simple compressor sizing

38
Overview This workbook consist of two calculations: 1) Power calculation Simple compressor power sizing calculation based on rate and suction 2) Power forcast Production forecast validation (ie. compression forecast generated f Checks the power required for the forecast rate, suction & discharge achievable for the specified power & number of compression stages. Liability No warrantees are made with respect to the accuracy or applicability The onous is on the user to verfiy that any results obtained are cor Copyright This spreadsheet is the intellectual property of the author, Andrew You are free to use it and distribute it however, you may not make i without prior written consent and you must not remove or obscure any don't steal or take credit for my work). Contact email: for other tools visit: SIMPLE COMPRESSOR POWER CALCULATION - READ ME Includes number of stages required, turbine sizing (de-rating), fuel [email protected] www.firstprincipleseng.net

Upload: guaspari

Post on 30-Nov-2015

69 views

Category:

Documents


9 download

TRANSCRIPT

Page 1: Simple Compressor Sizing

OverviewThis workbook consist of two calculations:

1) Power calculationSimple compressor power sizing calculation based on rate and suction & discharge pressure.

2) Power forcastProduction forecast validation (ie. compression forecast generated from a simulation).Checks the power required for the forecast rate, suction & discharge pressure and calculates the suction pressureachievable for the specified power & number of compression stages.

LiabilityNo warrantees are made with respect to the accuracy or applicability of the calculations in this spreadsheet.The onous is on the user to verfiy that any results obtained are correct and appropriate for the work being carrying out.

CopyrightThis spreadsheet is the intellectual property of the author, Andrew Hooks.You are free to use it and distribute it however, you may not make it available for download from any websitewithout prior written consent and you must not remove or obscure any notices regarding authorship. (Basicallydon't steal or take credit for my work).

Contactemail:for other tools visit:

SIMPLE COMPRESSOR POWER CALCULATION - READ ME

Includes number of stages required, turbine sizing (de-rating), fuel gas and CO2 emissions estimate.

[email protected]

Page 2: Simple Compressor Sizing

Simple compressor power sizing calculation based on rate and suction & discharge pressure.

Production forecast validation (ie. compression forecast generated from a simulation).Checks the power required for the forecast rate, suction & discharge pressure and calculates the suction pressure

No warrantees are made with respect to the accuracy or applicability of the calculations in this spreadsheet.The onous is on the user to verfiy that any results obtained are correct and appropriate for the work being carrying out.

You are free to use it and distribute it however, you may not make it available for download from any websitewithout prior written consent and you must not remove or obscure any notices regarding authorship. (Basically

Includes number of stages required, turbine sizing (de-rating), fuel gas and CO2 emissions estimate.

Page 3: Simple Compressor Sizing

Notes

Fluid properties

Process Conditions

Psuct 10.00 bara 1000 kPa(A)Pdisch 150.0 bara 15000 kPa(A)Tsuct 35 'C 308 K

Volume rate 500 MMscf/d 164.19

Actual vol. rate (suct.) 65391 am3/h 18.16Molar rate 24998 kgmol/h 24998 kgmol/hMass rate 244.94 lbl/s 111.10 kg/s

Maximum compression ratio

Nr of stages & power requirement

Nr stages 2.51Nr complete stages 3

Stage 0 1 2 3 4Pdisch kPa(A) 1000 2945 8673 15000

bara 10.0 29.5 86.7 150.0Pd/Ps --- --- 2.9 2.9 1.7Tdisch K 308 423 423 362

'C 35 150 150 89Zsuct --- 0.98 0.98 0.95 0.88Zdisch --- 0.98 0.99 0.97 0.92

Head kJ/kg --- 200 195 85Power required kW --- 27779 27106 11856

MW --- 28 27 12

Mechanical losses kW 63.8(1%)

Total power reqd kW 66804MW 67

COMPRESSOR POWER CALCULATION - ESTIMATE POWER REQUIREMENT

sm3/s

am3/s

Stage 1 Stage N

C53
Tsuct: Assume that suction & interstage coolers are sized to give the same suction temperature at each compression stage.
B85
Zdisch Where there are multiple stages compressibility (z) can change significantly.
D91
Mechanical losses Scheel's equation (c/- GPSA) Friction in bearings, seals & gearing
Page 4: Simple Compressor Sizing

Driver sizing

Shaft power 66803.9 kW 66804 kW

De-rating factors Turbine Engine

Driver type 2Altitude 300 m 3% 3%Ambient temperature 35 'C 14% 4%Inlet losses 10 Pa 1.5% 0%Exhaust losses 5 Pa 0.3% 0%Accessories …… 0% 4%Fouling & wear …… 4% 4%De-rating factor 23% 15%

