simulating the electrical double layer · edl capacitance varies as a function of – dielectric...

17
Simulating the Electrical Double Layer Guigen Zhang, Ph.D. Dept. of Bioengineering, Dept. of Electrical & Computer Engineering Institute for Biological Interfaces of Engineering Clemson University COMSOL Conference 2010 Boston Presented at the

Upload: others

Post on 13-Aug-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Simulating the Electrical Double Layer · EDL capacitance varies as a function of – Dielectric constant – Compact layer thickness – Electrode size – Electrolyte concentration

Simulating the Electrical Double Layer

Guigen Zhang, Ph.D.

Dept. of Bioengineering, Dept. of Electrical & Computer Engineering

Institute for Biological Interfaces of Engineering

Clemson University

COMSOL Conference 2010 Boston Presented at the

Page 2: Simulating the Electrical Double Layer · EDL capacitance varies as a function of – Dielectric constant – Compact layer thickness – Electrode size – Electrolyte concentration

Overview

The drive to make supercharge capacitors Electrochemical based capacitor The structure of electrical double layer (EDL) The effect of EDL structure on electron transfer The EDL capacitor Conclusions

Page 3: Simulating the Electrical Double Layer · EDL capacitance varies as a function of – Dielectric constant – Compact layer thickness – Electrode size – Electrolyte concentration

The Electrochemical Society Interface, Fall 2008

Making Supercharge Capacitors

Overpotential (mV)

-600 -400 -200 0 200 400 600 800

Ca

pac

itan

ce (

F)

8

12

16

20

Nano

Overpotential (mV)

-600 -400 -200 0 200 400 600 800

Cap

acit

an

ce (

F)

1.0

1.5

2.0

2.5

3.0

Flat

Page 4: Simulating the Electrical Double Layer · EDL capacitance varies as a function of – Dielectric constant – Compact layer thickness – Electrode size – Electrolyte concentration

Electrochemical Based Capacitor

D. C. Grahame, 1947.

dAC /0

This topic has been a major interest in electrochemistry for about a century In 1997, the Electrochemical Society sponsored a symposium on the double layer to recognize the 50th anniversary of Grahame’s seminal work

Page 5: Simulating the Electrical Double Layer · EDL capacitance varies as a function of – Dielectric constant – Compact layer thickness – Electrode size – Electrolyte concentration

+

+

++

++

OHP

--------

Ψ0

x

Gouy-Chapman Model

Gouy-Chapman-Stern Model

Helmholtz Model

Problems with the classic theories on electrical double layer (EDL): 1. No electron transfer across the electrode/solution interface 2. Boltzmann distributions for ions in the solution 3. Electro-neutrality

d

AC 0

Diffuse zone

x - - - - - - - - -

+

+

+ +

+ + - -

- -

+

+

+ +

+ +

- -

- -

+

+

+ +

+ +

Diffuse layer

Bulk solution Stern Plane OHP, PET

- - - - - - - - - - -

x

- -

- -

Gouy plane

+

+

+ +

+ + - -

- -

+

+

+ +

+ +

- - + +

+ +

+ +

Compact layer

Electrical Double Layer (EDL)

The EDL structure

Page 6: Simulating the Electrical Double Layer · EDL capacitance varies as a function of – Dielectric constant – Compact layer thickness – Electrode size – Electrolyte concentration

Mass transport by diffusion and electromigration – Nernst-Planck equation

Electrostatics – Poisson equation

Reversible/irreversible systems – Butler-Volmer kinetics

Modeling the EDL Using COMSOL

IHP OHP

Electrolyte

1000 r0

Axis of in-plane symmetry

Axis of axisymmetry

u

v

A

0r

22 vur

21 ll

IHP OHP

Electrolyte

1000 r0

Axis of in-plane symmetry

Axis of axisymmetry

u

v

A

0r

22 vur

21 ll

)( VcDRT

FzcD

t

cii

i

ii

i

In the compact layer: In the solution:

