silver – based infiltrated composites

8
A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume 57 2012 Issue 2 DOI: 10.2478/v10172-012-0064-x M. MADEJ * SILVER – BASED INFILTRATED COMPOSITES INFILTROWANE KOMPOZYTY NA OSNOWIE SREBRA Attempts have been made to describe the influence of production process parameters on the microstructure and properties of W – Ag and Mo – Ag composites. W-30%Ag, W-40%Ag, Mo-30% Ag and Mo-40%Ag composites were produced by tumbling W5%Ag and Mo-5%Ag mixtures for 30 minutes in the Turbula T2F mixer. The powders were subsequently cold pressed in a rigid die on a single action press. The pressure was adjusted individually to assure 25% and 35% green porosity. Prior to infiltration the compacts were sintered in hydrogen at 1100 C for one hour. The porous skeletons were finally contact infiltrated with Ag-1%Ni alloy at 1100 and 1200 C for one hour in hydrogen. The main objective of this work was to compare properties and microstructure of the as-infiltrated composites. Keywords: composites, tungsten, molybdenum, silver, sintering, infiltration Srebro jest pierwiastkiem krystalizującym w sieci A1; jest metalem bardzo plastycznym na zimno, posiada niską twardość 26 HB, stosunkowo wysoką gęstość 10,5 g/cm 3 i niską temperature topnienia 960 C, jest odporne na dzialanie czynników at- mosferycznych, jest najlepszym przewodnikiem cieplnym i elektrycznym. Wytrzymalość na rozciąganie srebra jest mala i wynosi okolo 160 MPa. Proszek srebra wytwarza się metodą elektrolizy lub rozpylania. Czyste srebro do celów konstrukcyjnych nie jest stosowane, ze względu na niskie wlasności wytrzymalościowe. W procesie wytwarzania metodą metalurgii proszków styków elektrycznych należy dążyć do uzyskania materialu o drobnoziarnistej strukturze i równomiernym rozmieszczeniu skladników, z których najczęściej jeden jest odpowiedzialny za wysokie przewodnictwo, natomiast drugi źle przewodzący prąd zwiększa odporność mechaniczną, odporność na zgrzewanie i elektroerozję. W zależności od udzialów objętościowych skladników dąży się albo do uzyskania materialu, którego strukturę cechuje równomierne rozmieszczenie cząstek jednego skladnika w osnowie skladnika podstawowego, albo w przypadku zbliżonych zawartości skladników – materialu zlożonego z dwu przenikających się skladników. Celem niniejszego opracowania jest przedstawienie wyników badań dotyczących formowania metodą infiltracji oraz spieka- nia w stanie stalym kompozytów wolfram-srebro oraz molibden-srebro. Do formowania kompozytów stosowano elektrolityczny proszek srebra, redukowany proszek wolframu oraz redukowany proszek molibdenu. Material badawczy stanowily ksztaltki wolframu z dodatkiem 30% i 40% srebra oraz molibdenu z dodatkiem 30% i 40% srebra. Porowate ksztaltki przeznaczone do infiltracji prasowano na stalą objętość oraz wstępnie spiekano w atmosferze wodoru w temperaturze 1100 C przez 60 minut. Następnie porowate ksztaltki infiltrowano srebrem z dodatkiem 1% niklu, metodą nakladkową w atmosferze wodoru w temperaturze 1100 i 1200 C przez 60 minut. Kompozyty poddano badaniom stopnia wypelnienia kapilar, gęstości względnej, twardości, wytrzymalości na zginanie, wlasności tribologicznych oraz przewodności elektrycznej i cieplnej w odniesieniu do czystego srebra. W pracy przedstawiono także struktury kompozytów otrzymanych w wyniki infiltracji. W wyniku infiltracji można formować kompozyty wolfram-srebro oraz molibden-srebro odznaczające się względnie maporowatością (mniejszą od 7%), oraz dobrymi wlasnościami wytrzymalościowymi. Z punktu widzenia ekonomicznego oraz w wyniku analizy wlasności otrzymanych kompozytów można stwierdzić, że bardziej korzystne wydaje się zastosowanie temperatury infiltracji 1100 C. 1. Introduction Electrical contact materials are used in a variety of applications, such as electrical switches, contactors, cir- cuit breakers, voltage regulators, arcing tips, switch gears and relays. Materials used for electrical contacts must have a combination of high electrical conductivity, re- sistance to erosion, welding and mechanical wear. When using contact materials in heavy duty applications, it is very important to control the erosion which takes place as a result of electrical arcing, and the danger of weld- ing due to contact heating during current flow and arc * FACULTY OF METALS ENGINEERING AND INDUSTRIAL COMPUTER SCIENCE AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY, 30-059 KRAKÓW, 30 MICKIEWICZA AV., POLAND