Design margin 5%

ISO power 82729 kW 82729 kW

Fuel consumption & CO2 emissions

Fuel source 1 Fuel dataLHV 1003 BTU/scf 37.4 MJ/m3 Fuel

Thermal efficiency 30%Methane

Fuel rate 21.358 MMscf/d 7.013 sm3/s Propane4.759 kg/s 4.759 kg/s n-Butane

Fuel/Process gas 4.3 mass% 60/40 LPG

Diesel

44 kg/kgmol New1

411861 t/y 13.051 kg/s New221.36 MMscf/d 7.013 sm3/s New3

Seleted

Mol. Weight CO2

Point source CO2

Turbo

Note that energy is also expended, and CO2 emitted, during the production & transport of a fuel. If you are using this calculation as an indicator of environmental impact, or to examine ways of reducing carbon footprint, you may also want to consider the source of proposed fuels in the CO2 balance.

B101
Shaft power Also known as Process Power or Site Power
E103
Turbine de-rating factors Taken from GPSA charts
F103
Engine de-rating factors Taken from Campbell v2
F104
Supercharged or Turbocharged? A compressor is used to increase the pressure (density) of the air before it is injected into the cylinder. Only relevant for the combustion engine.
B109
Accessories eg. Lube pumps, cooling fans
E109
Accessories For centrifugal compressors accessories are usually powered from a separate power gen. turbine. This differs from gas engines which are often smaller units and designed to be self-contained.
B116
Driver power - gas engines When selecting a gas engine driver maximum rpm, piston speed and BMEP (theoretical average pressure needed in the power cylinder throughout the power stroke to develop the rated power) must also be considered (see advise Cambell vol2).
C124
Thermal efficiency Gas Turbine 30-34% [Perry] Micro-turbine 25-28% [Capstone] Recip engine 30-40%
E126
Fuel rate = Power/Efficiency/LHV Design margin is excluded from the energy demand
H128
LPG Based on 60% C3, 40% C4 Actual composition can vary (even up to 75% C3, 25% C4)
E131
CO2 emission: Work with kg/s rather than m3/s since the conversion from m3 to moles is different for a liquid than a gas & we want one consistent formula that applies to both.
Page 5: Simple Compressor Sizing

P [bara] P [bara] T ['C]5 10.0 10.0 35

29.5 29.5 15029.5 29.5 3586.7 86.7 15086.7 86.7 35

150.0 150.0 89150.0 150.0 35

#N/A #N/A#N/A #N/A#N/A #N/A#N/A #N/A

20 40 60 80 100 120 140 160

0

20

40

60

80

100

120

140

160

P-T compression path

T ['C]

P [

ba

ra]

Page 6: Simple Compressor Sizing

Rated conditions De-rating inputs (SI)

Turbine 0Altitude 0 m 300 m 0 mTemp 15 'C 308 K 288 K

Engine 0.01 kPaAltitude 0 m 0.01 kPa 0 mTemp 15 'C 288 K

TurbineEngine

HHV Ht Vap. Mol. Wt Density HHV LHV Avg C No.

MJ/kg MJ/kg kg/kmol ---55.6 0.5 16.0 0.7 37.7 37.4 150.4 0.4 44.1 1.9 94.0 93.2 3 Cambell, Gas Conditioning & Processing, v149.5 0.4 58.1 2.5 121.8 120.8 450.0 0.4 49.7 2.1 105.2 104.4 3.445.8 3.0 226.0 837 38290 35801 16

55.6 0.5 16 1 38 37 1

kg/m3 MJ/m3 MJ/m3

http://hydrogen.pnl.gov/filedownloads/hydrogen/datasheets/lower_and_higher_heating_values.xls

I104
ISO conditions 15 'C 101.325 kPa (abs) 0% humidity
I107
Engine rated conditions Rated conditions vary between manufacturers
I123
HHV Higher Heating Value (also known as GHV, Gross Heating Value) The total heat obtained from combustion of a specified amount of fuel and its stoichiometrically correct amount of air, both being at 60'F when combustion starts, and the combustion products being cooled to 60'F before heat release is measured (ie. latent heat of water vaporisation is included).
N123
LHV Lower Heating Value Higher (gross) heating value minus the latent heat of vapourisation of the water vapour formed by the combustion of the hydrogen in the fuel. Turbine/engine performance is usually calculated using LHV since the latent heating value of the water is not captured.
K129
Source: http://www.geocities.com/daveclarkecb/GhouseImpact.html
L129
Diesel density: Back calculated to be consistent with HHV values available. (Diesel is a liquid therefore the molar volume conversion used for gases above).
O129
Source: http://www.geocities.com/daveclarkecb/GhouseImpact.html
Page 7: Simple Compressor Sizing
Page 8: Simple Compressor Sizing

Cambell, Gas Conditioning & Processing, v1

http://hydrogen.pnl.gov/filedownloads/hydrogen/datasheets/lower_and_higher_heating_values.xls

