simulationbased/approachesfor//traffic...

79
Northwestern Engineering Simulationbased Approaches for Traffic Estimation and Prediction in Networks: Models and Applications Workshop II: Traffic Estimation Institute for Pure and Applied Mathematics, UCLA, October 1216, 2015 Hani S. Mahmassani

Upload: others

Post on 17-Aug-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

Northwestern Engineering

Simulation-­‐based  Approaches  for    Traffic  Estimation  and  Prediction  in  Networks:    

Models  and  Applications  

Workshop  II:    Traffic  Estimation  Institute  for  Pure  and  Applied  Mathematics,  UCLA,  October  12-­‐16,  2015  

   

Hani  S.  Mahmassani    

Page 2: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

OUTLINE  

§  Background  and  Mo-va-on  §  Methodological:    

ú  Framework  and  structure  of  simula-on-­‐based  TrEPS  ú  O-­‐D  es-ma-on  and  predic-on  framework  

§  Integra-on  with  predic-ve  control  ú  Problem  formula-on  ú  Iterated  solu-on  method  

§  On-­‐line  Applica-ons:    ú  Applica-on  I  :    Dynamic  an-cipatory  pricing  ú  Applica-on  II:    Weather-­‐sensi-ve  Signal  Control  and  Applica-on  to  

                       Salt  Lake  City  Riverdale  Corridor  §  Concluding  Comments  

 2  

Page 3: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

§  Focus:    Es-ma-on  of  traffic  state  in  large  networks,  in  real-­‐-me,  and  short-­‐term  predic-on  of  future  states  to  support  system  management  and  control.    

§  Why  do  we  need  to  es-mate  current  traffic  state  if  we  have  observa-ons?    ú  Limited  sensor  coverage,  probe  data  only  par-al  (and  lagged)  ú  As  basis  for  and  ini-al  condi-ons  for  predic-on  

§  Why  model-­‐based  es-ma-on  and  predic-on?  ú  Pure  data-­‐driven  approaches  not  robust  when  system  deviates  from  

historical  paQerns  ú  What-­‐if  analyses  require  correct  physics  and  behavior  

§  Why  use  simula-on  models  in  es-ma-on  and  predic-on?  ú  Complex  interac-ons  in  networks  preclude  simple  analy-cal  models  ú  Need  to  capture  traffic  and  other  controls,  informa-on  strategies,  user  

behavior  explicitly  ú  Combine  structural  model  representa-on  with  sta-s-cal/AI  models  (hybrid)     3  

Motivation  and  Background    

Page 4: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

Traffic  Estimation  and  Prediction  System  (TrEPS)  

ESTIMATION   PREDICTION  

Current  traffic  conditions  

Prediction  (no  intervention)  

Prediction  (with  intervention)  

4  

Page 5: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

5  

Real-­‐time  TrEPS:  DYNASMART-­‐X  

RT-DYNA

: Estimation of current traffic conditions

P-DYNA_0

: Prediction

(no intervention)

P-DYNA_1

: Prediction with strategy

(with intervention)

Time-dependent density profile

for a selected link

§  Rolling  horizon  (RH)  approach    §  Enables  parallel  execu-on  of  

alterna-ve  interven-on  scenarios.  

§  Displays  various  compara-ve  sta-s-cs  through  the  GUI.  

§  Supports  decision  making  in  on-­‐line  traffic  management  by  showing  the  effec-veness  of  an  interven-on  in  real-­‐-me.  

Rolling Horizon (RH) - RT-DYNA: Update state estimates every 30 sec. - P-DYNA: Project 1-hr future state every 5 min.

Page 6: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

Real-­‐Time  Dynamic  Traffic  Assignment    System  Architecture    

Predicted  System  State  

   

Traffic  State  Estimation  

(DTA  Simulator)  

Traffic  State  Prediction  

(DTA  Simulator)  

 

Consistency  Checking  

Traffic    Network  

Surveillance  (TMC)  

 Probe  Data   OD  

Estimation  /  Prediction  

DYNASMART-X

 Traveler  

Information    

Traffic  Control    

Predictive  Pricing  

 

TRA

FFIC

SY

STE

M

   

Page 7: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

§  Two  major  outputs  in  real-­‐-me:  

ú  Es)mates  of  current  network  traffic  condi-ons;  

ú  Predic)ons  of  network  flow  paQerns  and  travel  -mes  over  the  near  and  medium  terms  in  response  to  various  contemplated  traffic  control  measures  and  informa-on  dissemina-on  strategies.  

DYNASMART-­‐X  

7  

Page 8: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

Consistency Between Measurements and Estimated Model Values

RealityDTASystem(simulator)

Measurements

Page 9: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

Sources of Error

§  Time-dependent OD demands §  Incidents and other disruptions §  Path selection and other assumptions concerning

user behavior §  Traffic modeling and propagation §  Online measurement errors

return

Page 10: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

Rolling Horizon Approach

Roll Period (l units)

Δ (Assignment Interval)

Stage Length (h units)

Stage σ = η+1

η.l+1 η.l+h η.l+l

Stage σ = η

Page 11: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

Rolling Horizon Approach (cont’d)

§  Distributed Multi-Horizon Asynchronous Framework

State Estimation State Prediction

Short Term Consistency Checking

OD Estimation

OD Prediction

Long Term Consistency Checking

OD Estimation-Correction

Page 12: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

Why OD Demand? §  OD Demand: Trip desires from origin i to destination j §  Essential input for traffic assignment systems to support

transportation network planning and operational decisions e.g. traveler information, route guidance, traffic control, road pricing, network

evacuation

Network

Traffic Assignment

Performance Measures

Traffic Control Information Supply

OD Demand

Page 13: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

§  Given: ú  Traffic network ú  Historical demand matrix d(i,j,τ) obtained from off-line estimation ú  Link observations c

