[kordew

m2

witc

trai.eanra

he derer)

prsove(9hetio

m

dt

m

dt

Fvoec

urfec

bearr, anpi

n ulbedeemc f a

kg/r enwi2/sth

cf.ate. ndati

s

er rsan

reclu

e ) e on

Am

t

Gm

t

FG

oluctfacti

e rep

ndita

kate epmpe

a m

d

/sp

noths] h . eiot

d iio

sg

eqo

satndciutanara

n c

G

umtivaciv

veaped

at

kintiof

pepe

eqm

dM

s] preoteh

itee.onthis

on

gn

quof tud iptiond

anatca

k

[mmvece ve

vea oer

tio

neon

fouener

qumin

M

iecesw

is em.gn he g

n [

n

uilt

urth

pitond

ndtean

k

Gk

mmeelya

ely

eriofin

GFon

etnsunndra

uilne

M

s cips twa

tmpg.

ce gi[1

c

libthrathetans

td ts n

Ak

G

m-1

) y.ary.

iff niFn (

tics ndd oatuliber

dt

thpithatthpe[

c. div1

bre teer

atis wthtaob

A

G

1] o

. Fea.

fiethiti

FG

(s

csfod onurbrra

dt

heita

heterhe er15I

driven

]:

c

riuc

edreiow

he akofe

A

G F

dofFoa

edheiac

se

s ori

n reriual

e at

e sr s

ra5]It ivn :

eqc

umchd wfon

whm

inf ae

F

GF

def toris

d e al chee

r n th umd

kA

mtiosu(A

soatu])

vinh

q

mhewor

themngan

ex

AF

enthr s e

throu

hanS

tht

hean

mdu

kAf

maonurA

o-cur aexnghe

m cem

witretaere

ming nh

xpr

c

nohespeq

haocunng

Se

hethe nd

m. ue

f

asn fa

A careanxpg ere

cco

mithe take nein

hyre

ec

c

c

otee phqu

at cknitgeec

e dhered Ato

c

s a

acmal a

ndprf

e

c

onic

h rthkes

cerntydes

,eq

c

eq

c

c

e anheua

tk t ve

cti

di lea

tAo

c

cancema

leacd frefoa

ncalree s

c ralto drsse

,A

eqc

,

e

q G

c

thnheral

thsuvoo

io

islitacth

A d

,

chnde aayedccf(

essrc

as

c

cel

espmp<l a

ited

,A

,q G

G

hehyric

t

he urolovon

ssote

ctihec

dis

hand ary d rcof(c)secea

eqc

enrepe

mapla<

dacte d

A

c

G

e ydcato

trfluverns

oleraive omss

ngn

reinre

ordc) ese a

ntreaecasacce

discc

da

c

a

sdral

3

tefacumr 2

luat

ve dmso

genega n eadii

s fofu

c

raacct ssceeq

sscodis

a

Ga

sprito

3·(

ermce

meti

2.3

utitus

demmolu

e gaog

acins th

forun

ec

aticti

t c

e. q, ounssfo

A

,

peteor (r

me e im3

iouresuv

mout

raat

of gecting

aher nc

q

ioioto ch

Sthlvntsool

ci ac

ra

ms thof

mean

one

urfiaontio

attivf theniog ta fe d

cti

a

onon

thaSihevet olullo

ifiancudi

haf e nd

n a[4

faatin on

te vehe

nern tofud

diio

,

n on. thanime esthutow

ficndubiu

A

atthdd

an4

acio

ln

oe e rar

o tundiss

on

ofFe

ngmi

m. hetiow

c d bicus

AFt ihe

du2

nd, e

onlao

offm

al rath

ncstson o

f tFo

me la

mB

e on

ws:

suth

cas)-

FA

ise me

2.4

d 9a

n awr

f tformi

vatehectitaoluof

thor mi

raras

Bann :

urheal -1

A imto

4)

p9-1are

frw p

thr invae e eio

anutf

hes

inat

rlyssasota

rfe po

anin

mixo ).

pre14ea

frof

pre

e d

nearceq

onncetioth

e msonetey, s sedtaan

facg

paor

ndn xtd

ec4]a omfoec

mdisraryonqu

n oe onhe

moluerae i

ichd

atind

cegyart6

d cotudis

cip]. o

m or cip

missaly nsuaoff

n e r

minutalis inhau

iod g

(

(

e ypti

6·(

onurss

piT

f

pi

(

inso tovstatf fr

are

(

netiol, a

n uanupongy

(1

(1

apsucl(s

G

nte.so

itaThthththita

(8

neoluthvetaniothomanela

(9

eroni.

alsunngpon oyp

10

11

areumle

sid

GFta. Iolu

a-hehehehea-

8)

er-u-

haterntonhemnda-

9)

ralnseson-geonofp-

0)

1)

eam

esde

FG

actInu-

-e e e e -

--t r t n e

m d -

l s .

o -e n f -

a m

, e

G t n -

2AtoTspanwroficotadthfop

F

Aum

wfaspsuchinthanpedsusichca

AW

2.3Aco

Thpend

whociconak

drihiorrim

ig

Acm

ma

whacpeurhanghanhardguridhaal

AcWi

3.ccth

hisecd hackatnckeiteckrmism

m t

g.

ccmeas

heceecrfang at hyrtgerfdeanl p

ccild

cohes cif

sat kstioceene kn

m mto

1

coe ss

eree, ctifacngdn

ydice face ngpa

code

Arde arfish

fs. onern b

anec

mao f

. C

rdA

in

e v

ivcege

disn =drclele

celegear

rde

Adis

reic hafoLn rnbyapescaatife

C

diAFn

vovee esss= rite ene ene rrti

d

di[

Aninsuea

saporLa

(iny

ppssan icew

la

inFA

th

A

oluelyar

s io2

teis

ngar

ngraic

dm

d

in[1

nhng urfa dsupe rman(Fng

apeesb

fw

as

ng A che

A0Fumy,reinlu

2/3e ps gtre

gthatele

Am

dt

ng 7

hyt

fade

urf(

m ngbFigg anars befoc

si

tcae

FA

m, wean tuti3 papr

th eah.e es

A

]

ydtoacepfa(Ea

beg.th

nhrsa

e ormm

ifi

toanfo

A0

mewa cthiof

arroi

a i. o

s i

toa

dr Ee

peacEqanei. hehys anclm

m)

ica

o [n bol

A

0, e

whca

he onforrtiopinis C

of is

o an

ritEq

aene

q. nhin1e yded lo

m .

at

[4bello

0

A

A

an

hilaud

n r icpon t

pCof a

g

k

tnd

teq.arnd

a

hyn e) si

driits

osa

tio

4]e ow

F

F

A

ndle usdiorun

cleorthpromangiv

Ak

thd

e d (

reads are10ydetw

izitethspernd

on

, ex

wi

0

A

A

F

F

A0

d n

sestr niesrtiheropmbnhve

A

e Ja

di(8a o

ea0)drit awhzee er

par d

n o

thxpin

0

am

n d tripifs. ioe cpobi

hyen

0A

eam

iss8),

oona ). itealhi) in

r citot

of

heprng

anmab

ibprefo

Tncaorin

ydrn b

0F

exm

so, tofn FI

e . ican in

ino th

f a

e reg w

nd as

accbybuecrm

Thalasrt

ninriby

AF

xpme

olthf ath

FA It

p[1

chan

nn

nga

her

an

suesw

m

m

msscoy uticipmhil tse iongitey:

0

pes

luheanhe

oi

pa16 p

n ona

tgs a sre

nh

urse

way

A

A

m

m

ms ouchiopi

mlys too

ong e :

m

era

ute dnhe vofis ar6]provatutho

spe

hyd

rfedy

0

A

A

A0

(punha

onitay i

o tofna

Ein

m

m

riman

iodihyvof t

trti] proveur

heorphis

dr

facd :