Page 9: Simple Compressor Sizing

Notes

Fluid properties

Maximum compression ratio

Charts

COMPRESSOR POWER CALCULATION - VALIDATE FORECAST

10

/10

/20

06

2/2

2/2

00

8

7/6

/20

09

11

/18

/20

10

4/1

/20

12

8/1

4/2

01

3

12

/27

/20

14

5/1

0/2

01

6

0

2

4

6

8

10

12

Power reqd for forecast compression ratio

ForecastValida-tion

Po

we

r [M

W]

10

/10

/20

06

2/2

2/2

00

8

7/6

/20

09

11

/18

/20

10

4/1

/20

12

8/1

4/2

01

3

12

/27

/20

14

5/1

0/2

01

60

20

40

60

80

100

120

140

Suction pressure achievable for specified power

ForecastValida-tionS

uc

tio

n p

res

su

re [

ba

ra]

Page 10: Simple Compressor Sizing

Forecast data & calculation

Forecast Power required for given PsuctPaste your forecast data here

Date Psuct Pdisch Tsuct GasRate Power Psuctbara bara 'C MMscf/d MW kPa

1/1/2008 125 125 53 358 0 125394/1/2008 122 122 53 345 0 122417/1/2008 120 120 53 332 0 11964

10/1/2008 117 117 52 321 0 117041/1/2009 115 115 52 310 0 114654/1/2009 113 113 52 300 0 112527/1/2009 110 110 51 291 0 11046

10/1/2009 109 109 51 282 0 108561/1/2010 107 107 51 273 0 106794/1/2010 105 105 51 265 0 105187/1/2010 104 104 50 258 0 10366

10/1/2010 102 102 50 251 0 102251/1/2011 49 107 51 268 10 48964/1/2011 47 105 51 261 10 47467/1/2011 46 104 50 255 10 4589

10/1/2011 44 103 50 248 10 44481/1/2012 43 101 50 242 10 43114/1/2012 42 100 50 236 10 41897/1/2012 41 99 49 231 10 4061

10/1/2012 39 98 49 225 10 39431/1/2013 38 97 49 220 10 38324/1/2013 37 96 49 215 10 37247/1/2013 36 95 48 211 10 3623

10

/10

/20

06

2/2

2/2

00

8

7/6

/20

09

11

/18

/20

10

4/1

/20

12

8/1

4/2

01

3

12

/27

/20

14

5/1

0/2

01

60

20

40

60

80

100

120

140

Suction pressure achievable for specified power

ForecastValida-tionS

uc

tio

n p

res

su

re [

ba

ra]

10

/10

/20

06

2/2

2/2

00

8

7/6

/20

09

11

/18

/20

10

4/1

/20

12

8/1

4/2

01

3

12

/27

/20

14

5/1

0/2

01

60.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Compression ratio & number of stages to achieve it

Compression ratio

Nr Stages

Co

mp

res

sio

n r

ati

o &

Nr

sta

ge

s

Page 11: Simple Compressor Sizing

10/1/2013 35 94 48 206 10 35241/1/2014 34 93 48 202 10 34314/1/2014 33 93 48 197 10 33397/1/2014 32 92 47 193 10 3247

10/1/2014 32 91 47 190 10 31641/1/2015 32 91 47 190 10 3164

00000000000000000000000000000000

Page 12: Simple Compressor Sizing

Power [MW]Suction pressure [bara]

10

/10

/20

06

2/2

2/2

00

8

7/6

/20

09

11

/18

/20

10

4/1

/20

12

8/1

4/2

01

3

12

/27

/20

14

5/1

0/2

01

6

0

2

4

6

8

10

12

Power reqd for forecast compression ratio

ForecastValida-tion

Po

we

r [M

W]

10

/10

/20

06

2/2

2/2

00

8

7/6

/20

09

11

/18

/20

10

4/1

/20

12

8/1

4/2

01

3

12

/27

/20

14

5/1

0/2

01

60

20

40

60

80

100

120

140

Suction pressure achievable for specified power

ForecastValida-tionS

uc

tio

n p

res

su

re [

ba

ra]

Page 13: Simple Compressor Sizing

Power required for given Psuct

Pdisch CR total Tsuct GasRate MassRate Nr stages Head Power PowerkPa --- K sm3/s kg/s --- kJ/kg kW MW12539 1.0 326 117.5 79.5 0 0 0 012241 1.0 326 113.2 76.6 0 0 0 0.011964 1.0 326 109.2 73.9 0 0 0 0.011704 1.0 325 105.4 71.3 0 0 0 0.011465 1.0 325 101.8 68.9 0 0 0 0.011252 1.0 325 98.6 66.7 0 0 0 0.011046 1.0 325 95.4 64.6 0 0 0 0.010856 1.0 324 92.4 62.6 0 0 0 0.010679 1.0 324 89.7 60.7 0 0 0 0.010518 1.0 324 87.1 59.0 0 0 0 0.010367 1.0 324 84.7 57.3 0 0 1 0.010225 1.0 323 82.4 55.8 0 0 0 0.010677 2.2 324 88.1 59.6 1 139 10335 10.310526 2.2 324 85.8 58.0 1 142 10313 10.310386 2.3 323 83.6 56.6 1 146 10348 10.310253 2.3 323 81.5 55.1 1 150 10351 10.410127 2.3 323 79.4 53.7 1 154 10359 10.410013 2.4 323 77.6 52.5 1 158 10357 10.4