(l, t)

§  Estimate time-dependent OD trip demand patterns for the current stage

§  Predict OD demand volumes over the near and medium terms

Problem Statement: Dynamic OD Demand Estimation and Prediction

Time

minutes 5=l

minutes 20=hStage length

Roll period

Stage mStage m+1

Stage m+2Stage m+3

……

……

A

ITS Real-Time Measurements

Page 14: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

Some Existing Dynamic Origin-Destination Demand Predictors

4 AM 5 AM 6 AM 7 AM 8 AM 9 AM 10 AM

True Demand

True DemandPrediction

4 AM 5 AM 6 AM 7 AM 8 AM 9 AM 10 AM

4 AM 5 AM 6 AM 7 AM 8 AM 9 AM 10 AM

4 AM 5 AM 6 AM 7 AM 8 AM 9 AM 10 AM 4 AM 5 AM 6 AM 7 AM 8 AM 9 AM 10 AM

4 AM 5 AM 6 AM 7 AM 8 AM 9 AM 10 AM

Random  walk    Cremer  and  Keller  (1981,  1987)  Chang  and  Wu  (1994)  

Polynomial  trend  Kang  and  Mahmassani  (1999)  

Historical  average  +  auto-­‐regressive  (AR)  

Okutani  and  Stephanedes  (1984)  Ashok  and  Ben-­‐Akiva  (1993,  2000)  

Regular  Conditions      

Structural  Changes      (e.g.  snowstorm,  rain  storm)  

Page 15: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

Real-­‐Time  Demand  Prediction  using  Structural  Model      (Zhou and Mahmassani, 2007)

4 AM 5 AM 6 AM 7 AM 8 AM 9 AM 10 AM

4 AM 5 AM 6 AM 7 AM 8 AM 9 AM 10 AM

True Demand

HistoricalAverage

Deviation fromHistorical Average

Prediction Based onDeviation

Final OD Prediction

4 AM 5 AM 6 AM 7 AM 8 AM 9 AM 10 AM

4 AM 5 AM 6 AM 7 AM 8 AM 9 AM 10 AM

4 AM 5 AM 6 AM 7 AM 8 AM 9 AM 10 AM

True Demand

HistoricalAverage

Deviation fromHistorical Average

Prediction Based onDeviation

Final OD Prediction

4 AM 5 AM 6 AM 7 AM 8 AM 9 AM 10 AM

Prediction Based onDeviation

True demand = regular pattern + structural deviation + random fluctuation

),,(),,(),,(),,(~

ττττ εµ jijirjiji dd ++=

Regular  Conditions     Structural  Changes  

Advantages  of  systematic  integration    q Reduce  the  order  of  the  polynomial  trend  model  and  q Decrease  the  demand  prediction  variability  and  computational  complexity  

Page 16: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

Kalman Filtering Formulation: Transition Equation for Polynomial Trend Model

Assumption: Deviation at time τ + ζ can be adequately represented locally by an m th-order polynomial function near time τ for a small value of ζ, for p > m.

mm

ppj bbbbb ζζζζµ ζτ +++++=+ !!2

210),(

Estimation Stage(l intervals)

Time Lag(q intervals)

stage kPrediction Horizon

(h intervals)

Time Axis

Departure Time Intervals

Estimation Stage(l intervals)

Time Lag(q intervals)

stage k+1

Prediction Horizon(h intervals)

kj

j

j

⎥⎥⎥⎥

⎢⎢⎢⎢

''),(

'),(

),(

τ

τ

τ

µ

µ

µ

1

''),(

'),(

),(

++

+

+

⎥⎥⎥⎥

⎢⎢⎢⎢

klj

lj

lj

τ

τ

τ

µ

µ

µ

0=pb

Page 17: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

Kalman Filtering Formulation: Measurement Equation

( ) ),(,

1

),,(),,(),,(),( tlji

s

qjijitltl edpc +×=∑∑

−=++

ζζτζτ

c(l,t)                                  =  link  observations  on  link  l  at  time  t                                                    =  Traffic  demand  from  OD  pair(  i,  j)  at  time  τ+ζ                                                      =  Link  proportions  (assignment  matrix)    fraction  of  vehicular  demand  flow  from  OD  pair(  i,  j)  at  time  τ+ζ    contributing  to  the  observation  on  link  l  at  time  t    e(l,t) =  combined  error  terms  in  the  estimation  of  link  observation  due  to  inconsistencies  in  assumptions  about  traffic  assignment,  traffic  control  and  flow  propagation,  as  well  as  measurement  noise.  