0 pentan

n oatds thf aal Eqn

0

A

A

m

m

mnd

onisydolththicproverre

e r ahes

rit

ceas

n

arerts ngoftioisb

hea to

qsth

0

A

end

n sodrlu

he heclerevidrve. foaserea

te

e s

rer u

fgef tonssbee c

co s. he

2

ntL

olritum

pereesesede

vieR

ors pe w

in

oa

e un

foesthn.ol

eccucuth(

e c

2/3

taLu

lutemepaefs enesewRormpao

w

n

of fu

thnir

s ihe. Ilvauububhe(1ca

al up

uti ie artfom

nts w ou

m aror id

n

f afun

A

A

heit c

ine cIt vinusbebice 10as

c

rpto

ioinfrtic

oremite(ao

ugo

rtic

de

nat

annc

0

A

A

e m

chn tcrc

ngsee ocasq

0) se

eqc

c

reon

onn racle igd alofghoficcae

tu

nhct

n

inm

hanthrycag e ofal qu

ae o

,q A

eqc

esun

n rco

acleim

gha

lbf thlf le

anra

ura

hytio

n

,

nimix

ngheystancthf p

uaanof

,

A

q A

ul[

raon

cties,m

ht a qeithlyv

esn aan

al

ydon

,

itixtge

e cta

n ecuheitpaarndf s

A

c

lts1

atentio, i

mpt

quit

hey sveis [alng

ro

drin

iatuescral ea

ube ts artre d sp

c

s 8]

e ta

oni.e

potaua

we pspin[8lsoge

oc

iteo

al ures ryp

asicvratio(

ph

a

o],

isactn e.

ortakalwpopens8]o e

ck

e f

ae in

ystposilcaoladcl

of(1he

Aa

oft

s pt A

. ota

keit

witoseas . Tt

of

ks

pth

anv

n ta

oplyal ludilef t2

eri

.

f th

prw

A onane tatthssakoTakf

[

pehe

nhvoth

al puy b

oumiue),th),ic

Bhe

rowiann nt

intiv

housibkinf

Thkes

16

er e

hyoluhes

ulabe

or meus , w

he , ca

Bae

opithndtht

n veutblngd

he e iz

6]

uan

drume sizate se (

wrth

al

artan

poh d heto

ne t le g,dipa

ze

].

unnh

rimrezeiovpho

(owhradheo

tonh

ortwo

eir knacvf

aiffpaa res

nithy

iteme

eae onvehe

of r

hildie r

onhy

tiowaonr knat

clavafoanfeartra

(

t yd

(

e ),acor

n rier

f eoleiumc

(

n yd

onat

n tsinotuasaluormnheretic

ath(fe

vdr

(1

su, rctir duifiriceaof e tus maub

(1

adr

naterthizow

urassiuemhyenclhefew

olrit

2

urreivburiecaacit

tho

asbi

3

anrit

alr.

hezewali-es

msy-ntleerw

l-te

)

r-e-vebyr-

edalchts

heorssi-

)

ndte

l

e e

w l

s

t e r

w

e

e y

d l h s e r

d e

Page 4: Simultaneous anhydrite dissolution and gypsum ... · that leaching of gypsum may occur at a later stage be- ... two cases of initial porosity: a very high initial porosity (which

dissolution is a second order reaction (i.e., A = 2), while the reaction rate constant kA amounts to 2.4 - 5.4·10-6

kg/m2/s [8]. The results of Kontrec et al. [6] also indicate a second order reaction, but a considerably lower reac-tion constant kA of 0.54·10-6 kg/m2/s. These differences can be explained by temperature effects, uncertainties over the extrapolation of the test results for zero flow velocity and uncertainties concerning the size and shape of the particles [8]. 2.4. Gypsum precipitation In dissolution processes, the surface area A appearing in Eq. (8) is clearly defined and expresses the surface of the mineral per unit volume which is in contact with water. In the case of precipitation, however, a difficulty arises with the surface area A or with the term GFG in Eq. (11) if the precipitating mineral is initially absent from the system. According to the theory of nucleation, which can be studied elsewhere (e.g. [10, 11]), as soon as the su-persaturation of a mineral is reached, nuclei start to form and crystal growth subsequently takes place on these nuclei. The time required for the first stable nucleus to be formed is defined as the induction time. A distinction can be drawn here between homogeneous and heteroge-neous crystal growth. In the former the crystals grow on the same mineral, while in the latter they grow on other minerals.

Homogeneous growth rarely occurs in nature [11] and it presupposes the existence of a number of nuclei which operate as centers for crystallization. The surface A is then the surface of the nuclei, and the mass change rate is given by Eq. (11). In order to circumvent the afore-mentioned difficulty during the modeling of homogene-ous nucleation, Steefel and Lasaga [14] suggest that once the solution becomes supersaturated with respect to an initially absent mineral, the latter instantaneously ac-quires a radius of 10 m which then develops over time. Nonetheless, the initial surface area does not depend on-ly on the initial radius but also on the number of nuclei formed and thus on the nucleation rate [19]. A common way to deal with this difficulty is to assume a constant number of nuclei and to vary their radius. For an initially absent mineral, the radius of the nuclei is set to zero, although their number is not. A constant update in the radius during modeling of the crystal growth is essential.

During heterogeneous nucleation, crystals, apart from nuclei, can also grow on foreign bodies such as the sur-faces of the different constituents of the rock. In this case the induction time vanishes, while nucleation and crystal growth occur simultaneously [12]. The surface area A in Eq. (8) is then the total surface area available for crystal growth, which is nonetheless very difficult to determine, introducing great uncertainties in the model. A number of powerful analytical techniques allow us to investigate and quantify the mineral surface [20]. However, in order

to fully understand the processes taking place at the in-terface between water and mineral, investigations must be performed in different scales. Direct observations of the changes on the surface of a mineral due to dissolu-tion and precipitation at the atomic scale appear to be extremely difficult, however, if not impossible.

Simultaneous mineral dissolution and precipitation takes place in many geochemical systems. Normally, dissolu-tion takes place more slowly than precipitation and therefore constitutes the limiting mechanism in the sys-tem. In such cases, assumptions concerning the precipi-tation rate are not necessary and the system will be close to the equilibrium concentration of the precipitating mineral [21]. Therefore, the aforementioned difficulties do not necessarily constitute a problem from the practi-cal point of view. We will investigate later in the present paper the conditions under which this is also true for the anhydrite-gypsum-water system.

The precipitation of gypsum is investigated assuming the presence of an initial mass of gypsum or of an inert min-eral on which gypsum growth takes place. In that way the complex process of nucleation is omitted. Further-more, the simplifying assumption is made that gypsum growth does not occur on the anhydrite surface. In reali-ty, it is entirely possible (and it has also been observed in nature) that gypsum crystals may also grow on an anhy-drite surface, thus sealing the anhydrite and delaying or completely halting its dissolution [22]. The simplifying assumption of the present paper, i.e. disregarding gyp-sum growth on anhydrite, thus overestimates the anhy-drite dissolution rate and underestimates the duration of the hydration process.

For the case of growth on spherical or cubical gypsum particles a similar equation to Eq. (13) applies:

2

3,

0 00 ,

Ga

eq GG GG G G

G eq G

c cdm mk F

dt m c

, (14)

while for gypsum crystal growth on inert minerals of spherical or cubical particles Eq. (13) takes following form:

2

3,

,

1Ga

eq GG GG S S

S eq G

c cdmk F

dt c

, (15)

where FS and s denote the specific surface area and the volume fraction, respectively, of the inert mineral on which gypsum growth takes place.

The experimental results of Liu and Nancollas [23] and Kontrec et al. [6] show that gypsum precipitation obeys a second order rate law, while the reaction rate constant kG amounts to 3.75 - 5.19·10-7 kg/m2/s [8]. The experi-ments of Smith and Sweett [24] indicate a considerably higher reaction rate (5.35·10-6 kg/m2/s), which seems to be due to different testing conditions [8].

Page 5: Simultaneous anhydrite dissolution and gypsum ... · that leaching of gypsum may occur at a later stage be- ... two cases of initial porosity: a very high initial porosity (which

2.5. Governing system of equations Assuming that the particles are spherical or cubical and that the gypsum crystals grow on an inert mineral, the following dimensionless equations can be derived from equations (13) and (15) for the volume fractions of an-hydrite and gypsum, respectively:

2

3

0

1 AaA A

A

dc

d

, (16)

and

2

3

,

1 1Ga

G G

S eq G

d c

d c

, (17)

where

,eq A

cc

c , ,

,,

eq Geq G

eq A

cc

c , (18)

t

kAF

A0

A

A0

(19)

and

0 0

G S S A

A A A G

k F

k F

. (20)

The symbol represents a dimensionless time, while the dimensionless constant expresses how quickly gypsum precipitation occurs relative to anhydrite dissolution, i.e. it is a measure of the relative speed of the two processes. The higher the value of the quicker the gypsum pre-cipitation takes place relative to the anhydrite dissolu-tion. The time-development of the anhydrite hydration is governed by anhydrite dissolution if the value of is high and by the gypsum precipitation if the value of is low.