)( 0 V0

i

iicz

1 zfk

bk

z ReO

]/)(exp[ '00 RTEVEFkk tf

]/)()1exp[( '00 RTEVEFkk tb

Page 7: Simulating the Electrical Double Layer · EDL capacitance varies as a function of – Dielectric constant – Compact layer thickness – Electrode size – Electrolyte concentration

Dielectric constant inside the compact layer

Modeling Using COMSOL

Distance (x)

Die

lectr

ic c

on

sta

nt (

x)

a b c

r0 r0 + l1

IHP OHP

B

Electrode surface

Electrolyte

2

1

Radial Distance (r)

PET

r0 + l1 + l2Distance (x)

Die

lectr

ic c

on

sta

nt (

x)

a b c

r0 r0 + l1

IHP OHP

B

Electrode surface

Electrolyte

2

1

Radial Distance (r)

PET

r0 + l1 + l2

rllr

llrrlrrrll

lrrrrr

2102

2101002122

2

100012

1

, )],([Scos

)],([Scosh

Page 8: Simulating the Electrical Double Layer · EDL capacitance varies as a function of – Dielectric constant – Compact layer thickness – Electrode size – Electrolyte concentration

The Size Factor of the EDL

r-r0 (nm)

0.0 0.2 0.4 0.6

Pot

entia

l (V

)

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

1 nm100 nm

A

(r-r0-)/

0.00 0.05 0.10 0.15 8.00 12.00

Pot

entia

l (V

)

-0.030

-0.025

-0.020

-0.015

-0.010

-0.005

0.000

Potential

Con

cent

ratio

n (m

M)

0

1

2

3

4

5

6

Concentration1 nm100 nm

B

(nm) 820 (nm), 14 1001 diffusion

nm

diffusion

nm

(nm) 5.4 (nm), 8.1 1001 diffuse

nm

diffuse

nm

Diffuse Layer

Diffuse Layer

~13% ~0.5%

Page 9: Simulating the Electrical Double Layer · EDL capacitance varies as a function of – Dielectric constant – Compact layer thickness – Electrode size – Electrolyte concentration

E-E0' (V)-0.25 -0.20 -0.15 -0.10 -0.05 0.00

i/i d

L

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1nm10nm50nm100nm200nmz = -1z = +1Diffusion

-0.2-0.1 0.0 0.1 0.2

i/i dL

0.00.20.40.60.81.0

Electrode Radius (mm)0 100 200

0.90

0.95

1.00

1.05

1.10

Diffusionz=-1z=+1

E-E0'(V)

Insert-1 Insert-2

E-E0' (V)

-0.2 -0.1 0.0 0.1 0.2 0.3

i/i d

L

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Diffusion0.2nm0.4nm0.7nm

0.0 0.5 1.0 100.0

Con

cent

ratio

n (m

M)

0123456

Concentration

(r-r0-)/

Pote

ntia

l (V)

-0.12-0.10-0.08-0.06-0.04-0.020.000.02

Potential

Effect of compact layer thickness Effect of electrode size

EDL Effect on Electron Transfer

Note: “Diffusion” represents the case in which the EDL effect is not considered.

Page 10: Simulating the Electrical Double Layer · EDL capacitance varies as a function of – Dielectric constant – Compact layer thickness – Electrode size – Electrolyte concentration

Effects of EDL

Distance into Solution from PET (nm)

0 1 2 3 4 5 6

Pote

ntia

l (V)

-0.030

-0.025

-0.020

-0.015

-0.010

-0.005

0.000

Con

cent

ratio

n (m

M)

0

1

2

3

4

5

PotentialConcentration0.33nm0.44nm0.55nm0.66nm

Distance into Solution from PET (nm)

0 1 2 3 4 5 6

Pote

ntia

l (V)

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

Con

cent

ratio

n (m

M)

0

1

2

3

4

5

PotentialConcentrationES=6ES=12ES=18ES=24

Distance into Solution from PET (nm)