),,(),,( ζτ+jitlp

),,( ζτ +jid

Sensor  reading  =  Mapping  matrix  ×unknown  demand  +  Sensor  noise  with  covariance    

Page 18: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

Kalman  Filtering  Formulation  and  Algorithm  

kkkk vZHY +=kkkk wZAZ +=+1

11,1, )( −−− += k

Tkkkk

Tkkkk VHPHHPK

)ˆ(ˆˆ1,1,, −− −+= kkkkkkkkk ZHYKZZ 1,, )( −−= kkkkkk PHKIP

1,11,ˆˆ

−−− = kkkkk ZAZ kkkkkkk WAPAP +ʹ′= −−− 1,11,

mmj bbbb ζζζµ ζτ ++++=+ !2

210),( ( )∑∑−

−=++ ×−=

ji

s

q

rjijitltltl dLPcy

,

1

),,(),,(),,(),(),(~

ζζτζτ

§  Formulation Transition Equation Measurement Equation

q Algorithm ú  Estimation Step

-­‐  Calculate weighting matrix -­‐  Update a posteriori mean and covariance estimates

ú  Prediction Step -­‐  Propagate mean and covariance estimates

Page 19: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

§  Realizations ú  Initial estimate for the regular demand pattern could be

unreliable due to limited sample size ú  Normal daily pattern could evolve smoothly due to day-to-day

demand dynamics §  Goals

ú  Optimally update the a priori estimate of the regular pattern using new real-time estimation results and traffic observations

ú  Adaptively recognize and capture the systematic day-to-day evolution

ú  Maintain robustness under disruptions due to special events.

Adaptive  Day-­‐To-­‐Day  Updating  of  Regular  Demand  Pattern  Information  

Page 20: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

Kalman Filter for Day-to-Day Learning Framework (Zhou  and  Mahmassani,  2007)    

Transition Equation: Measurement Equation: where

d = index for day = state variable vector of regular OD demand pattern on

day d = day-to-day evolution deviation on day d = vector of the real-time demand estimate on day d = measurement error matrix on day d

rdD

dD̂

drd

rd DD ξ+=+1

drdd DD η+=ˆ

Page 21: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

Optimal  Updating  Formulation  

§  Computation of a priori estimate: The a posteriori estimate on previous day d-1 is used as the a priori estimate for current day d.

§  Real-time OD estimation and prediction to obtain §  Update of gain matrix, a posteriori mean and covariance

rrdddd

DD1,11,

ˆˆ−−−

=

rddD 1,1

ˆ−−

ddddd Q+Σ=Σ −−− 1,11,

11,1, )( −−− +ΣΣ= dddddd RK

)~ˆ(ˆ)ˆˆ(ˆˆ1,1,1,1,,

rdddd

rrdd

rr DDKDDDKDDdddddddd −−+=−+=−−−

1,, )( −Σ−=Σ ddddd KI

dD̂

Page 22: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

Heuristic  vs.  Optimal  Updating  Methods  

§  Simple Moving-average formula (Ashok,1996) where constant α ∈(0.1)

§  Optimal Updating formula

where

ú  Take into account covariance/uncertainty of real-time estimates ú  Can be viewed as a moving average method with adaptive weights, depending

on the respective reliability of the a priori and real-time information sources ú  Reduce uncertainty of a priori estimate for the regular demand pattern, after

incorporating additional information from the new real-time estimation result

)ˆˆ(ˆˆ1,1,,

rd

rrdddddd

DDDD−−

−+= α

)~ˆ(ˆ)ˆˆ(ˆˆ1,1,1,1,,

rdddd

rrdd

rr DDKDDDKDDdddddddd −−+=−+=−−−

11,1, )( −−− +ΣΣ= dddddd RK

Page 23: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

Data  flow  for  OD  Estimation  and  Prediction    

Off-line Dynamic ODDemand Estimation

Achieved TrafficMeasurements

Historical Static OD Demand

DYNASMART-P

On-Line TrafficMeasurements OD Demand Estimation State Prediction

P-DYNA

Historical DynamicOD Demand

State EstimationRT-DYNA

DynamicOD

DemandOD Demand Prediction

Link Proportions

Consistency Checking

Archived Traffic

Page 24: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

o  Irvine  network  overview:  n  326  nodes  and  626  links.  n  70  actuated-­‐controlled  urban  

intersections.  n  61  traffic  demand  zones  

Application  to  Irvine  Network  

n  Morning  peak  period  (4:00  AM  –  10:00  AM)  

n  30-­‐second  observation  intervals  on  19  freeway  links  

n  5-­‐minute  observation  interval  on  28  arterial  links  

Estimation Prediction Clock

Information

Page 25: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

Online  Estimation  vs.  Offline  Estimation  

Example 1: (Density)

Example 2: (Density)

real-time consistent checking and OD estimation/prediction

With Without

Page 26: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

Polynomial  Trend  Model  

-200

0

200

400

600

800

1000

1200

4:00 5:00 6:00 7:00 8:00 9:00 10:00

Time Axis

Dem

and

Estim

ates

A Priori Estimate for Regular Pattern

Deviation from A Priori Estimate

Real-Time Estimate = A Priori Estimate + Deviation

Page 27: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

Estimation  and  Prediction  vs.  Observation  

0

5

10

15

20

25

30

35

40

5:30 5:45 6:00 6:15 6:30 6:45 7:00 7:15 7:30 7:45

Time Axis

Dens

ity

Observed Density

Simuated Density

Predicted Density

Prediction  Accuracy  

Page 28: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

OUTLINE  

§  Background  and  Mo-va-on  §  Methodological:    

ú  Framework  and  structure  of  simula-on-­‐based  TrEPS  ú  O-­‐D  es-ma-on  and  predic-on  framework  

§  Integra-on  with  predic-ve  control  ú  Problem  formula-on  ú  Iterated  solu-on  method  

§  On-­‐line  Applica-ons:    ú  Applica-on  I  :    Dynamic  an-cipatory  pricing  ú  Applica-on  II:    Weather-­‐sensi-ve  Signal  Control  and  Applica-on  to  

                       Salt  Lake  City  Riverdale  Corridor  §  Concluding  Comments  

 28  

Page 29: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

Problem  defini-on  §  Given

ú  traffic network ú  historical demand matrix ú  real-time measurements ú  users behavioral assumption