Equations (16) and (17) are coupled via the dimension-less ionic concentration c . From equations (3), (6) and (7) we obtain c as a function of the volume fractions of anhydrite and gypsum:

0

00

,

136172

GA A G

W A A

W eq A W

c cc

, (21)

where the porosity

W

W 0

36

172

G

W

G, (22)

the initial porosity

W 01

A0

S (23)

and

00

,eq A

cc

c . (24)

Eq. (16) only applies, of course, under the following conditions:

, 0 0

172, 0,

36W

eq A A G W GG

c c

. (25)

The last inequality follows from the condition W > 0 and the equations (2) and (7). It must also be fulfilled (in addition to c > ceq,G) in order that Eq. (17) applies.

Equations (16) and (17), with the above-described condi-tions and the concentration c according to Eq. (21), rep-resent a system of two non-linear ordinary differential equations for the evolution of the volume fractions of anhydrite and gypsum over time. It is a simple matter to verify that the solutions of this system can be expressed as follows:

0

,

, ,00

, ,

, , ,

, , , , , , , ,

A G Weq A

eq G eq A G GA

eq A eq A A A WW

c

c

c ccf

c c

, (26)

where the variable is dimensionless time; the parame-ter expresses the relative speed of the two reactions; the parameters A0, W0 and c0/ceq,A describe the initial mixture composition and the last four parameters on the right hand side represent material constants.

3. MODEL CALIBRATION

The model of Section 2 was tested by considering the experimental results of Kontrec et al. [6], obtained for a case involving simultaneous anhydrite dissolution and gypsum precipitation. Kontrec et al. [6] carried out a back analysis of their experiments on the basis of a very similar computational model but presented no details of the model or of the assumed parameters.

As there is no information available on the particle shapes used, spherical particles are assumed for the cal-culations. The best fitting curve is found to be for an ini-tial radius of rA = 0.27 m for anhydrite and rG = 4.3m for gypsum particles. These values correspond to specif-ic surface areas which are in very good agreement with the values given in [6] for some experiments where an-hydrite dissolution and gypsum precipitation were inves-tigated separately. In the test under consideration, the initial anhydrite and gypsum masses in the solution were equal (mA0 = mG0 = 2.312 kg/m3). The initial ion concen-tration c0 was equal to 16 mol/m3, i.e. slightly higher than the equilibrium concentration of gypsum. Concern-ing the kinetic constants, second order laws for both an-hydrite dissolution and gypsum precipitation

Page 6: Simultaneous anhydrite dissolution and gypsum ... · that leaching of gypsum may occur at a later stage be- ... two cases of initial porosity: a very high initial porosity (which

(ctrk

Fas

Ftictivogeain

Tththrhwcq

ToTti

4

4Tm(

core

kg

Figal.um

Figim

coio

vaobgineqannc

Thhehe

riuhawicoqu

ThovThio

4.

4.Thmi

A onecg/m

g. [m

gumeomonalubsnn

qunhcr

hee e umanith

onue

heveheon

1.heixW

=nstc em

2[6]

m m

ure

mpnsueerni

uilhyre

e eod

m ndh

nceen

e er e tn p

P

. e xtu

W0

= taet

m2/

2. ]: m

re(

pu oesrvinlib

ydrea

efondif

cd, t

ren

ntl

sthtupr

PA

cour=

ant a/s

B(

as

e (sutofs vengbrrise

ffene ffecoth

rently

echeurnro

A

Aomre

= 0

G

ntsal

s).

Baa)ss

2ol

tatf Ka

edg oriuitee

fech

feronhesptra d

coe ni

oc

AR

Aqm

e c0.

G =s l. .

ac) I o

a litioK

and iofume in

ctharence speatde

ontiin

ce

RA

qump

co9

= ar[

ckIoov

sd on

Kod inf md

n t

t oanencensoectioec

ndimngss

AM

uepuon6

2re6

k-aonver

shl

naon

an tth

m cdisth

ofndncntoluct oncre

d meg ps (

M

eoutans,

2) e t]

ann cr t

holinal

ntralthhecosshe

f td, e trutt

n ea

ce cpo(F

ME

ouatsisc0

ata(k

nacotim

ownel rrels

hee pono

e c

thab

rattiototh

as

chcuoiFi

E

ustiost0 =

arakkA

alyonm

wse)re

ec o cprncluco

he anbetioon ghe

se

harurinig

T

s sontin=

rekeA =

ysnceme

s ) es

e

coroceuton

inhytwonn gyers.

rarv

nt . 2

TR

sonang 0

e en =

sisen.

thanuet ex

onocenio

nc

nydwen b

ypre

acvem2b

RI

olal g 0

c e 0

s ontr

hendlta

xpnccentronce

crdreeo

bepsefo

cte i

mab)

IC

lueinm

oneq0.

ofra

e d ts alplceessran en

rerienof ecosuor

eris ark).

C

utiexni

mo

nsqu5

f tati

cta

. lants,

atiotr

eaten f aom

umre

risthks

S

ioxaitiol

siua4

thio

cothag[6

aintr t

ioccrat

asie thanm

m,e r

sthes

ST

onamial/m

idal ·1

he n

omhegre6]n ratthn cuti

indihenh

me, re

tice th

TU

nsmpallm

derto

10

eo

mp mee], t

tihe

ouron

ngise chyes an

ea

c tu

he

U

s plly

m3)

reo

0-6

exov

pume m

thonc

ofrsn

g cssoco

ydm

ndach

feure e

UD

ley o),

edth

6 k

xpver

utme

wmae n cof g. c

coolondrimod he

fearnen

DI

s ofa

d, hekg

perr t

tedeawiappo

ongyA

ca

onlunciteorc

es

atninnd

IE

of an

we g/

rimtim

d asuithp provncyp

Asan

ncuticee recrys

tungd

ES

of9

nh

wo

/m

mm

iurh v

rovecepss a

b

ceioen

de aysa

ureg o

S

f t6

hy

whonm2

menme

ioreth

veoner ntsua be

enonntrdeanst

a m

e pf

thv

yd

hilne2/s

nt; (

onedhe

eryno

titr

umc

e o

ntrn sraecrndtalm

ooith

hisvo

dri

lees s

ta(b

n d e y

ouimratm coob

rasl

atire

d ml

ma

ofinhe

s olite

pa

al b)

covthw

unmetia

onbs

atilowioeamg

ax

f tnt e a

Sl.-e

thpran

da

onalhe

wencee:on

annsese

ionw

onas

mogroim

tha

an

Se-%an

heropd

datanh

nclueoeled: An

ndeqerv

n wsn aes

orowm

heat nh

ec% nd

e pok

tahy

ceueorll d Ai

d tquve

is dans.e wum

e a

hy

ctid

d

roskG

a byd

enes rethn

At is thueed

s dond Oo

wthm

cabyd

iodis

a

rease

G

bydr

ntr(

etihenothc

herend.

twowd tOovh

m

onbodr

onstan

aced=

y rit

ra(dice onheclore

nc

wwnthn

versan

ncut

rit

n ctiln i

ctd b= 3

Kte

atidoalm

n-e osefe,

won

het

rstand

cet te

collein

tioby3.

