simple harmonic motion and elasticitysites.millersville.edu/tgilani/pdf/spring 2018/phys 131...10.1...

25
Chapter 10 Simple Harmonic Motion and Elasticity

Upload: vucong

Post on 22-Jun-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

Chapter 10

Simple Harmonic Motion and Elasticity

10.1 The Ideal Spring and Simple Harmonic Motion

xkF Appliedx =

spring constant

Units: N/m

๐น๐น๐‘†๐‘†๐‘†๐‘†๐‘†๐‘†๐‘†๐‘†๐‘†๐‘†๐‘†๐‘† = โˆ’๐‘˜๐‘˜๐‘˜๐‘˜

10.1 The Ideal Spring and Simple Harmonic Motion

Example 1 A Tire Pressure Gauge

The spring constant of the springis 320 N/m and the bar indicatorextends 2.0 cm. What force does theair in the tire apply to the spring?

6.4 N

10.1 The Ideal Spring and Simple Harmonic Motion

Conceptual Example 2 Are Shorter Springs Stiffer?

A 10-coil spring has a spring constant k. If the spring iscut in half, so there are two 5-coil springs, what is the springconstant of each of the smaller springs?

10.1 The Ideal Spring and Simple Harmonic Motion

HOOKEโ€™S LAW: RESTORING FORCE OF AN IDEAL SPRING

The restoring force on an ideal spring is xkFx โˆ’=

10.2 Simple Harmonic Motion and the Reference Circle

tAAx ฯ‰ฮธ coscos ==

DISPLACEMENT

10.2 Simple Harmonic Motion and the Reference Circle

period T: the time required to complete one cycle

frequency f: the number of cycles per second (measured in Hz)

Tf 1=

Tf ฯ€ฯ€ฯ‰ 22 ==

amplitude A: the maximum displacement

10.2 Simple Harmonic Motion and the Reference Circle

VELOCITY

tAvvv

Tx ฯ‰ฯ‰ฮธ sinsinmax

โˆ’=โˆ’=

tAaaa

cx ฯ‰ฯ‰ฮธ coscosmax

2โˆ’=โˆ’=

ACCELERATION

Radius = A

= โˆ’๐œ”๐œ”2๐‘˜๐‘˜

10.2 Simple Harmonic Motion and the Reference Circle

Example 3 The Maximum Speed of a Loudspeaker Diaphragm

The frequency of motion is 1.0 KHz and the amplitude is 0.20 mm. (a)What is the maximum speed of the diaphragm?(b)Where in the motion does this maximum speed occur?

tAvvv

Tx ฯ‰ฯ‰ฮธ sinsinmax

โˆ’=โˆ’=

fฯ€ฯ‰ 2=3141.5 rad/s

๐‘ฃ๐‘ฃ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š = 0.628 ๐‘š๐‘š/๐‘ ๐‘ 

Where?

10.2 Simple Harmonic Motion and the Reference Circle

FREQUENCY OF VIBRATION

mk

=ฯ‰

tAax ฯ‰ฯ‰ cos2โˆ’=tAx ฯ‰cos=

xmakx =โˆ’

2ฯ‰mAkA โˆ’=โˆ’

For a mass, m attached to a spring and set in vibration on frictionless surface

xmaF =โˆ‘kxF โˆ’=โˆ‘

mkf

ฯ€21

=

10.3 Energy and Simple Harmonic Motion

( ) ( ) ( )offo xxkxkxsFW โˆ’+== )0cos(cos 21

elasticฮธ

2212

21

elastic of kxkxW โˆ’=

10.3 Energy and Simple Harmonic Motion

DEFINITION OF ELASTIC POTENTIAL ENERGY

The elastic potential energy is the energy that a springhas by virtue of being stretched or compressed. For anideal spring, the elastic potential energy is

221

elasticPE kx=

SI Unit of Elastic Potential Energy: joule (J)

10.3 Energy and Simple Harmonic Motion

Example 8 Adding a Mass to a Simple Harmonic Oscillator

A 0.20-kg ball is attached to a vertical spring. The spring constantis 28 N/m. When released from rest, how far does the ball fallbefore being brought to a momentary stop by the spring?