(homogeneous vs. heterogeneous)

§  Find dynamic control policies  Applica-ons  

ú  Adaptive signal control (e.g. OPAC, Gartner, 1982)

ú  State-dependent pricing (e.g. I-15 in San Diego)

ú  Real-time traffic info (e.g. INRIX)

Real-­‐Time  Traffic  Management  Problem  

Formulation •  Objective: min/max θ(ω) •  Feasibility constraint:

–  Control variable ω ∈ Ω(ω) –  Flow variable r ∈ P(ω)

•  User equilibrium constraint –  c(r)T·(q-r) ≥ 0, ∀ q ∈ P(ω)

•  System dynamics: –  Network loading st = L(rt-1) –  User  decisions rt = Θ(ωt, ŝ t, st)

[Traffic assignment]

Page 30: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

Formulation  (cont’d)  §  Notation

ú  ωt: control policy to be determined for time interval t ú  ŝ t: vehicles generated in time interval t ú  st: vehicles generated in previous time interval and still in the network at

time t ú  rt: path flow assignment at time t

§  Control policy ωt

ú  determines traffic assignment at time t ú  affects future traffic states that contribute to the objective function

§  Network loading equation ú  depicts current states of existing vehicles in the network ú  depends on flow assignment in previous time interval: st = L(rt-1)

§  User decisions [Traffic assignment] ú  Given current control policy ωt, all vehicles in the network ŝ t and st, and

behavioral assumption of route choice, path flow assignment at time t: rt = Θ(ωt, ŝ t, st)

Page 31: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

Solution  Approach:    Anticipatory  Traffic  Management  §  Anticipatory traffic management

ú  An  approximate  solu-on  approach  to  real-­‐-me  traffic  management  problems  ú  Predict  future  traffic  condi-ons  based  on  up-­‐to-­‐date  informa-on  ú  Generate  control  policy  considering  its  impact  on  future  traffic  condi-ons  

§  Rolling horizon framework ú  to  generate  and  implement  solu-ons  to  the  dynamic  program  

§  A real-time traffic estimation and prediction system to ú  interface  with  surveillance  systems  and  integrate  real-­‐-me  measurements  ú  es-mate  and  predict  traffic  condi-ons  

§  Solution algorithms ú  One-­‐shot  algorithm  to  generate  control  policy  based  on  look-­‐ahead  traffic  forecast  vs.  ú  Itera-ve  algorithm  to  maintain  consistency  between  predicted  and  experienced  

condi-ons:    more  effec-ve  control,  heavier  computa-onal  burden  

Page 32: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

Closed-­‐loop  Rolling  Horizon  Framework  

§  RH  approach  is  a  prac-cal  method  for  genera-ng  and  implemen-ng  solu-ons  to  dynamic  programming  problems.  

 §  Closed-­‐loop  structure  allows  the  control  policies  obtained  in  traffic  

predic-on  model  to  be  implemented  in  real  world  and  transferred  to  state  es-ma-on  model.  

stage length

roll period

Prediction – stage 1

Prediction – stage 2

Real world/Estimation

heavy congestion

medium congestion

free flow

stage length

roll period

Prediction – stage 1

Real world/Estimation

Page 33: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

Solution  Algorithms  Embedded  in  TrEPS  

roll forward

ATIS/ATMS Database

OD Estimation

OD Prediction

State Prediction

State Estimation

Initial ω

Update ω

No

roll forward

Yes

ATIS/ATMS Database

OD Estimation

OD Prediction

State Prediction

State Estimation

Initial ω

Update ω

Converge?

One-shot algorithm Iterative algorithm

›  Iterate  within  each  state  predic-on    

›  Recursive  equa-on      ck  =  ck-­‐1  +  αk-­‐1·∙(T(ck-­‐1)  -­‐  ck-­‐1)  k  =  itera-on  number  

Page 34: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

§  Network ú  Freeways I-405, I-5, state

highway 133 ú  326 nodes ú  626 links ú  61 TAZs ú  57 road detectors

§  Demand ú  Two hours morning peak ú  15min warm-up period + 45

min clearance time

§  Parameters ú  Roll period: 5 minutes ú  Prediction horizon varying

from 30 to 60 minutes

The  Test  Bed  Network  :  Irvine  

Page 35: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

§  Anticipatory information works better than prevailing information §  Longer prediction horizon provides better performance

Sensitivity  to  Prediction  Horizon  

35  

   

0 5

10 15 20 25 30 35 40 45 50

7:00 7:15 7:30 7:45 8:00 8:15 8:30 8:45 9:00

Aver

age

Trav

el T

ime

(min

utes

)

Departure Time (AM)

30 minutes

40 minutes

50 minutes

60 minutes

SO

Prevailing 0 1 2 3 4 5 6 7 8 9

10

7:00 7:15 7:30 7:45 8:00 8:15 8:30 8:45 9:00 Departure Time (AM)

look-ahead algorithm recursive averaging algorithm

Page 36: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

36  

•  Provision of anticipatory travel time information improves the overall network performance

•  Solves the overreaction problem caused by providing prevailing (instantaneous) information

0

2

4

6

8

10

12

14

16

0 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Aver

age

Trav

el T

ime

(min

utes

)

Market Penetration Rate

Prevailing

Anticipatory (look-ahead)

Anticipatory (iterative)

SO

Sensitivity  to  Market  Penetration  Rate  

Page 37: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

OUTLINE  

§  Background  and  Mo-va-on  §  Methodological:    

ú  Framework  and  structure  of  simula-on-­‐based  TrEPS  ú  O-­‐D  es-ma-on  and  predic-on  framework  

§  Integra-on  with  predic-ve  control  ú  Problem  formula-on  ú  Iterated  solu-on  method  

§  On-­‐line  Applica-ons:    ú  Applica-on  I  :    Dynamic  an-cipatory  pricing  ú  Applica-on  II:    Weather-­‐sensi-ve  Signal  Control  and  Applica-on  to  

                       Salt  Lake  City  Riverdale  Corridor  §  Concluding  Comments  

 37  

Page 38: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

Reactive  Pricing  Strategy  

§  How does reactive pricing work? ú  obtain the prevailing traffic measures/conditions ú  adjust current link tolls accordingly ú  communicate to drivers via local VMS at the entry point ú  could also disseminate via radio, in-vehicle equipment,

mobile, internet etc.