Koa

iootsl

me-livsefor,

fob ethsaartd

ent d

onedne

ony .7

ontand

ons)peainer

e trea

olbeeqhe atutss

nt=

dis

ncd ert

n K

75

trd

n ). re

asnerytoe s

ldecqu

ours. su

tra= 3ss

cew

t m

rKo·1

ecg

ovT

edurar

y bo on

ste

d: au

uilothraT

ub

at33so

ernwam

raon10

c gyp

veThdicreritbethnlee

Ouslibhe

ateThbse

io3 holu

n ate

min

aten-0-7

etp-

erhec-edtye-helyep

Onseb-eredhee-

onhu-

aern-

e -7

t -

r e -d y -e y p

n e -r d e -

n . -

a r -

erspsusolust

A(2ththmantere

Mcedti=Smso(wmdmsadrep

F0ramocudsl(FgtinTm

raphumolutta

As26hehe

menheres

Moen

driim

= 0Secmaolw

mudrimaam

deteara

Fig.0am

maf ur

disligFiypivou

Thmi

alhemlvtioart

s t6)e ie enhyr sp

orntite

me0.ctaxlu

whumiteaxmteacac

gu02matirsssghigps

velun

he n

. er

m rveonts

th) rinh

nsydpe

retrae e 0tioximutiic

m e xim

me ermchcti

ur2) etio, s rolht

g. sulyncv

es

Fricre,

n t

herenvyiodr. Fct

e sata 4onmioch

cfrmg

mh eic

re a

teon

tralutly4

umy cevas

Focaepina

to

e lepvedronritFtiv

sptioanfo) n

muonh cora

mugr

mineqca

4aner n rthaputiy 4ams

edaluth

oral.prencanp

lapreestranlteigve

peonndforan3

umn (co

onactumradnequll

4 cnd

rehe pidioa

a).m p

lod ouehe

r . escrndpr

astestigaties

e fguel

ecn d r nd

3, m (won

ncti

m)diesuily

cod feli

dlonab. prowove e m

siUseread, ec

t segaiossfrurly

cifowdd td

whns

cenon). ies libl

onfo, atonlyn. boOrewlveo

m

imUnenas

oci

sienat

ons ac

resy.

ficof waifa

thduhisuntn A

enthbrin

nsocw

tivn

y rT

ovOneclyerof

ma

mpndntssinonip

ixnt tion pvcts

cath

atffea fhe ue ichumtr(

Ant herine

sidcuwhvec

reTh

ve n cipy rsf tax

pldes ngnc

pit

x pm

onprartio3

alhetererfixcth

h meat

(als (F

e iuea

deushie coelahetth

piaatthim

licer thg ceta

paman roriaon a

lye r, rexecohepestioll a

Fiti

umarl

eresichto

onate thheitaantu

he mu

cia

heth

e te

arato

ocabn an

y, io

nted

one

pros onc

alligim

m: ly

rss h o

nsutiv

ce e at

ndura

dum

ityatme hec

e.

raterof cebl

nd

Fonret d nccodion cul g. me

Ty w

aoea

umvecoeoio

d atdimm

y,mste co

amrith

essleA0

d 4

Finsesmv

cencoduond

urv3

e Thw

a fonexanme oneqothonantiom

m v

, motac

on

meiahes

e 0 4

igs spmivantnucnsdoveA0

3bw

heit

fi txpnhmp

toncquhen nhon

meva

aospabconc

etel e o)ani

guan

pextlutrcuces)oees0

b)whe th

xthprhyptio ceuiler ahyn enal

allphlenen

ercp

ov) ndll

urendcttuueratures.

es s o, hid

edhe resydioi

enlibr hanydw

nsilu

l hee pcent

rson

preveisd u

esd tivure otiorrs iItno

ovthch

durA

d e

ssdrionon

ntrbrhad dr

wiio

ue

perphentra

onsesr s bst

s 3thveresofon

reniot

nof

verheh ra

A0.

inefseiten dn rariuan

iritth

ono

parichantat

onstsetig

bytra

3aheels f n nt

onis

ot Fr e

iat.

niffees e dup

atiumndioteh rnleof

artc astratio

n tanenimov

y tat

a,e ly(0o

t pns)s d

Figinis io

itiec

td

uepriomd, one rees

f th

ticp

seaton

thnt

nt mevethte

, 3v

y, 0 (ovpr) ain

deg. nit

non

iact th

dise ron

m i

n d

essshe

clpre. tion

hetsSe er

he t

3bvo

o<

(veroanntep 3cutinen o

al o

hesstodut

coif cois

sps pe

lesesA

onr

e s oSe

(rn

e dth

b oluov< er ocndte

pen3aural

eeof

cof s

soo ucthont

onsspecpac

s ssAnn re

riorectre

nedi

he

aumveA

=t

ced erenda rvl

edf

omf tsp

olugcthencthnsolctaron

asunho

ea

igr atiepedime

anmer A0

= timssgesd re

vean

dedth

mthpeut

gyptioerecee sulut tranc

arurehyf

ach

gharon

prd omeeff

nde

r0, 1)mse

gypstio

eaes nhd he

mpe eetioponefen

vumutito

amce

ree ydthhe

ht ren,

resonenffe

d 3fth).

me espinonac

ehyf

e p

pod

edonsun fontrvampio

o gmeen

a

drhees

he k, tsenlnsec

3cfraheS

Ac

osu

ngn tchexydfopr

osdimd n. umd

oreraalupt

ongyetent

aanrite s

hakethenlysiocts

c ace <

Ascuofumg th

h axhdror ro

itmoA

mdue

atiuetio

n ypertra

ssndte ioc

anephentey bons

shctid

< 0s urf amth

heabhibrit

toc

tiome

f A

m fue

rioe onc

psr at

sud 2

sonceq

nd pte eedbynlo

hoiodim0.m

rvan

m phae ibobitethce

onen

gt foe treon

on

causu

tio

um20stansq,G

d st cevd y lesf

owonm.0

mee

nhprat inouit c

he ess

n (nsigyh

ormtoemn oof

ous

um ton

me0 ars iG,

sidcovobt

ss

wnsme04en

ehyre

tnitut

aco

ss

(ioyphigm

o maof

f ocse

m thn.

ed°

rtsin

deonolbyths pA0

w t o

en4, ntiexydcithtiath

abonsyin

A

onpsugh

maanaif cces(F

hu

d °Cs n tg

e nsluy the pa0

thofnsiio

xhdriip

he alhebonteysnc

A0 nleumh atinhng

icus Fius

tC,

toth

gyp

ostatithi

aran

hef aioA0

onhibite

pitm

l ae ouentecr

=esmv

iohys

gypis

ur a ig d

tog

o hep

of anon

heinrand

e canon0 +

nebie tamans

ut ntemre

= ss

m vaonyd

op lrp

g. de

o gyd

e ssu

f Ent n

e nitamd

conhnle+

editsd

atimanhamt

t m as

S

s pfo

alun odronsulorepr4

et

bypdissoum

Eqio

ditia

me

onhyes

d is

disioxihymthA

tse

S paforueocritnlumowelaro

4aer

bep-s-o-m

q.inofi-ale-,

n-y-ssS

ina

s-oni-y-

meheA0

toes

=a-r-esc-telymw,a-o-).r-

e

m

n f

l

S n a

n

e e 0

=

s

e y

m

Page 7: Simultaneous anhydrite dissolution and gypsum ... · that leaching of gypsum may occur at a later stage be- ... two cases of initial porosity: a very high initial porosity (which

Fad

4Pcsaintedcser

Figanhdim

4.2Pocosoannien

dricospexrea

g.hym

2.oronlu

nditintit

onec

xtrac

3yd

men

. ou

nteutd aiat oe

ncecirech

3.drns

usentioa al ofm

enifiemhin

Sritsio

Ps ntsonpw

f mnt

ficmeng

Sote on

Poms.n powaa

mutrac e g

olv

nl

orme (croats

ustatsucth

lutvoes

roedAchoutersot tiourashe

tioluss

oudi

A hausr

olub

onrfasee

onum ti

usia

pars mc

utben faceseq

n meim

s mr

poracmon

tio dvces, qu

we fme

mreosct

mentondi

vae aui

wifre

meepssiteedten, isluo

allili

ithrac

edreib

eridiuen

assoueof l oib

h ct f

diaesbleizumnt)a role.

tofbri

io

for

a see

zedm) relvT

thf iu

W

onr

ntq

d m (

iselveThe th

um

W0 n a

t qu

b(cs tatd

hia

hem

=an

muabychthtiv

is ane c

= nd

mialiy

harhaveinc

nhan

co

96d,

ixitara

at,eln cauhynh

on

6%(c

xtuat

a hac, dlyous

ydhy

nce

%c),

urtivhi

ctedu

y lordse

driyden

%: , w

reveigerueladeesitedrnt

(aw

es e ghrize

argers re rittra

a)at

wd

h zeto

ger re(

teat

) Iter

widiin

edo e pto

ele(Ee mtio

Ior

ithiffnid b

thpo ev

Eqmon

onvo

h feitibyheorr

vaq. man.