Upload: richardnl

Post on 18-Jul-2016

10 views

Category:

Documents


0 download

DESCRIPTION

SILVER – BASED INFILTRATED COMPOSITES

TRANSCRIPT

Page 1: Silver – Based Infiltrated Composites

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S

Volume 57 2012 Issue 2

DOI: 10.2478/v10172-012-0064-x

M. MADEJ∗

SILVER – BASED INFILTRATED COMPOSITES

INFILTROWANE KOMPOZYTY NA OSNOWIE SREBRA

Attempts have been made to describe the influence of production process parameters on the microstructure and propertiesof W – Ag and Mo – Ag composites. W-30%Ag, W-40%Ag, Mo-30% Ag and Mo-40%Ag composites were produced bytumbling W5%Ag and Mo-5%Ag mixtures for 30 minutes in the Turbula T2F mixer. The powders were subsequently coldpressed in a rigid die on a single action press. The pressure was adjusted individually to assure 25% and 35% green porosity.Prior to infiltration the compacts were sintered in hydrogen at 1100◦C for one hour. The porous skeletons were finally contactinfiltrated with Ag-1%Ni alloy at 1100 and 1200◦C for one hour in hydrogen. The main objective of this work was to compareproperties and microstructure of the as-infiltrated composites.

Keywords: composites, tungsten, molybdenum, silver, sintering, infiltration

Srebro jest pierwiastkiem krystalizującym w sieci A1; jest metalem bardzo plastycznym na zimno, posiada niską twardość∼26 HB, stosunkowo wysoką gęstość 10,5 g/cm3 i niską temperature topnienia 960◦C, jest odporne na działanie czynników at-mosferycznych, jest najlepszym przewodnikiem cieplnym i elektrycznym. Wytrzymałość na rozciąganie srebra jest mała i wynosiokoło 160 MPa. Proszek srebra wytwarza się metodą elektrolizy lub rozpylania. Czyste srebro do celów konstrukcyjnych nie jeststosowane, ze względu na niskie własności wytrzymałościowe. W procesie wytwarzania metodą metalurgii proszków stykówelektrycznych należy dążyć do uzyskania materiału o drobnoziarnistej strukturze i równomiernym rozmieszczeniu składników,z których najczęściej jeden jest odpowiedzialny za wysokie przewodnictwo, natomiast drugi źle przewodzący prąd zwiększaodporność mechaniczną, odporność na zgrzewanie i elektroerozję. W zależności od udziałów objętościowych składników dążysię albo do uzyskania materiału, którego strukturę cechuje równomierne rozmieszczenie cząstek jednego składnika w osnowieskładnika podstawowego, albo w przypadku zbliżonych zawartości składników – materiału złożonego z dwu przenikającychsię składników.

Celem niniejszego opracowania jest przedstawienie wyników badań dotyczących formowania metodą infiltracji oraz spieka-nia w stanie stałym kompozytów wolfram-srebro oraz molibden-srebro. Do formowania kompozytów stosowano elektrolitycznyproszek srebra, redukowany proszek wolframu oraz redukowany proszek molibdenu. Materiał badawczy stanowiły kształtkiwolframu z dodatkiem 30% i 40% srebra oraz molibdenu z dodatkiem 30% i 40% srebra. Porowate kształtki przeznaczonedo infiltracji prasowano na stałą objętość oraz wstępnie spiekano w atmosferze wodoru w temperaturze 1100◦C przez 60minut. Następnie porowate kształtki infiltrowano srebrem z dodatkiem 1% niklu, metodą nakładkową w atmosferze wodoru wtemperaturze 1100 i 1200◦C przez 60 minut. Kompozyty poddano badaniom stopnia wypełnienia kapilar, gęstości względnej,twardości, wytrzymałości na zginanie, własności tribologicznych oraz przewodności elektrycznej i cieplnej w odniesieniu doczystego srebra. W pracy przedstawiono także struktury kompozytów otrzymanych w wyniki infiltracji.

W wyniku infiltracji można formować kompozyty wolfram-srebro oraz molibden-srebro odznaczające się względnie małąporowatością (mniejszą od 7%), oraz dobrymi własnościami wytrzymałościowymi. Z punktu widzenia ekonomicznego orazw wyniku analizy własności otrzymanych kompozytów można stwierdzić, że bardziej korzystne wydaje się zastosowanietemperatury infiltracji 1100◦C.