Link Toll

Generator

Real World

Traffic Toll values

Traffic data

Page 39: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

Anticipatory  Pricing  

INTRODUCE  PREDICTION  IN  THE  CONTROL  LOOP  

Link Toll Generator

Real World Traffic

Toll values

Traffic Prediction Traffic data Predicted data

Page 40: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

The Test Bed Network: CHART

■  I-95 corridor between Washington, DC and Baltimore, MD, US

■  2 toll lanes ■  2241 nodes ■  3459 links ■  111 TAZ zones ■  2 hours morning

peak demand

Toll Lane Start I-95-MD-166 Junction

Toll Lane End I-95-I-495 Junction

Intermediate Access/Egress Locations

Page 41: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

Pricing Strategies Compared

§  No pricing (base case) §  Static pricing

ú  Predetermine the time-varying link tolls based on the historical information

§  Reactive pricing ú  Set time-varying link tolls based on prevailing traffic

conditions §  Anticipatory pricing

ú  Set time-dependent link tolls based on predicted traffic conditions

OBJECTIVE: AVOID BREAKDOWN– optimize throughput, reliability, under economically efficient allocation

Page 42: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

Illustrative Results – Travel Time

§  Warm-up period: increase in travel time at the beginning §  With the anticipatory pricing strategy, the travel times become

steady after 1 hour (free flow condition) §  Static pricing strategy provides free flow condition on the toll lanes,

but reduces the LOS on the alternative freeway lanes

T o l l Lanes

Regular Lanes

Page 43: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

§  Concentrations averaged over links along the congested portion of toll road, weighted by the link length

§  Throughputs measured at downstream of where traffic breaks down in base case (no pricing)

§  Anticipatory pricing strategy can provide higher throughput while maintaining lower concentration (steady traffic flow)

Illustrative Results – Traffic Measures

Page 44: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

Illustrative Results – Toll Variation

Page 45: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

§  Weather  Impact  on  Traffic  Safety  ú  Low  visibility  ú  Slick  pavement  ú  Reduce  road  capacity  ú  Other  hazardous  condi-ons  on  

roadways  

§  Weather  Responsive  Traffic  Management  (WRTM)  ú  Forecas-ng  weather  in  real-­‐-me  for  

opera-onal  purposes  ú  Sensing  of  traffic  condi-ons  

45  

Introduction  

Page 46: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

46  

Weather-­‐sensitive  Traffic  Estimation  and  Prediction  System  (TrEPS)  

Weather  monitoring  systems  Estimation:  weather-­‐sensitive  traffic  

simulation-­‐assignment  model  

Prediction:  weather-­‐sensitive  traffic  simulation-­‐assignment  model  

Weather-­‐responsive  traffic  management  strategies  

Weather  forecast    

Alert  weather  conditions  

Weather-­‐sensitive  traffic  operations  model  

Weather  data  

Page 47: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

§  Capture  weather  effects  in  a  DTA  model  

§  Weather-­‐sensi-ve  TrEPS  ú  Assess  the  impacts  of  

adverse  weather  on  transporta-on  networks.  

ú  Evaluate  the  effec-veness  of  weather-­‐responsive  traffic  management  (WRTM)  strategies  in  allevia-ng  traffic  conges-on  due  to  adverse  weather  condi-ons.  

47  

Incorporating  Weather  in  TrEPS  

Page 48: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

Supply-­‐side  Parameter  Calibra)on  Weather  Adjustment  Factor  (WAF)  •   Free-­‐flow  speed,    •   Satura-on  flow  rate,  •   Sec-on  capacity,    •   etc.  

Weather  Scenario  Specifica)on  •   Rain  intensity  (r)  •   Snow  intensity  (s)  •   Visibility  (v)  

Simulate  Traffic  Flow  under  Adverse  Weather  

48  

Model  Impacts  of  Adverse  Weather  

Page 49: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

Weather  Scenario  (Heavy  Snow)  

§  Snow  intensity  ranges:  •  Light  snow:  <  0.05  

inches/hour  •  Medium  snow:  

0.05  –  0.1  inches/hour  

•  Heavy  snow:  >  0.1  inches/hour  

§  Visibility  ranges:  •  Max.  10  miles  •  Min.  0  miles  

0  

0.02  

0.04  

0.06  

0.08  

0.1  

0.12  

0.14  

0.16  

0  

1  

2  

3  

4  

5  

6  

7  

8  

9  

10  

0   40   80   120   160   200   240  

Snow

 intensity

 (inche

s/ho

ur)  

Visibility  (m

iles)  

Time  (min.)  