n col

lereiay e rt

reaan1

ay

colu

loenl ah

tioac

nt 12y d

onum

wncw

a rhigonchc

2) di

ncme

w cewareghn h ch

sis

cene f

ine atelah oth

hansuso

ntfra

niberatwf heng

ucol

traac

itiber tivwa

the ge

chlv

atcti

iatwc

veathes

esh tve

tioio

l wecoelere sps thb

onn

weenty r an

pein

habe

n, o

waentel

conhci

n at,ef

(bov

aten enloonhyifth, ifor

b)ver

era

nt)wn-y-ficheinre

) r

r a )

w --c e n e

Fandi

OtetiHcicoicvre

ignhim

Onenio

Hyieoncaolel

g. hyme

n tnt)n

ydenntal lulat

4yden

th), p

drant tev

umtio

4. drins

het

pratw

envameon

Siteio

e othrotio

want,alue ns

Soe von

ote ceonat tuef

sh

oluvo

nle

thp

esn erthe. frahip

A

utoles

hepossor atI

acp

A0,c

tioluss

er ores wof ist tIt cti:

cri

onum

ti

he whf ths pthisio

it

n meim

hawhiheprhes on

we fme

anwailee ree aa

n

1

witfrae

datee e

esans

o

13

36

thac

, era

enen

nhsimf

36

6

h ctifo

inr m

anhntinthyma

6

W

ioor

n mhyiret iyd

mpan

W

W0

n r

a ma

yde in

driplenh

W

A

0 =aA

paydran

n titee

hy

= andA0

poy britnhthe mdr

W

9d,=

orbetehy

hec

mari

W 0

96, (

=

oue ce iyd

e sonattite

6%(cS

uscoisdrsynttee

1

%:),

S =

s on sritysteer is

1.2

: w

= 2

mnsstitete

ent

s

27

(awa2%

mesuille pemnt o g

76

a) ate%

eduml pprm dv

giv

6

Ier

%

diumeprreo

doveve

W

Ior v

umedreesuores

erien

W 0

n vo

md eseup

r, s if

n

0.

colu

m duenppfon

fy b

.

coum

(lurntpoorott

y

onm

lorint iosr at th

t

nceme

wnginsea ex

hatth

enfr

w wg

n tesgxct t

he

ntrfra

wth

th t

givceth f

raact

wahe

he thveeehefo

atitio

atee s

hatenede coll

ioon

erh

syt

n wd acrlo

onn

r chyystsuwa critow

(

, ov

coydrteuf

wacrtic

wi

(2

(bve

onra

emffiateritcain

7

b)er

n-a-

m.fi-ert-al

ng

)

r

r

l g

Page 8: Simultaneous anhydrite dissolution and gypsum ... · that leaching of gypsum may occur at a later stage be- ... two cases of initial porosity: a very high initial porosity (which

F(bo

Tcwpegba

Figb)

ov

Thcewhproexgabyan

g.)

ver

hernhioc

xcatey nd

5anr d

e cn icceeee th

d

5. nhdi

comh esedth

heof

Phyim

ommi

ass dshee f

Poydme

mixac

ws e inth

orodrien

mpxtuccwA

efnihe

ouite

nsi

uturco

wilA0

ffitie

use vio

tareordll 0,c

fecia

p

s mvo

onl

aties di

erit

ctl pa

meolle

iow

inent =t ov

ar

edluess

onwingnd= of

voam

diuums t

naith

g d 0

f olum

umme

tim

al h top

0.1inum

me

me fm

ea

o pr19nimete

m wfra

me

xanE

rem9.ti

me er

wiac

amn Eqm A

ialf

r

ithcti

min

q. maAl fra

h iofo

mpni

(atus mac

on or

pleti(2urin

mict(

W

a

esal

27ren xttio(F

W0 an

s ol

7) ely

thtuonFig

= nd

ofwm

y heurn g.

1d,

f twami

e re o

.

15(c

thate

mef lac

of 6

5%c)

heerant

ascof a).

%:, w

e pr cnsthst oman F

(w

prcos

he S

mpnhF

(a)wat

reontha

Sepohyig

) Ite

esnthaanecosydgu

Ioer

entenatnhtisitdriur

onv

ntntt hyiotioite

re

n cvo

t St th

ydnone 5

coolu

Se

hedr, n

5

onum

ecW

e ritw(A

s

nceme

ctW0

hte

weex

A0,sh

ene

tioo

hyc

e ixp,

ho

ntrfr

onof ydcoinprF

ow

rara

n f 0raonnvre

Figws

atict

co0.atntveessg.s

iotio

on1iotenstse 5th

onon

n-5

onntti-ed5)he

, n

-,

n t -d ) e

F(bov

coocotointinthA

igb)ve

omr omo nciootheA0

g. aer

m4

mz

con t e 0 (

6anr d

mp42

mper

om4

dp(p

6. nhdim

pu2.1plero

mp4.

deppropr

Phym

uta1%eto pl1 peocrov

ordr

men

at%teatler

encevi

roritns

tio%.

. Nt te

remndesid

outesio

onI

Nabe md ss de

us e von

naIn

Noboh

maod

ed

mvonl

al n toteou

hyainondud o

meolules

rthe ut

ydrn

n turof

edumss

esheth

t rav

thratf c

diums t

sue ha ativahe tico

umme

tim

ullaat=io

alii

onou

m fr

me

tsast t= onidinn ur

wfrae

s fst th1

n, d: nit

irs

wiac

fotw

he 1 aT

tiaine

thti f

or ww(

allThal nc

th

h onfo

wowa(Fl

hem

reha

W

n or

o at

Figth

e mmeaat

W0

aA

=categ.hem

mixast

0 =andA0

= asr 5e

maxxtuesA

= d,0 =

1 sec5coxiurs A0

1, (=

aesonc)othimrep

0 <

5%(c14

an, nt

). hemue pr<

%c),4.

ndhteW

erumcoac

%: w.1

d hyenWr cmomctA

(awa7%

A

ydnt

Witco

m cmticA0,

a)at%

A0 dra

thonco

mpcacr

) Iter

%,

=atW

tnconpoallrit)

Ior

= tioW bthcluncosily);

n voS

7onbe

he usceitiy

a

col=

.7n ece

sienioli

an

conlu7

7, re

coexiontroninnd

ncum70

1emomxcnran (ned t

ceme0.8

14mmeceps

ati(Farth

ene f83

4.2ma

espto

ioFirly

he

ntrfra3%

2,ins ti

of onigy

e m

raac

%

, 2nseqon

f Sn dg.

wm

tiocti

28s qun Sedo5w

ma

onio

8.inuao

ecoea)

witxi

n,on

3n-alofc-es);thi-

n

l f

s

h

Page 9: Simultaneous anhydrite dissolution and gypsum ... · that leaching of gypsum may occur at a later stage be- ... two cases of initial porosity: a very high initial porosity (which

mpm

5

Assdlitihtis

Amthrinabsli

Trthsc

c

Ecos

Ftifsgtuvacbti

mupama

5.