9900 2.4 323 75.7 51.2 1 162 10377 10.49795 2.5 322 74.0 50.0 1 166 10386 10.49694 2.5 322 72.3 48.9 1 170 10384 10.49601 2.6 322 70.7 47.8 1 174 10399 10.49512 2.6 322 69.1 46.8 1 178 10401 10.4

10

/10

/20

06

2/2

2/2

00

8

7/6

/20

09

11

/18

/20

10

4/1

/20

12

8/1

4/2

01

3

12

/27

/20

14

5/1

0/2

01

60

20

40

60

80

100

120

140

Suction pressure achievable for specified power

ForecastValida-tionS

uc

tio

n p

res

su

re [

ba

ra]

10

/10

/20

06

2/2

2/2

00

8

7/6

/20

09

11

/18

/20

10

4/1

/20

12

8/1

4/2

01

3

12

/27

/20

14

5/1

0/2

01

60.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Compression ratio & number of stages to achieve it

Compression ratio

Nr Stages

Co

mp

res

sio

n r

ati

o &

Nr

sta

ge

s

U144
Stage2: 'Stage 1' calculates head based on discharge pressure up to the maximum stage compression ratio. 'Stage 2' head is then calculated based on Stage 1 discharge pressure. No attempt is made at balancing the head between the stages. This is a simplification (optimal distribution would result in a slightly lower power requirement) but is justified given the low level of definition inherent in this level of analysis.
S145
zdisch If zdisch is calculated from the lookup table and interpolation is used to estimate z at the actual discharge temperature - ie. interpolation between the two lookup lines, z(T=Ts) and z(T=Td)
X145
zdisch If zdisch is calculated from the lookup table and interpolation is used to estimate z at the actual discharge temperature - ie. interpolation between the two lookup lines, z(T=Ts) and z(T=Td)
AC145
zdisch If zdisch is calculated from the lookup table and interpolation is used to estimate z at the actual discharge temperature - ie. interpolation between the two lookup lines, z(T=Ts) and z(T=Td)
O147
Nr stages Round up compression ratio to filter out small discrepancies in pressure (especially prior to first stage coming onstream when Ps should equal Pd)
Page 14: Simple Compressor Sizing

9425 2.7 321 67.6 45.8 1 182 10402 10.49345 2.7 321 66.2 44.8 1 186 10403 10.49269 2.8 321 64.8 43.9 1 190 10417 10.49196 2.8 321 63.5 43.0 2 193 10381 10.49126 2.9 320 62.2 42.1 2 196 10313 10.39126 2.9 320 62.2 42.1 2 196 10313 10.3

0 1.0 273 0.0 0.0 0 0 0 0.00 1.0 273 0.0 0.0 0 0 0 0.00 1.0 273 0.0 0.0 0 0 0 0.00 1.0 273 0.0 0.0 0 0 0 0.00 1.0 273 0.0 0.0 0 0 0 0.00 1.0 273 0.0 0.0 0 0 0 0.00 1.0 273 0.0 0.0 0 0 0 0.00 1.0 273 0.0 0.0 0 0 0 0.00 1.0 273 0.0 0.0 0 0 0 0.00 1.0 273 0.0 0.0 0 0 0 0.00 1.0 273 0.0 0.0 0 0 0 0.00 1.0 273 0.0 0.0 0 0 0 0.00 1.0 273 0.0 0.0 0 0 0 0.00 1.0 273 0.0 0.0 0 0 0 0.00 1.0 273 0.0 0.0 0 0 0 0.00 1.0 273 0.0 0.0 0 0 0 0.00 1.0 273 0.0 0.0 0 0 0 0.00 1.0 273 0.0 0.0 0 0 0 0.00 1.0 273 0.0 0.0 0 0 0 0.00 1.0 273 0.0 0.0 0 0 0 0.00 1.0 273 0.0 0.0 0 0 0 0.00 1.0 273 0.0 0.0 0 0 0 0.00 1.0 273 0.0 0.0 0 0 0 0.00 1.0 273 0.0 0.0 0 0 0 0.00 1.0 273 0.0 0.0 0 0 0 0.00 1.0 273 0.0 0.0 0 0 0 0.00 1.0 273 0.0 0.0 0 0 0 0.00 1.0 273 0.0 0.0 0 0 0 0.00 1.0 273 0.0 0.0 0 0 0 0.00 1.0 273 0.0 0.0 0 0 0 0.00 1.0 273 0.0 0.0 0 0 0 0.00 1.0 273 0.0 0.0 0 0 0 0.0