Visibility  and  Snow  Intensity  vs.  Time  

Visibility  (Snowy  Day)   Visibility  (Clear  Day)  

Snow  Intensity  (Snowy  Day)   Snow  Intensity  (Clear  Day)  

Page 50: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

01-­‐00.Regular   01-­‐01.NoWRTM   01-­‐02.VSL7   01-­‐03.VMS2  

6:00  am  

50

Page 51: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

07-­‐00.Regular   07-­‐01.NoWRTM   07-­‐02.VSL7   07-­‐03.VMS2  

6:30  am  

51

Page 52: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

13-­‐00.Regular   13-­‐01.NoWRTM   13-­‐02.VSL7   13-­‐03.VMS2  

7:00  am  

52

Page 53: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

19-­‐00.Regular   19-­‐01.NoWRTM   19-­‐02.VSL7   19-­‐03.VMS2  

7:30  am  

53

Page 54: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

25-­‐00.Regular   25-­‐01.NoWRTM   25-­‐02.VSL7   25-­‐03.VMS2  

8:00  am  

54

Page 55: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

31-­‐00.Regular   31-­‐01.NoWRTM   31-­‐02.VSL7   31-­‐03.VMS2  

8:30  am  

55

Page 56: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

37-­‐00.Regular   37-­‐01.NoWRTM   37-­‐02.VSL7   37-­‐03.VMS2  

9:00  am  

56

Page 57: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

43-­‐00.Regular   43-­‐01.NoWRTM   43-­‐02.VSL7   43-­‐03.VMS2  

9:30  am  

57

Page 58: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

49-­‐00.Regular   49-­‐01.NoWRTM   49-­‐02.VSL7   49-­‐03.VMS2  

10:00  am  

58

Page 59: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

Real-­‐time  Decision  Support  Systems  for  Weather-­‐Responsive  Signal  Timing  (Utah  DOT,  USA)  

5092 5004

5003 5002

5001 5000

5020

5009 5008

5007 5005

5012

5011

Riverdale Rd, UT, USA : 13 signalized intersections (3.5 miles = 5.6 km)

DYNASMART-X : real-time traffic simulator

Traffic Signal Operators

Scenario Manager : scenario generation & management tool

Deploy alternative signal timing plans (adjust offsets)

Information for Decision Making - Anticipated traffic conditions - Suggested signal timing plans - Performance evaluation results

Real-time traffic and weather information

Page 60: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

60  

Selected  Arterial  Link  on  Riverdale  Rd  

Page 61: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

Real-­‐time  Traffic  Management  

61  

Page 62: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

Real-­‐time  Decision  Support  Systems  for  Weather-­‐Responsive  Signal  Timing  (Utah  DOT,  USA)  

62  

TrEPS-based Decision Support Tool

TRAFFIC MANAGEMENT CENTER (TMC)

On-line TrEPS DYNASMART-X

TMC Traffic Signal

System

Scenario Manager

Traffic Sensors

Road Weather

Information System

Alternative signal timing plans

Predicted network performance under tested plans

Selected signal timing plan

Input scenarios

Traffic Control Devices

Real-time traffic data

: Decision Maker’s Action : Information to Support Decision-making

TMC Signal Systems Operator

: Data

TMC meteorologist

/ National Weather Service

Current weather conditions

Weather forecasts

Simulation results

Suggested timing plans

Scenario Library

Available timing plans

Page 63: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

Weather-­‐Responsive  Signal  Timing  Plans  

63  

5001

5000

5020

!

!

Day-of-Week Time-of-Day

Weekday

Saturday

Sunday

AM peak (6:30-9:00)

AM off-peak (9:00-13:00)

PM peak (18:30-21:00)

Weather (speed reduction)

- 0 mph - 5 mph

- 10 mph - 15 mph

Signal Timing Plan (action set for all signals)

Plan 4 (CL, Gr, …, Offset)

Plan 69 (CL, Gr, …, Offset1)

Plan 67 (CL, Gr, …, Offset2)

Plan 70 (CL, Gr, …, Offset3)

PM off-peak (13:00-18:30)

Base plan

Offset adjusted

Offset adjusted

Offset adjusted Scenario Library

Page 64: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

Online  Implementation  

64  

Real-time TrEPS

Page 65: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

Online  Implementation  

65  

DYNASMART-X

SCENARIO MANAGER

( )2min ki ik K

i I

U V∈

−∑

Find the best-matching timing plan that minimizes the diff. between the assumed and predicted speeds:

k: signal timing plan i : intersection (traffic signal) : design speed at i under k : predicted speed at i kiUiV

Scenario Library

RT-DYNA

P-DYNA0

Scenario Generation

Page 66: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

Online  Implementation  

66  

P-DYNA1

Predict the performance of the alternative plan before deployment

RT-DYNA

P-DYNA0

DYNASMART-X

Current Plan (Base Plan): P-DYNA0 Alternative Plan (Weather Plan): P-DYNA1

Scenario Evaluation

Scenario Library

SCENARIO MANAGER

Page 67: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

67  

Cluster  historical  weather  patterns  to  identify  and  define  distinct  weather  categories  

Data  Mining  on  Historical  Patterns  

0  

5  

10  

15  

20  

25  

0   15  

30  

45  

60  

75  

90  

105  

120  

135  

150  

165  

180  

195  

210  

225  

240  

255  

270  

285  

Mea

n  trav

el  time  rate(m

in/m

ile)  

Time  (min)  

0  

1  

2  

3  

4  

5  

6  

0   15  

30  

45  

60  

75  

90  

105  

120  

135  

150  

165  

180  

195  

210  

225  

240  

255  

270  

285  

Wea

ther  con

dition

 inde

x  

Time  (min)  