0 2 4 6 8 10 12

Pote

ntia

l (V)

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

Con

cent

ratio

n (m

M)

0

1

2

3

4

5

PotentialConcentration0.00 M0.05 M0.50 M5.00 M

Distance into Solution from PET (nm)

0 2 4 6 8 10

Pote

ntia

l (V)

-0.04

-0.03

-0.02

-0.01

0.00

Con

cent

ratio

n (m

M)

0

1

2

3

4

5

PotentialConcentration0.5 nm1.0 nm5.0 nm10.0 nmFlat

Page 11: Simulating the Electrical Double Layer · EDL capacitance varies as a function of – Dielectric constant – Compact layer thickness – Electrode size – Electrolyte concentration

EDL Capacitance

Radius of Electrode (nm)1 10 100 1000

Capa

citan

ce (

F/cm

2 )

10

12

14

16

18

20

22

24

26

y=-4.21+28.66x/(0.42+x)

Size effect

2

0Cr E

Page 12: Simulating the Electrical Double Layer · EDL capacitance varies as a function of – Dielectric constant – Compact layer thickness – Electrode size – Electrolyte concentration

EDL Capacitance

Dielectric Constant at Electric Satuaration0 6 12 18 24

Cap

acita

nce

(F/

cm2 )

10

15

20

25

30

35

40

Distance (x)

Die

lec

tric

co

ns

tan

t (

x)

a b c

r0 r0 + l1

IHP OHP

B

Electrode surface

Electrolyte

2

1

Radial Distance (r)

PET

r0 + l1 + l2Distance (x)

Die

lec

tric

co

ns

tan

t (

x)

a b c

r0 r0 + l1

IHP OHP

B

Electrode surface

Electrolyte

2

1

Radial Distance (r)

PET

r0 + l1 + l2

Dielectric effect

Page 13: Simulating the Electrical Double Layer · EDL capacitance varies as a function of – Dielectric constant – Compact layer thickness – Electrode size – Electrolyte concentration

EDL Capacitance

Thickness of Compact Layer (nm)0.33 0.44 0.55 0.66

Capa

citan

ce (

F/cm

2 )

8

10

12

14

16

18

20

22

24Thickness effect

Page 14: Simulating the Electrical Double Layer · EDL capacitance varies as a function of – Dielectric constant – Compact layer thickness – Electrode size – Electrolyte concentration

EDL Capacitance

Concentration of Supporting Electrolyte (M)0 1 2 3 4 5 6

Cap

acita

nce

(F/

cm2 )

13.0

13.5

14.0

14.5

15.0

15.5

16.0

16.5

17.0

Electrolyte effect

Page 15: Simulating the Electrical Double Layer · EDL capacitance varies as a function of – Dielectric constant – Compact layer thickness – Electrode size – Electrolyte concentration

EDL Capacitance: A Surprise

D. C. Grahame, 1947.

Overpotential (V)

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

Cap

acit

an

ce (

F/c

m2)

11.365

11.370

11.375

11.380

11.385

With ETwithout ET

FEM

Overpotential (V)

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

Ca

pa

cit

an

ce

(C

/CP

ZC)

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

MD

dAC /0

Page 16: Simulating the Electrical Double Layer · EDL capacitance varies as a function of – Dielectric constant – Compact layer thickness – Electrode size – Electrolyte concentration

Conclusions

EDL capacitance varies as a function of – Dielectric constant – Compact layer thickness – Electrode size – Electrolyte concentration

When redox is allowed, the capacitance-potential curve exhibits a dip feature near the potential of zero charge This study shed some new light into enhancing the supercharge capacitors

Page 17: Simulating the Electrical Double Layer · EDL capacitance varies as a function of – Dielectric constant – Compact layer thickness – Electrode size – Electrolyte concentration

Acknowledgement

National Science Foundation Bill & Melinda Gates Foundation

Thank You!