Page 15: Simple Compressor Sizing
Page 16: Simple Compressor Sizing

Psuct achievable for specified power

Power zavg Head Psuct Psuct PsuctkW kJ/kg kJ/kg kPa kJ/kg kPa bara

0 0.95 0 12539 0 12539 1250 0.95 0 12241 0 12241 1220 0.95 0 11964 0 11964 1200 0.95 0 11704 0 11704 1170 0.95 0 11465 0 11465 1150 0.95 0 11252 0 11252 1130 0.95 0 11046 0 11046 1100 0.95 0 10856 0 10856 1090 0.95 0 10679 0 10679 1070 0.95 0 10518 0 10518 1050 0.95 0 10367 0 10367 1040 0.95 0 10225 0 10225 102

10000 0.97 0 5047 0 5047 5010000 0.97 0 4885 0 4885 4910000 0.97 0 4733 0 4733 4710000 0.97 0 4587 0 4587 4610000 0.98 0 4448 0 4448 4410000 0.98 0 4320 0 4320 4310000 0.98 0 4194 0 4194 4210000 0.98 0 4074 0 4074 4110000 0.98 0 3958 0 3958 4010000 0.98 0 3850 0 3850 3910000 0.98 0 3746 0 3746 37

HeadR

AK145
zavg Estimate Psuct from Pd/CRmax so that zsuct (& therefore zavg) can be calculated
AN145
HeadR: Residual head available for next stage based on power constraint
AO145
zavg Estimate Psuct from Pd/CRmax so that zsuct (& therefore zavg) can be calculated
AS145
zavg Estimate Psuct from Pd/CRmax so that zsuct (& therefore zavg) can be calculated
Page 17: Simple Compressor Sizing

10000 0.98 0 3644 0 3644 3610000 0.98 0 3547 0 3547 3510000 0.98 0 3456 0 3456 3510000 0.98 0 3367 0 3367 3410000 0.98 0 3281 0 3281 3310000 0.98 0 3281 0 3281 33

0 1.00 0 0 0 0 00 1.00 0 0 0 0 00 1.00 0 0 0 0 00 1.00 0 0 0 0 00 1.00 0 0 0 0 00 1.00 0 0 0 0 00 1.00 0 0 0 0 00 1.00 0 0 0 0 00 1.00 0 0 0 0 00 1.00 0 0 0 0 00 1.00 0 0 0 0 00 1.00 0 0 0 0 00 1.00 0 0 0 0 00 1.00 0 0 0 0 00 1.00 0 0 0 0 00 1.00 0 0 0 0 00 1.00 0 0 0 0 00 1.00 0 0 0 0 00 1.00 0 0 0 0 00 1.00 0 0 0 0 00 1.00 0 0 0 0 00 1.00 0 0 0 0 00 1.00 0 0 0 0 00 1.00 0 0 0 0 00 1.00 0 0 0 0 00 1.00 0 0 0 0 00 1.00 0 0 0 0 00 1.00 0 0 0 0 00 1.00 0 0 0 0 00 1.00 0 0 0 0 00 1.00 0 0 0 0 00 1.00 0 0 0 0 0

Page 18: Simple Compressor Sizing

CONSTANTS & UNIT LOOKUP TABLES

DETAILSAndrew Hooks11/15/2007Version 1

PREFIXESMetricPrefix long form valuem milli 0.001c centi 0.01k thousand 1000M million/mega 1E+06B billion 1E+09T tera 1E+12P peta 1E+15

ImperialPrefix long form valueM thousand 1000MM million 1E+06

BASIC CONSTANTS

Gas constant, R 8.31451

Grav. accel. 9.80665

MW (air) 28.964 kg/kmol

Standard T, P 2Std Pressure 101.325 kPaStd Temperature 288.15 K

Molar Volume 23.645

Common definitions for Standard T, P

Temp Abs Pres Molar Vol

K kPa

273.15 101.325 22.414

288.15 101.325 23.645

288.71 101.325 23.691

273.15 100 22.711

288.15 100 23.958

288.71 101.560 23.636

www.firstprincipleseng.net

kPa.m3/(kmol.K)

m/s2

m3/kgmol

m3/kgmol

0oC, 1atm (273.15K = 0'C = 32'F; 101.325kPa = 1atm = 14.696psia)

15oC, 1atm (288.15K = 15'C = 59'F)

60oF, 1atm (288.71K = 60'F = 15.56'C)