Weather  clusters  map  well  onto  network  traffic  patterns;  Organize  and  prepare  different  plans  for  each  weather  category  

Clustering  Weather  Scenarios  (Input-­‐based  clustering)  

Clustering  Network  Mean  Travel  Times  (Output-­‐based  clustering)  

Page 68: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

68  

0  

1  

2  

3  

4  

5  

6  

0   15  

30  

45  

60  

75  

90  

105  

120  

135  

150  

165  

180  

195  

210  

225  

240  

255  

270  

285  

Wea

ther  con

dition

 inde

x  

Time  (min)  

Cluster  historical  weather  patterns  to  identify  and  define  distinct  weather  categories  

Plan  1  

Plan  4  

Plan  2  

Plan  3  

Plan  5  

Identify  the  best  plans  for  a  given  weather  category  based  on  prior  deployment    experiences  and  performance  history  

Data  Mining  on  Historical  Patterns  

Page 69: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

Plan 1 Plan 4 Plan 13

Case  Study  §  To  demonstrate  poten-al  

benefits  of  the  proposed  system  during  snow  events  

0  0.02  0.04  0.06  0.08  0.1  

8:00   9:00   10:00   11:00   12:00   13:00   14:00   15:00  Liqu

id  Equ

ivalen

t  Precipita

)on  Intensity

 (in

/hr)  

Time  

Snow  Intensity  

0  

2  

4  

6  

8  

10  

8:00   9:00   10:00   11:00   12:00   13:00   14:00   15:00  

Visibility  (m

iles)  

Time  

Visibility  

5092 5004

5003 5002

5001 5000

5020

5009

5008 5007 5005

5012

5011 ASOS Weather Station

§  Snow  scenario:  ú  Historical  weather  data  from  8:00  

to  15:00  on  January  8,  2014    ú  Automated  Surface  Observing  

System  (ASOS)  sta-on  at  Ogden-­‐Hinckley  Airport  

§  Normal  Time-­‐of-­‐Day  (TOD)  Signal  Timing  Plan  (Base  plan)  ú  Plan  1  à  Plan  4  à  Plan  13  

2km

Riverdale Rd, UT, USA : 13 signalized intersections

Time Base TOD plan

69  

Page 70: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

Plan 1 Plan 4 Plan 13

Case  Study  0  

0.02  0.04  0.06  0.08  0.1  

8:00   9:00   10:00   11:00   12:00   13:00   14:00   15:00  

Liqu

id  Equ

ivalen

t  Precipita

)on  Intensity

 (in

/hr)  

Time  

Snow  Intensity  

0  

2  

4  

6  

8  

10  

8:00   9:00   10:00   11:00   12:00   13:00   14:00   15:00  

Visibility  (m

iles)  

Time  

Visibility  

Time Base TOD plan

70  

Current time 1-hr prediction

RT-DYNA

P-DYNA0

§  At  10:00,  obtain  the  predicted  corridor  speeds  for  the  next  1  hour  from  TrEPS.  

Page 71: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

Plan 1 Plan 4 Plan 13

Case  Study  0  

0.02  0.04  0.06  0.08  0.1  

8:00   9:00   10:00   11:00   12:00   13:00   14:00   15:00  

Liqu

id  Equ

ivalen

t  Precipita

)on  Intensity

 (in

/hr)  

Time  

Snow  Intensity  

0  

2  

4  

6  

8  

10  

8:00   9:00   10:00   11:00   12:00   13:00   14:00   15:00  

Visibility  (m

iles)  

Time  

Visibility  

Time Base TOD plan

71  

Current time 1-hr prediction

§  At  10:00,  obtain  the  predicted  corridor  speeds  for  the  next  1  hour  from  TrEPS.  

§  The  overall  speed  drop  due  to  snow  is  5  mph.  

RT-DYNA

P-DYNA0

0  5  10  15  20  25  30  35  40  45  50  

5002   5001   5000   5020   5009   5008   5007   5005  

Average  Speed  (m

ph)  

Traffic  Signal  ID  

Posted  Speed  

Predicted  Speed  

Actual  Speed  (WB)  

Actual  Speed  (EB)  

Page 72: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

Plan 1 Plan 4 Plan 13

Case  Study  0  

0.02  0.04  0.06  0.08  0.1  

8:00   9:00   10:00   11:00   12:00   13:00   14:00   15:00  

Liqu

id  Equ

ivalen

t  Precipita

)on  Intensity

 (in

/hr)  

Time  

Snow  Intensity  

0  

2  

4  

6  

8  

10  

8:00   9:00   10:00   11:00   12:00   13:00   14:00   15:00  

Visibility  (m

iles)  

Time  

Visibility  

Time

Base TOD plan

72  

§  At  10:00,  obtain  the  predicted  corridor  speeds  for  the  next  1  hour  from  TrEPS.  

§  The  overall  speed  drop  due  to  snow  is  5  mph.  

§  The  best-­‐matching  weather  plan  is  Plan  69.  

Plan 69 Plan 13 Weather plan

Time

Page 73: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

Plan 1 Plan 4 Plan 13

Case  Study  0  

0.02  0.04  0.06  0.08  0.1  

8:00   9:00   10:00   11:00   12:00   13:00   14:00   15:00  

Liqu

id  Equ

ivalen

t  Precipita

)on  Intensity

 (in

/hr)  

Time  

Snow  Intensity  

0  

2  

4  

6  

8  

10  

8:00   9:00   10:00   11:00   12:00   13:00   14:00   15:00  

Visibility  (m

iles)  

Time  

Visibility  

Time

Base TOD plan

73  

§  At  10:00,  obtain  the  predicted  corridor  speeds  for  the  next  1  hour  from  TrEPS.  