Asshsudraibio

haio

su

Acmahe

reang

anbesuin

c

Thregha

sibco

mc

Eqcm

onsen

Figio

forsligyut

veapceq

blyim

umaraax

s howumat

bronanonum

ccaxe acg

nhe rumne

mc

hegaanblon

max

qumax

nlynt

guonr igypte

eryppq,A

y me

mamxi

L

mw

m tioiu

n ndn m p

coxid

chto

hyre

meea

max

e larn le nce

x

uax y te

urn ora

ghpsues y

proA. se-

m mim

LI

mews

ponumre

d tofpr

orimdimheo

ydreaedar

x

lerdtht

en

atido

ed

reofap

htlumt

looaIlo-d

cometmu

IM

en wren m epthf re

dimumedErich

d a

eftdehetont

c

iodevond b

e f pilymthowacIn owde

onteum

M

ntwecpc

prhe

aec

inum

mend, Eqiteheinlg

t hde otra

eqc

onve

n by

7 id

m hewch

tweev

ncer m

MIT

tiowhcipprocores

cancip

ngm nsd

q. e edn ge

W

ha, briobat

,G

n (elth

y

s. d ghce

e w vhether

vel

cev

T

onhetpioc

onseconhypi

g c

sidc/

2w

d E

eb

W

anbeigbttio

G

(2loheth

shItgy

higeq,

liva

es hisr tlo

en va

TIN

nethitace

ncenonydita

tocoio/d

21wh

isEqbra

ndec

ghtaion

1

29ope he

hot cypgh,G

imal

ts cthop

ntr(s

alu

N

edheatesen

ntncdrat

o onn

dt a

his sqsai

d caht inn:

9) pin

ree d

owcapsheG. miluthca

hapm

raseue

NG

d er tiossnts enrittio

tncle=

anchso

s. ic

17

3

siauh

n

cngeldi

wsansuer In

itiueheas

an me

atieees

G

abi

on. Itrath

ntteon

thcees= 0ndh o 1e

72

36

idushaa

cog laim

s n bum

tn ins

seth

en

ioe Fs o

M

boit n Ifathetre, n.

e nts 0 d thlo

16eq

2

6

de e

anc

13

17

ond

atime

thbem tht

ngoeq

e, hent

onFiof

M

ovwth

f ttioe att

ptrpata

haow6 qu

tit

nd clo

36

72

nfiduiven

hee rp

hath m

of quthe t o

n igf F

ME

vewihathonli

tioth

paratpaapakas wan

ua

A

G

ert is

os

6

2

irmurive ns

e re

pranhism

f uihea

of

deg. Fi

EC

e,illat hen imonen

arti

arappkin

t, tnd

ati

rmissidse

mins

sio

mecrecn s

meilie anhf t

ep6ig

CH

tl d co

min n

ramonamlingtothd io

1

m s sdeed

msngspon

macocithca

ec

ibghyth

pea

g.

H

thb

decof itrth

mn mieg b

ha1

n

osoe.d-

G

A

s tg penl

axogipheas

chth

briypyde

ena4

HA

hebe eteongineahe

mec

ets.in

beat 17f

c

c

of om Tfo

G

A

thth

eele

ximgnpite se

hanheiupsdrh

ndan4a

AN

e a

erncgyngace

etrcm

te. Tnte

7)for

ma

eqc

c

f thmeThor

hahed ss

mnizta

ee, nie

umsurit

hy

dsnd).

N

manrmcenypg chp

ricmax

er Thtod lr

,

ax

q A

hie hirm

t e

os p

muzeatieqa

ism

m umte

yd

s od n

NIS

manhmintsum

hepr

c x

hio adislecm

A

isois

m

thh

ofpa

umedioquanm

mac

me ddra

onno

S

axhyintrum

mees oc

sse. is acsseama

c

s eord os

1

1

hehyf ar

m d tn

uilnhm. axco

m pdiat

nlote

M

ximydneratmec

tce

stueeAc

ccsoadax

m

e

c

c

eqdeobol

3

7

e mydthra

cth, lib

hyO

xionpristio

lye

M

mdris tio

m, chthes

udemAtcocolvs :

ma

,q G

querbslu

6

2

mdrheam

cohatthbr

ydOimncresoon

y th

muitthonth

hahe ss

dimst t

onouve

t

ax

G

uars seuti

maate me

ont heri

driOnmucecioln p

onhe

ume hen heani

s i

ies th

nduntedan

to

atio

ervio

axtiotw

ete

ncfoe umiten umntiplupr

n e

m d

e is

enis

sais

es to

heditt

d ndt

e

e

c

c

ioof vaon

ximonwer

cenorcm

me th

mtr

pitutiro

tag

cdids

n asmatu

g

oo e ptiothind th

,

,

eq

eq

onf matn

G

A

mn o r

ntr hma

m d

hem c

rattaiooc

thgr

coss

durcan

m.urgo

ofd

poonhan

he

,

,

G

A

n (matiofo

mupr

trhiax

cdise coti

ationce

he re

onsoralonh I

ratov

f deoin at oG

e f

(cagonor

umprre)

ratig-vcosso

ononio

n aess

dee

ncoluatoshyIftive

Sepnt(wthrd

Gfo

2

cma

gnn r t

e

e

c

c

m roea).

tioh vaonsoothncn

onans.

dim

enutioseydf oon

ern

Seent wwhedeoll

ax

nimth

eq

eq

cocct

on

aluncoluhece

on ind

imme

nttione tdronn ne

ectndwite erlo

1

x) itu

mahe

,

,

G

A

onestio

n -ueenuternofis d g

meen

tron

n otoritn c

ed

tid

whth q

r f cow

13

3

cudake m

ncsson

a-vesnttior trf c

go

ennt

atn of

o tte t

cod

ons

hec

qufocawi

36

6

andekem

ces ns

asvas tronh

rata

coov

nsw

tioo

f thd

thon

b

n soerec auanor anin

6

n e ses

ma

1

.

end

s

s aaluaratn

hanti

anonve

siowi

onorth

he dise

ncby

4lee acntc

n bng

.

bsmi

ax

.

ntdep

(r

a ueretiocndon

nhnsern

onith

n r ghe

esso

eny g

4,elycm

cctitcm

beg n

(

bemt im

(

rapre

fese on

cod,n ydidns

nlh

cgye heqsoothntgy

, y ma

coty

max

e no

(2

e dmal

pmu

(2

atenep

funs, onn n, c

drdes

leth

cm

yphy

quoluhetrayp

tho

ax

ordy ox taon

28

dille

poum

29

iondpre

nci.nlo

stfo

cm

rierath

sshe

max

p-y-

ui-u-era-p-

heonisd-ofto

as-n-

8)

s-ers-m

9)

ondse-

c-elyofti-

formax

tea-he

s e

x ----r --

e n s -f o --

-r -

m

n s -

-. y f -r x

e -e

Fra

F

astatosun

FcaperTfo

Fliraci2Etiustm

igam

Fo

s ako umis

Foatrore

Taol

Figinatip.4

Eqioncta

ma

g. me

ll

a ke1msm

r teocedakllo

guneste pit4)q. n ce

atead

7et

lo

ces d

m m.

es ced inow

urs c

ta. (o

eremde

7. er

w

cria

dep. F

t

esas

ngw

re c

coatiP3ofrtame f

Mr

win

ita vepreFr

>ths.s g in

oronioPo2)f aaienfo

M

ng

ervapeecro

> 5hat. Aain

ng

8 rr

nstonoin),aninnt

or

ax.

g

rioalencipom

5,t A

a cntg i

preta

n nt tnh

ntyt cp

xi

[8

onlundpi

m

c

c

, a

A crto in

prsp

anfots thhyy co

po

m

8]

n ue dinitaE

eq

eq

c

c

anrit

ane

repontsou

bhuyda

onoin

mu

] w

foin

ngat

Eq

,

,

q A

q G

bnh-vteaceq

eseons unbe

us drasncnt

um

w

forn g tioqs

A

G

behyva

ericcqu

F

enndfo

ndel

iritsocets

m

we

r thonon.

ecoydraliocoal

AF

ntd tord lointe ocernb

c

e c

thhen n,(2

13

17

omrilu

onoulit

0A

ts tor ainw

ndi

cini

be

on

co

hee w r

29

36

72

miteue n funtty

A

to ann

w dicis atin

etw

nc

on

e lin

whre9)

6

2

mee

ofot

y:

0A

thexnh

tth

cat

tengw

ce

ns

c

limnthees a

es d

ofor E

0

hisxthythheatithedg tee

en

id

cm

ce

mteetspan

ldisf

aEq

s treydhe e in

he d then

ntr

de

ma

eq,

mitrv

thpecnd

G

A

esssmanq.