0oC, 100kPa

15oC, 100kPa

60oF, 14.73psia (100.232kPa = 14.73psia)

B42
Former IUPAC definition (Internation Union of Pure & Applied Science)
B45
IUPAC definition (Internation Union of Pure & Applied Science)
Page 19: Simple Compressor Sizing

UNITSExampleClick the unit cell then select required unit from the dropdown listthat appears

Length 10 in0.254 m0.000 mile

Temperature 15 'C288.15 K

15 'C

LengthBase conversionsinches/foot 12 in/ftfeet/metre 3.281 ft/mfeet/mile 5280 ft/mi

Lookup tableUnit SI unitmm = 0.001 mcm = 0.01 mm = 1 mkm = 1000 min = 0.0254 mft = 0.3048 mmile = 1609.3 m

Area_smallLookup tableUnit SI unit

= 0.000001

= 0.000645

= 1

= 0.0929

Area_largeBase conversionshectare/km2 100 hct/km2 1 hectare is 100m x 100mft2/acre 43559.66 ft2/acre

Lookup tableUnit Metric Unit

= 1

= 0.6214

hectare = 0.01

acre = 0.0040468

mm2 m2

in2 m2

m2 m2

ft2 m2

km2 km2

mi2 km2

km2

km2

D68
feet/metre International foot is defined as 0.3048m. US Survey foot is defined as 1200/3937 = 0.30480061m but is only used in connection with surveys by the US Coast & Geodectic Survey (Wikipedia)
Page 20: Simple Compressor Sizing

VolumeBase conversions

barrels/cubic meter 6.283

231Litres/Imperial(UK) gallon 4.54609 L/gallon(UK)

Lookup tableUnit SI unit

mL = 0.000001

= 0.000001

L = 0.001

= 1

= 1.639E-05

= 0.0283 (35.31 ft3/m3)

bbl = 0.1592

gallon (US) = 0.00379 (264.2 gallon/m3)

gallon (UK) = 0.00455 (220 gallon/m3)

MassBase conversionspounds/kilogram 2.20462 lbl/kgpound/ton (short) 2000 lbl/tnpound/ton (long) 2240 lbl/ton

Lookup tableUnit SI unitmg = 0.000001 kgg = 0.001 kgkg = 1 kgtonne (metric) = 1000 kglbl = 0.454 kgton (short) = 907.2 kgton (long) = 1016.0 kg

ForceBase conversionsForce = mass * accelerationDyn 1.00E-05 N

Lookup tableUnit SI unitN = 1 NmN = 0.001 Nkg(f) = 9.80665 Nlbl(f) = 4.44823 NDyn = 0.00001 N

bbl/m3

in3/US gallon in3/gallon

m3

cm3 m3

m3

m3 m3

in3 m3

ft3 m3

m3

m3

m3

Page 21: Simple Compressor Sizing

PressureBase conversionsPressure is force per unit area

kPa/Atmosphere 101.325 kPa(A)/atm(A) Atmospheric pressure at sealevel in kPakPa/bar 100 kPa/barbara/Atmosphere 1.01325 bara/atm The atmospheric pressure in bar at sealevel is 1.01325 barbarg/Atmosphere 0 barg/atmpsia/Atmosphere 14.696 psia/atm(A) The atmospheric pressure in psi at sealevel is 14.696 psipsi/bar 14.504 psi/bar

Lookup table!!! Order is important - multiply first then add the constant !!!

Unit Multiplier Constant SI unitPa(A) 0.001 0 kPa(A)kPa(A) 1 0 kPa(A)kPa(G) 1 101.325 kPa(A)MPa(A) 1000 0 kPa(A)MPa(G) 1000 101.325 kPa(A)bara 100 0 kPa(A)barg 100 101.325 kPa(A)psia 6.895 0 kPa(A)psig 6.895 101.325 kPa(A)atm(A) 101.325 0 kPa(A)atm(G) 101.325 101.325 kPa(A)

98.0665 0 kPa(A)

Pressure differenceLookup tableUnit SI unitPa = 0.001 kPakPa = 1 kPambar = 0.100 kPabar = 100 kPapsi = 14.504 kPaatm = 101.325 kPa

= 98.0665 kPamH2O = 9.80665 kPa

TemperatureBase conversions

Constant

Deg Celcius / Kelvin 273.15Fahrenheit 459.67 RankineRankine/Kelvin 1.8 0 R/K

Pa = N/m2 = kg.(m/s2)/m2 = kg/(m.s2)

kg/cm2(A) [kg/cm2 * (100cm/m)2] * (grav accel) = N/m2 = kg * (grav accel) /m2

kg/cm2

oC/K

X barg = X barg + atm P = Y bara; eg. 1barg + 1.013 = 2.013bara1 bar = 100kPa --> X barg = [100*(X barg + 1.013bar/atm)] kPa(A), or = [100*X + 101.325] kPa(A)X bara = (X - 1.013)barg * 100kPa/bar + 101.3kPa/atm = X*100kPa(A)

Converting to psia first would give the same result, ie.the following are equivalent:[X psig + (14.5*1.013=14.7)] psia * (1kPa / 14.5psi) = kPa(A)orX psig * (1/14.5=6.895) kPa(G) + 101.3 kPa/atm = kPa(A)

D163
psia/atm= [lbl/in^2 * (100cm/m)2] * (grav accel) = N/m2 = kg * (grav accel) /m2
Page 22: Simple Compressor Sizing

Lookup table!!! Order is important - multiply first then add the constant !!!