§  The  overall  speed  drop  due  to  snow  is  5  mph.  

§  The  best-­‐matching  weather  plan  is  Plan  69.  

§  Compare  performance  measures  under  the  current  and  alterna-ve  plans.   Plan 69 Plan 13 Weather plan

Time

Current plan

Alternative plan

Page 74: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

Performance  Measures  

74  

0  

5  

10  

15  

10:00   10:15   10:30   10:45   11:00  Mean  Travel  Tim

e  (m

in)  

Time  

EB  

TOD  Plan  4  Weather  Plan  69  

0  

5  

10  

15  

10:00   10:15   10:30   10:45   11:00  Mean  Travel  Tim

e  (m

in)  

Time  

WB  

TOD  Plan  4  Weather  Plan  69  

0  100  200  300  400  500  600  

10:00   10:15   10:30   10:45   11:00  Total  Travel  Tim

e  (m

in)  

Time  

EB   TOD  Plan  4  Weather  Plan  69  

0  100  200  300  400  500  600  

10:00   10:15   10:30   10:45   11:00  Total  Travel  Tim

e  (m

in)  

Time  

WB   TOD  Plan  4  Weather  Plan  69  

5092 5004

5003 5002

5001 5000

5020

5009

5008 5007 5005

5012

5011

EB

WB

Mean Travel Time Total Travel Time

Page 75: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

Performance  Measures  

75  

0  

0.5  

1  

1.5  

10:00   10:15   10:30   10:45   11:00  SD  of  T

ravel  Tim

e  (m

in)  

Time  

EB  TOD  Plan  4  Weather  Plan  69  

0  

0.5  

1  

1.5  

10:00   10:15   10:30   10:45   11:00  SD  of  T

ravel  Tim

e  (m

in)  

Time  

WB  TOD  Plan  4  Weather  Plan  69  

0  

0.5  

1  

1.5  

2  

10:00   10:15   10:30   10:45   11:00  

Mean  Stop

ped  Time  (m

in)  

Time  

EB   TOD  Plan  4  Weather  Plan  69  

0  

0.5  

1  

1.5  

2  

10:00   10:15   10:30   10:45   11:00  

Mean  Stop

ped  Time  (m

in)  

Time  

WB   TOD  Plan  4  Weather  Plan  69  

5092 5004

5003 5002

5001 5000

5020

5009

5008 5007 5005

5012

5011

EB

WB

Standard Deviation of Travel Times Mean Stopped Time

Page 76: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

76  

PRE-­‐EVENT   EVENT   POST-­‐EVENT  

SCENARIO    MANAGER  

•  Construct a weather scenario based on weather forecast, historical data or past event scenarios.

•  Given the weather scenario, prepare a set of possible scenario combinations by mix-and-matching demand patterns and different signal timing plans (one could also test effects of other factors such as incidents or snow-plowing).

•  Retrieve the most relevant signal timing plans to the prevailing and anticipated weather and traffic conditions; and prepare scenario input files for DYNASMART-X.

•  Maintain and update a scenario library, where signal timing scenarios (either actually deployed or only tested within TrEPS) are stored in connection with their performances under the realized/observed weather and demand conditions.

INFORMATION   Input Scenarios Input Scenarios Output Performance

TrEPS  

•  Run DYNASMART-P to predict performances of various signal timing plans under anticipated weather.

•  Develop “if-then” plans for weather-responsive signal timing to improve preparedness and facilitate during-event traffic signal operations.

•  Run DYNASMART-X to monitor estimated and predicted traffic states under different signal timing plans; and determine when, where and which strategy to deploy at any point in time.

•  Using the observed weather and demand scenarios, run DYNASMART-P to conduct a post-analysis for identifying other strategies that might have performed better.

Approach  to  TrEPS-­‐WRTM  Integration  

Page 77: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

Conclusions  I  

§  Key  benefits  of  the  TrEPS-­‐based  decision  support  system  include:    ú  (a)  the  ability  to  detect  speed  drops  in  progression  speed  in  advance  through  real-­‐-me  TrEPS  simula-on;    

ú  (b)  the  ability  to  quickly  iden-fy  the  best-­‐matching  signal  -ming  plan  in  response  to  an-cipated  traffic  condi-ons;  and    

ú  (c)  the  ability  to  test  and  evaluate  the  performance  of  alterna-ve  -ming  plans  in  real-­‐-me  before  making  the  deployment  decision.  

77  

Page 78: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

Conclusions  II  

§  PREDICTION  essen-al  in  real-­‐-me  traffic  management  §  Considerable  opportuni-es:  new  sources  of  personal  

informa-on,  emerging  technologies  §  Growing  role  for  DTA  models  in  evalua-ng  (off-­‐line)  and  

improving    (on-­‐line)  reliability  of  networks,  as  DECISION  SUPPORT  SYSTEMS  and  Real-­‐-me  Predic-ve  Traffic  Management  Systems  

§  Cri-cal  role  for  scenario  manager  capability  in  agency  adop-on  §  KEY  CHALLENGE:  THE  HUMAN  FACTOR  –  User  behavior  –  

willremain  moving  target,  because  users  will  adapt  hence  need  for  a  dap-ve  schemes  

78  

Page 79: Simulationbased/Approachesfor//Traffic ...helper.ipam.ucla.edu/publications/traws2/traws2_13232.pdfRT-DYNA : Estimation of current traffic conditions P-DYNA_0: Prediction (no intervention)

Q/A  Thank  you  

79