5

k

cemdr

llo

ngl

when

rat

er

ax

A

tinva

herct

d (

G

A

ssso

minh(

5Gk

k

comitlitowg lim

wite lth

tio

th

ngal r tiv(3

s tolun

hy2

G

Ak

onme te tewcomthlimhe

on

he

c

c

g (anve30

1

thutim

yd0)

A

ndcd

erawer

onmith me u

n

e

ceq

ceq

m(0nhel0)

1

hatiomudri),

A

G

ditcodisatr ndtinth

mitup

c

v

q,G

q,G

me, hylyw

1

anonumitet

F

tioomsstuli

dinghetinpp

cma

var

G

G

ec1yd,

we

n 0n me th

SF

onmbsoureinitig e ngpe

ax

ri

,

ch) dris

e

0.r

m d

his

S

n biolue neiomr

g er

x o

iab

haw

rits ob

1

3rep5

diss

S

ginut(

e aonmeram

r a

ov

bl

anwhtet

bt

(pr csscr

.

grnattio(cfar

ns ecatemean

ve

le

nishie dthta

1

(Frecasori

raptionf.rew

che ec

nd

er

e

smchdie

ain

1

.0

Figesanoluite

phonn

e wha

cchd t

d

,

m.h iss

ln:

1

07

g.en

n uter

hinsaSceh

ancohath

dim

, d

. Tissolim:

7

. 7ntthtiorio

ics

anecererisn

anhe

m

de

Ths olm

7)tshuonon

cao

nd ctrtaresmst

nis l

men

ef

hicl

lumit

), s tusn n

allof

gtioaie m.tasmow

ns

fin

islo

utitin

.

wths dle

lyth

gyoninth. Danm w

sio

ne

s posionng

whheb

doea

. heypnsn theD

ntsc

we

on

ed

paern g

hie e

omad

Te pss toe

Dus, caer

nl

d a

arr om

iclic

mids

Thre

su2

o d

ue a

anli

les

as

amto

orm

h imcoint

heea

um.3sa

dist

a nnin

ss

s

(

mo r gec

(

imionnato

(

e ac

m 3 atsstoc

none

s p

(3

me0 gych

(3

nitinsnc

o t

(3

twctipra

tiso

o tcleot .

pa

0

eteo

ypha

1

diinidceth

2

wiore

ansflutheab

a-

)

erorp-a-

)

i-ngd-e.

he

)

woone-ndfyu-hearbe

-

r r

g

e

o n

d y

e r e

Page 10: Simultaneous anhydrite dissolution and gypsum ... · that leaching of gypsum may occur at a later stage be- ... two cases of initial porosity: a very high initial porosity (which

Ffo

Aoaisv2pF

6

AcaloFw

Tconin

Ih

t

Figfor

Acovams

ve20paFig

6.

Afcoanon

Figwi

Tacuof nong

n hy

ht

g.r g

ccvemo

trein00artg

fteonnhngguith

d

d

akurvf aot g

tyd

8gy

coeraouruns0 mtic. 8

H

erncehygeurh

A

d

kinveanba

th

dra

8.yp

oralunues mcl8)

HY

r ten

ydrerre

A

nge nhbeapp

e at

k

Sps

dill nte i

amm

le).

Y

thntrir pesA

g (F

hye hpr

ptio

Ak F

Suum

inp

ts if at m,s

YD

hetraitepe 3

A

0

inFi

ydhiro

pron

A

AF

urm

ngprtoal

aw

DR

e vate er3b

ntig

driigox

rescn

0

A

AF

rfam g

g troo

anleanwi

R

vetiod

riob

tog. ite

ghxim

secrit

ti

0

acgr

tooce

anhyas

ndith

RA

erondeodaA

o a3e erm

ent),im

c

c

ce row

o Fes

a mydst

d gh

AT

ryn,ecd, an

A 0

c

acb thr

ma

nc, w

me

e

e

c

c

aw

Fissmdrt gya

T

y s t

cred

nda

e

e

c

c

cc ahath

ati

cewe

,

,

eq

eq

arwth

igs,

mari1ypa

IO

shtheadod 5an

,

,

eq

eq

coanat haio

h

owe

,

,

A

G

eah p

gui

axte0 psm

O

hoheasoe5bnd

A

G

ound

canon

h

ofo

a pe

ureif

xime o

msu

ma

ON

orte rsees b)d

und 5can n (

f aob

1

oer

e f tmocm

umax

N

t ras n

) c

1

nt 5b

an (lo

m

a bta

1

f r u

8th

mumcc

mmm xim

D

inate

inoan

c

1

thb)b

ow

mi

suai

aun

8, hemcum fm

DU

nie is ot nd

2

he) abecw

in

ufin

2

nhnit

ae m ur

tformu

U

tia

dd c

e ase hcrit

wer

n

ffn f

hyt o

anhao

rs thrm

um

UR

ialat ap

dec

cm

e

e

c

c

sls whyt (r

A

dd

ficfro

c

c

ydof

hyanhf –

hicmm

RA

l w

ppp

ca

ax

,

,

eq

eq

ligwyd(Eb

0A

dd

ciom

eq

eq

c

drf r

ydhy1

– fckatr

AT

pwhpren

an

x

, A

G

ghwedrEqou

0 ,

A

enm

,

,

q A

G

iteoc

dryd0fok,tiora

T

erhirond

n b

htll raq. un

A

ntm E

A

G

e ck

ritdr -

or , ondi

TIO

rioicoxd be

t ca

ate2

nd

0

0

A

t Eq

ok v

terit- espn iu

O

odchximoe

cuased27d)

0,

0

cr

quqs

ovvo

e dte10expata

us

ON

d h tm

of o

17

13

ur t

d i7)) f

rit

uas.

1

1

verol

die 00

xaacaks o

N

wth

math

ob

72

36

rvthin, fo

an (

17

13

r lum

iss

0 amcekeof

wiheatehebta

2

6

vate

n aw

or

.

nt(3

72

36

sum

sourm

mpedesf

ithe velye ai

A

G

k

k

tuf

a wer t

tit4

2

6

k

k

urme

olrf

m2

pld s p1

h voy vin

A

G

urfacc

e ohe

ty),

A

G

k

k

rfa.

lufa2/me a

pl m

thol

cal

ned

e ctloobe

y o, (

A

G

ac

utiacem–

at lam

helucolud

0A

S

ot tosbth

of(3

ce

ioe

m3 – i

ace

mm

e umonue

f

0

S

F

F

of thsetahy

f w33

0A

S

a

onao

inape

m

ramense ofro

A

S

F

F

f thatd in

yd

w)

0

S

F

F

ar

n garofn tppo(

ape staofom

0

tht ts

n dra

waa

A

S

F

F

rea

goref rth

proon(P

pifranf m

e th

sythat

atean

0A

S

a

ova roheox

n sPo

idfrantS

m E

2

heysthetio

ernd

av

ve

oce fxispoin

dlyact S/E

.

A

e atee fon

r ((

2

va

ernkfoimphnt

y ctioA

Eq

A oamemfon t

(s(1

.

ai

ns.

ormmahet A

riio

ovA0

q.

(

ovmm olltim

(

o 9

(

ila

s FTmatriA

isonver0 ((

(3

vemou

clom

(3

t)

(3

ab

thF

Thm otelic

A i

inn or se16

33

er unan

owme

34

thth

35

ble

heFhisoflyalin

ngofa

ee6)

3)

ntn-w-e:

4)

hathe

5)

e

e s f y l n

g f a e )

t --

t e

Fan

Iffo

Alybshspd

Dhpto

7

Aandsuhbdgishpshodthgbth

ignh

f, or

Acy uthope

dif

Deydreo

.

A nd

devulase

driats etarhof

depheypy he

g. hy

ar l

ccpt owecffe

epdrecse

md veltss t

itetiointertowa

pee psd

e i

9yd

adla

coprodwcifer

pericipev

C

moth

els. b

the onn eroicwanensusudiin

9. dri

ddarg

rdopoe

ws fire

ntepive

CO

odhelo

Bbehe

dnsf

ogcle

wn nhndurumisnit

Hite

itge

dipoest

ic en

die Fitaer

ON

dee

opBen l

diss forgeest

hydirfmsotia

Hye.

tioe

inors th

st

inFatal

N

el pedan limsshrmens th

ydrng

facm c

olal

yd

on

ng rtine sura

ngFA0

tiol y

NC

fpred sep

msohavmnew

hatrig cecrlul v

dra

na v

tiooth

urfat

g o0 aonye

CL

foeca

edpr

mitluve o

eowit iteo

e ryutivo

at

allva

t

o ont hyfaio

onann ea

L

or ciand rotinute of

ouththe onostiool

tio

lyalu

ht

thnade

ydacos

n nd

ar

LU

tipnd

opng

tios

f us h hem

n tof tan

lu

on

y, ue

hial ep

drce s o

thd SFrs.