Unit Multiplier Constant SI unit'C 1 273.15 KK 1 0 K'F 0.556 255 KR 0.556 0 K

Time_smallLookup tableUnit SI unitms = 0.001 ss = 1 smin = 60 shour = 3600 sday = 86400 s

Time_largeLookup tableUnit "SI Unit"hour = 0.0417 dayday = 1 daymonth = 30.4 dayyear = 365.25 day

Volume rate - Gas (standard conditions)Lookup tableSelect standard T, P from the in-cell drop down list

Unit Std T, P Multiplier "SI Unit"

15oC, 1atm 1

0oC, 100kPa 0.000267

15oC, 1atm 11.574

Mscf/d 60oF, 1atm 0.000328

MMscf/d 60oF, 1atm 0.328

Bscf/y 60oF, 1atm 0.900

kgmol/h 0.00657

lbmol/h 0.00298

Volume rate - Gas (actual conditions)Lookup tableUnit "SI Unit"

= 1

= 0.000278

= 11.574

Mcf/d = 0.000328

sm3/s sm3/s

Nm3/h sm3/s

Mm3/d sm3/s

sm3/s

sm3/s

sm3/s

sm3/s

sm3/s

am3/s am3/s

am3/h am3/s

Mm3/d am3/s

am3/s

Page 23: Simple Compressor Sizing

MMcf/d = 0.328

Volume rate - LiquidLookup tableUnit "SI Unit"

L/s = 1000

L/min = 16.67

L/h = 0.278

L/d = 0.01157

= 1

= 0.002738

= 1.15741E-05

bbl/d = 1.842E-06

k.bbl/d = 0.001842125

gph (US) = 1.0515E-06 gallons/hour

gpd (US) = 4.38126E-08

gph (UK) = 1.2628E-06

gpd (UK) = 5.26168E-08

Liquid - Gas RatioLookup tableUnit "SI unit"

= 1

bbl/MMscf = 5.6207

Gas - Liquid RatioLookup tableUnit "SI unit"

= 1

scf/bbl = 0.178

Mass rateLookup tableUnit SI unitkg/s = 1 kg/skg/h = 0.000278 kg/st/d = 0.011574 kg/st/y = 3.17E-05 kg/slbl/s = 0.454 kg/slbl/h = 5.25E-06 kg/s

VelocityLookup tableUnit SI unit

am3/s

m3/s

m3/s

m3/s

m3/s

m3/s m3/s

m3/h m3/s

m3/d m3/s

m3/s

m3/s

m3/s

m3/s

m3/s

m3/s

m3/Mm3 m3/Mm3

m3/m3

m3/m3 m3/m3

m3/m3

Page 24: Simple Compressor Sizing

m/s = 1 m/skm/h = 0.278 m/sft/s = 0.3048 m/smi/h = 0.4470 m/s

AccelerationLookup tableUnit SI unit

= 0.001

= 1

= 1000

= 0.025

= 0.305

mi/(h.s) = 0.447

= 1609

DensityLookup tableUnit SI unit

= 1.00E-09

= 1

= 16.018

EnergyBase conversions

1Joules/Calorie 4.1868 J/CalJoules/BTU 1055.056 J/BTU

Lookup tableUnit SI unitJ = 0.001 kJkJ = 1 kJCal = 0.0041868 kJkCal = 4.1868 kJBTU = 1.055056 kJ

Energy rateLookup tableUnit "SI unit"TJ/d = 1 TJ/dPJ/y = 1000 TJ/d

PowerBase conversions

mm/s2 m/s2

m/s2 m/s2

km/s2 m/s2

in/s2 m/s2

ft/s2 m/s2

m/s2

mi/s2 m/s2

g/cm3 kg/m3

kg/m3 kg/m3

lbl/ft3 kg/m3

Joules/(kgm2/s2) J/(kgm2/s2)