๐‘˜๐‘˜๐‘˜๐‘˜ = ๐‘š๐‘š๐‘š๐‘š

๐‘˜๐‘˜ = 0.07 ๐‘š๐‘š

10.3 Energy conservation

of EE =

2212

212

212

212

212

21

ooooffff kxmghImvkxmghImv +++=+++ ฯ‰ฯ‰

๐ธ๐ธ = ๐พ๐พ๐ธ๐ธ๐‘‡๐‘‡ + ๐พ๐พ๐ธ๐ธ๐‘…๐‘… + ๐‘ƒ๐‘ƒ๐ธ๐ธ๐‘†๐‘† + ๐‘ƒ๐‘ƒ๐ธ๐ธ๐‘’๐‘’

In absence of any external force

Simple Pendulum

๐œƒ๐œƒ๐ฟ๐ฟ

๐‘˜๐‘˜

๐‘š๐‘š๐‘š๐‘š

๏ฟฝ๐œ๐œ = ๐ผ๐ผ๐ผ๐ผ ๐ผ๐ผ = ๐‘š๐‘š๐‘…๐‘…2

๐ผ๐ผ = ๐‘š๐‘š๐ฟ๐ฟ2๏ฟฝ๐œ๐œ = โˆ’๐‘š๐‘š๐‘š๐‘š๐‘˜๐‘˜

๐‘Ž๐‘Ž๐‘‡๐‘‡ = ๐ฟ๐ฟ๐ผ๐ผ ๐ผ๐ผ =๐‘Ž๐‘Ž๐‘‡๐‘‡๐ฟ๐ฟ

โˆ’๐‘š๐‘š๐‘š๐‘š๐‘˜๐‘˜ = ๐‘š๐‘š๐ฟ๐ฟ2๐‘Ž๐‘Ž๐‘‡๐‘‡๐ฟ๐ฟ ๐‘Ž๐‘Ž๐‘‡๐‘‡ = โˆ’๐ด๐ด๐œ”๐œ”2 cos ๐œ”๐œ”๐œ”๐œ” = โˆ’๐œ”๐œ”2๐‘˜๐‘˜

๐œ”๐œ” =๐‘š๐‘š๐ฟ๐ฟ

๐‘˜๐‘˜

๐œ”๐œ” = 2๐œ‹๐œ‹๐œ‹๐œ‹ ๐œ‹๐œ‹ =๐œ”๐œ”2๐œ‹๐œ‹

=12๐œ‹๐œ‹

๐‘š๐‘š๐ฟ๐ฟ

๐‘‡๐‘‡ =1๐œ‹๐œ‹

๐‘‡๐‘‡ = 2๐œ‹๐œ‹๐ฟ๐ฟ๐‘š๐‘š

Period of a simple pendulum is independent of mass of pendulum

10.7 Elastic Deformation

STRETCHING, COMPRESSION, AND YOUNGโ€™S MODULUS

ALLYFo

โˆ†=

Youngโ€™s modulus has the units of pressure: N/m2

10.7 Elastic Deformation

10.7 Elastic Deformation

SHEAR DEFORMATION AND THE SHEAR MODULUS

AL

xSFo

โˆ†=

The shear modulus has the units of pressure: N/m2

10.7 Elastic Deformation

10.7 Elastic Deformation

Example 14 J-E-L-L-O

You push tangentially across the topsurface with a force of 0.45 N. The top surface moves a distance of 6.0 mmrelative to the bottom surface. What isthe shear modulus of Jell-O?

AL

xSFo

โˆ†=

xAFLS o

โˆ†=

10.7 Elastic Deformation

( )( )( ) ( )

232 mN460

m 100.6m 070.0m 030.0N 45.0

=ร—

=โˆ’

S

xAFLS o

โˆ†=

10.7 Elastic Deformation

VOLUME DEFORMATION AND THE BULK MODULUS

โˆ†โˆ’=โˆ†

oVVBP

The Bulk modulus has the units of pressure: N/m2

10.7 Elastic Deformation

10.8 Stress, Strain, and Hookeโ€™s Law

HOOKEโ€™S LAW FOR STRESS AND STRAIN

Stress is directly proportional to strain.

Strain is a unitless quantity.

SI Unit of Stress: N/m2

In general the quantity F/A is called the stress.

The change in the quantity divided by that quantity is called thestrain:

ooo LxLLVV โˆ†โˆ†โˆ†

For Practice

Ch 10FOC Questions:

2, 4, 11, 14 and 18.Problems:11, 17, 27, 30, 44, 54, 56 and 92.