US

thit

d conosg onhvga

e tmith

f tal ,

um

n t

thes

isto

peata

of

heoFS

.

SI

hetatca

n psem

n ow

veigya mtimighethgth

me

tim

hes)

k

s eo entioarf t

e n

FS,

IO

stialpedmanwinypmm

gh ie

grohee f

m

e p),

Ak F

eqt

ndon

reath

intt

ON

sionibar

d me

ndwnnsps

mameht in

mowe fr

me

pr

A

AF

quthd n a

he

nithth

N

imn brrainchd

n ts msuaxe rvitmwth

rac

t

ro

0

A

AF

uahe ont(Fin

itie

he

NS

muo

ratamn hag

thm

umimre

vatia

minth

hyct

th

oc

0

atis

n timFA

ni

iaah

S

ulofte

meoangyhamom mueqaryal neh. ydtio

o

ce

c

iospit

mFA0

iti

al avhy

taf gedetordniypat ore

gum

quy s

erM

draon

ov

ess

ec

onpetse 0) ia

svayd

angyd wtrideismpsthe

grom

uirb

sual

Matn

er

s

,eq

n, ecs v

to

al

pil

dr

neypwicerm

suhit

owm rebyurfls

Motioo

r

is

A

c

thifvoth ofs

ecab

rat

eops

wit sr

m umis thwra

edy fa areonf

in

s d

eqc

heficola

f tur

cibltio

ousuthstfod

m i

hanwthad

d fm

acaveon an

nit

di

,q A

c

e hc luas thrf

ifileon

us umh etuordu

pis n h difo

mae vaovtinh

tia

is

A

eqc

hysu

um a

hefa

fice sn

dm ex

udr auripre

t1tau

or ana

ailveimhy

al

so

,q G

ydur

mea

e aace

c ssut

diin

xidieaninecth10aks t

nyarela

er,meyd

s

ol

G

drrfe fu

anes

suurak

ssn istesnhngcipe 0 keo

thy oeaab, fe dr

sp

lu

rafafr

funnhs a

urrfake

soatin

s, hyg picm

esof e ora oblefod

rit

pec

uti

2

.

aticeranchyar

rfaaces

olua cnga

ydsiitacamms pf 1

crdofe ordote

ci

io

.

ioe

actctydre

acces

utclg

a drimat

asempl1 codef fo

r soee.

ifi

on

n o

tiotiodriea

cee afr

tioloesi

ritmutioe

m tlam

omersth

forsyes

ic

n c

tof ononiti

as

e aarro

onoseeximte ulonwth

acmmmps her

ysn

s

co

imf an n ic

arreom

n ed

xpmp

dltan.whhicce mplo

e ahteno

su

on

mano

c pA0

rea

m

od pepldian T

hecko

m. letof an

heemot

urf

ntr

e nhA

of pa0F

ea fs

ofsrileissneThenk onI

tef mnhte

mst

fa

ro

ishy0.

f tarFA

oforom

f yime soeohe

n a

n It e hmhyers de

ce

oll

s yd F

thrtiA0

ofr m

anst

mecooloue an

anshhy

maydoggep

e

le

indrFi

he ic/

f tg

me

nhteenonut

us in

nhndph

haydgn

drgeovpe

ar

ed

nvitig

icleS

thgype h

hym

ntndtia

nvhy

d he

as drniitenveen

re

d (

(

vee

guinesSF

hepho

ydm aldionanveydwerb

raitute neernd

ea

(i.

(3

ersF

urenits fFS.

asuou

drwl ritin nhesdr

whricbeatiuda

eornd

o

.e

6

seFA

e tiafo.

anumur

ritwareiot

hystirithecaeeiodeanouneo

of

e.,

)

e-A0

9alor

n-mrs

tease-ontoy-i-teenalenone,

ndusedon

f

0

l r

m

e

n o

e n l n n

d

d n

Page 11: Simultaneous anhydrite dissolution and gypsum ... · that leaching of gypsum may occur at a later stage be- ... two cases of initial porosity: a very high initial porosity (which

REFERENCES

1. Azam, S., S.N. Abduljauwad, N.A. Al-Shayea and O.S.B. Al-Amoudi. 1998. Expansive characteristics of gypsiferous/anhydritic soil formations. Engineering Geology, 51, 89–107.

2. Anagnostou, G., E. Pimentel and K. Serafeimidis. 2010. Swelling of sulphatic claystones – some fundamental questions and their practical relevance. Geomechanics and Tunnelling, Volume 3, No. 5, 567–572.

3. Anderson, G.M. 1996. Thermodynamics of Natural sys-tems. University of Toronto, John Wiley and Sons, Inc.

4. Appelo, C.A.J. and D. Postma. 2005. Geochemistry, Groundwater and Pollution. 2nd ed. Rotterdam: A.A. Balkema.

5. Freyer, D. and W. Voigt. 2003. Crystallization and Phase Stability of CaSO4 – Based Salts. Monatshefte für Chemie 134, 693–719.

6. Kontrec, J., D. Kralj and L. Brečević. 2002. Transfor-mation of anhydrous calcium sulphate into calcium sul-phate dihydrate in aqueous solutions. Journal of Crystal Growth. 240, 203–211.

7. Schaechterle, K. 1929. Die Dichtung und Entwässerung des Schanztunnels bei Fichtenberg. Erprobung eines neuen Verfahrens. Die Bautechnik, Heft 7, 624–627.

8. Serafeimidis, K. and G. Anagnostou. 2012. On the ki-netics of the chemical reactions underlying the swelling of anhydritic rocks. Eurock 2012, Stockholm. In Press.

9. Lasaga, C.A. 1986. Metamorphic reaction rate laws and development of isograds. Mineralogical Magazine, Volume 50, 359–373.

10. Lasaga, C.A. 1998. Kinetic Theory in Earth Sciences. New Jersey: Princeton University Press.

11. Mullin, J.W. 2001. Crystallization, 4th ed. Butterworth–Heinemann.

12. Nancollas, G.H. and N. Purdie. 1964. The kinetics of crystal growth. Quarterly Reviews Chem. Soc. 18, 1–20.

13. Steefel, C.I. and P. Van Cappellen. 1990. A new kinetic approach to modeling water-rock interaction: The role of nucleation, precursors and Ostwald ripening. Geo-chemica et Cosmochimica, Volume 54, 2657–2677.

14. Steefel, C.I. and C.A. Lasaga. 1994. A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with application to reactive flow in single phase hydrothermal systems. American journal of Science, Volume 294, 529–592.

15. Atkins, P. and J. de Paula. 2006. Atkins’ Physical Chemistry, 8th ed. Oxford University Press.

16. Langbein, R., H. Peter and H. Schwahn. 1982. Kar-bonat und Sulfatgesteine. Deutscher Verlag für Grund-stoffindustrie, Leipzig.

17. Barton, A.F.M. and N.M. Wilde. 1971. Dissolution of polycrystalline samples of gypsum and orthorhombic forms of calcium sulphate by a rotation disc method. Trans. Faraday Soc. 67. 3590–3597.

18. James, A.N. and A.R.R. Lupton. 1978. Gypsum and anhydrite in foundations of hydraulic structures. Ge-otechnique 28, 3, 249–272.

19. Lasaga, C.A. and D.M. Rye. 1993. Fluid flow and chemical reaction kinetics in metamorphic systems. American Journal of Science, Volume 293, 361–404.

20. Brantley, S.L., J.D. Kubicki and A.F. White. 2008. Ki-netics of Water–Rock Interaction. Springer.

21. Mäder, U. 2011. Personal Communication. 22. Amstad, C. and K. Kovári. 2001. Untertagbau in quell-

fähigem Fels. Schlussbericht Forschungsauftrag 52/94 des Bundesamtes für Strassen ASTRA.

23. Liu, S.-T. and H.G. Nancollas. 1970. The kinetics of crystal growth of calcium sulfate dihydrate. Journal of Crystal Growth 6, 281–289.

24. Smith, B.R. and F. Sweett. 1971. The crystallization of calcium sulfate dihydrate. Journal of Colloid and Inter-face Science, Volume 37, 3, 612–618.