B331
A Joule is defined as the work done, or energy expended, by a force of 1 Newton moving one metre. J = N/m = (kg.m/s2).m = kgm2/s2
B332
International Steam Table Calorie (1 calorie is the energy required to raise the temperature of 1 gram of water by 1degree Celsius. Definitions differ slightly depending on initial temperature.)
B333
ISO standard definition (1 BTU is the amount of energy required to raise the temperature of 1 pound of water one degree Fahrenheit. Definitions differ slightly depending on the initial temperature).
E344
Energy rate: Sometimes used to describe flow rate therefore tabled separately from power
Page 25: Simple Compressor Sizing

(BTU/h) / kW 3412.1 (BTU/h)/kW

Lookup tableUnit SI unitW = 0.001 kWkW = 1 kWMW = 1000 kWHp = 0.746 kWBTU/h = 0.00029 kW

Heating value (volume basis)Lookup tableUnit "SI unit"

= 1

MJ/kgmol = 0.042292

MJ/scf = 35.3147

= 0.001055

BTU/scf = 0.037259

BTU/lbmol = 0.000098

kcal/lbmol = 0.000390

Heating value (mass basis)Lookup tableUnit "SI unit"MJ/kg = 1 MJ/kgBTU/kg = 0.00106 MJ/kgBTU/lb = 0.00233 MJ/kgkcal/lb = 0.00923 MJ/kgkcal/kg = 0.00419 MJ/kg

Heat capacityLookup tableUnit "SI unit"J/K = 1 J/KBTU/'F = 1899 J/Kcal/'C = 4.187 J/K

Specific heat capacityLookup tableUnit "SI unit"J/(kg.K) = 1 J/(kg.K)J/(g.K) = 1000 J/(kg.K)BTU/(lb'F) = 4187 J/(kg.K)cal/(g'C) = 4187 J/(kg.K)

Thermal conductivity

MJ/m3 MJ/m3

MJ/m3

MJ/m3

BTU/m3 MJ/m3

MJ/m3

MJ/m3

MJ/m3

Page 26: Simple Compressor Sizing

Lookup tableUnit "SI unit"W/(m.K) = 1 W/(m.K)BTU/(h.ft'F) = 1.731 W/(m.K)

= 0.144 W/(m.K)cal/(sm'C) = 4.187 W/(m.K)

Heat transfer coefficientLookup tableUnit "SI unit"

= 1

= 5.678

= 4.19E-04

= 1.163

Dynamic (Absolute) ViscosityBase conversionsPa.s = 1 kg/m/sPoise = 1 g/cm/s (Water has viscosity of ca. 1cP at 20'C (1.002))

Lookup tableUnit "SI unit"cP = 0.001 Pa.sPoise = 0.1 Pa.sPa.s = 1 Pa.s

Kinematic Viscosity Kinematic viscosity = Dynamic viscosity / Density for a Newtonian fluidBase conversions

Stoke = 1

Lookup tableUnit "SI unit"

= 1

St = 0.0001

cSt = 1.00E-06

Surface tensionLookup tableUnit "SI unit"T = 1 N/mN/m = 1 N/mmN/m = 0.001 N/mlbl(f)/in = 175.13 N/mdyn/cm = 0.001 N/m

BTU.in/(h.ft2'F)

W/(m2K) W/(m2K)

BTU/(h.ft2'F) W/(m2K)

cal/(s.cm2K) W/(m2K)

kcal/(h.m2K) W/(m2K)

cm2/s

m2/s m2/s

m2/s

m2/s

Page 27: Simple Compressor Sizing

(273.15K = 0'C = 32'F; 101.325kPa = 1atm = 14.696psia)

(288.15K = 15'C = 59'F)

(288.71K = 60'F = 15.56'C)

(100.232kPa = 14.73psia)

Page 28: Simple Compressor Sizing

1 hectare is 100m x 100m

Page 29: Simple Compressor Sizing

(264.2 gallon/m3)

(220 gallon/m3)

Page 30: Simple Compressor Sizing

Atmospheric pressure at sealevel in kPa

The atmospheric pressure in bar at sealevel is 1.01325 bar

The atmospheric pressure in psi at sealevel is 14.696 psi

[kg/cm2 * (100cm/m)2] * (grav accel) = N/m2 = kg * (grav accel) /m2

X barg = X barg + atm P = Y bara; eg. 1barg + 1.013 = 2.013bara1 bar = 100kPa --> X barg = [100*(X barg + 1.013bar/atm)] kPa(A), or = [100*X + 101.325] kPa(A)X bara = (X - 1.013)barg * 100kPa/bar + 101.3kPa/atm = X*100kPa(A)

Converting to psia first would give the same result, ie.the following are equivalent:[X psig + (14.5*1.013=14.7)] psia * (1kPa / 14.5psi) = kPa(A)orX psig * (1/14.5=6.895) kPa(G) + 101.3 kPa/atm = kPa(A)

Page 31: Simple Compressor Sizing

(Water has viscosity of ca. 1cP at 20'C (1.002))

Kinematic viscosity = Dynamic viscosity / Density for a Newtonian fluid