1. Introduction

Electrical contact materials are used in a variety ofapplications, such as electrical switches, contactors, cir-cuit breakers, voltage regulators, arcing tips, switch gearsand relays. Materials used for electrical contacts must

have a combination of high electrical conductivity, re-sistance to erosion, welding and mechanical wear. Whenusing contact materials in heavy duty applications, it isvery important to control the erosion which takes placeas a result of electrical arcing, and the danger of weld-ing due to contact heating during current flow and arc

∗ FACULTY OF METALS ENGINEERING AND INDUSTRIAL COMPUTER SCIENCE AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY, 30-059 KRAKÓW, 30 MICKIEWICZA AV., POLAND

Page 2: Silver – Based Infiltrated Composites

606

formation. When breaking the circuit an arc forms be-tween the contacts. The cross-section of the conductingarea initially decreases and current density, contact volt-age and, consequently, temperature increases causing thecontact material to melt locally, and the current passesonly across a small molten metal bridge. Thus dropletsof molten contact material solidify as they cool formingcontact debris. When closing the circuit the moving con-tact may bounce against the stationary one thus causingthe arc to reappear many times.

The desired combination of properties can be real-ized only by utilizing refractory metals, such as tung-sten or molybdenum. The W-Ag and Mo-Ag electricalcontact materials utilised in heavy-duty applications areproduced exclusively by means of powder metallurgy(PM) [1÷6]. Composites containing 30-80 wt-% silverresist arc erosion and possess good welding resistanceand current carrying capacity. The properties of PMelectrical contacts depend on both their composition andmanufacturing process. The particle size and distributionof the refractory phase, homogeneity of microstructureand amount of porosity combine to affect the electri-cal, mechanical, and thermo-physical properties of thecomposite material [1,2,6].

In principle, W-Ag and Mo-Ag composite materi-als can be produced by two techniques [1,4,5,6], whichconsist in:• mixing elemental powders, cold pressing and solid

state sintering. At silver contents exceeding 30% theas-sintered parts can be subjected to final processingby rolling or re-pressing

• infiltrating tungsten, or molybdenum, porous skele-tons with liquid silver.Infiltration is a process that has been broadly used

for many years. It is defined as a process of filling thepores of a sintered or unsintered compact with a metalor alloy having a lower melting temperature. While it ispossible with the first method to produce materials withany ratio of high-melting point and low-melting pointcomponents, the infiltration process is suitable only formaterials with tungsten or molybdenum content higherthan 70%. In practice this limitation has little signifi-cance, because the materials used most commonly arehighly burn resistant and have a higher W/Mo contentanyway. For this reason and because of their excellentapplication properties, infiltrated contacts predominate.

For many years, tungsten has been used as the con-tact material for automotive distributor ignition system,aviation and diesel starting equipment, car radios, sparkgap electrodes and in a majority of automotive voltageregulators. Molybdenum is used when electrical loads donot justify the use of tungsten. Molybdenum has lowerdensity than tungsten which is advantageous in situationswhere the mass of moving parts of the contact mustbe minimised. Molybdenum-base contacts are used forbreaking lower currents and in high voltage electron-ics, whereas tungsten is preferred in car electronics, ascontact-breaker points, for horns, etc [1÷8].

2. Experimental procedure

The starting powders are characterised in Fig. 1 andin Table 1.

TABLE 1Selected properties of the experimental powders

PowderParticle size,

µm

Averageparticle size,

µm

Tap density,g/cm3

Flow time,s/50g

Compressibilityat 600 MPa,

g/cm3

Theoreticaldensity,g/cm3

W 0-10 3.1 2.82 - 12.54 19.3

Mo 0-10 3.1 1.64 - 7.21 10.2

Ag 0-63 32.8 1.53 60 9.76 10.5

Ni 0-40 20 2.32 - 6.54 8.9

Page 3: Silver – Based Infiltrated Composites

607

Fig. 1. SEM micrographs of: a) tungsten, b) molybdenum, c) silver and d) nickel powders

W+5wt-%Ag and Mo-5wt-%Ag mixtures were pre-pared by tumbling the powders for 30 minutes. Theywere subsequently cold pressed in a rigid die on a sin-gle action press. The pressure was adjusted individuallyto assure around 25% green porosity. Prior to infiltrationthe compacts were sintered for one hour at 1100◦C inhydrogen. The porous skeletons were then contact infil-trated with Ag-1wt-%Ni alloy by holding either at 1100or 1200◦C.

The infiltrated specimens were subsequently testedfor density, Brinell hardness, bending strength and resis-tance to wear, and subjected to microstructural examina-tions by means of both light microscopy (LM) and scan-ning electron microscopy (SEM). The wear tests werecarried out using the block-on-ring tester (Fig. 2).

During the test a rectangular 20×4×4 mm wear sam-ple (1) was mounted in a sample holder (4) equippedwith a hemispherical insert (3) ensuring proper contactbetween the test sample and a steel ring (2), heat treatedto 55 HRC, which was rotated at a constant speed of 136rpm. The wear surface of the sample was perpendicularto the loading direction. Double lever system was usedto force the sample towards the ring at 56 N ± 1%.

Fig. 2. Schematic view of a block-on-ring tester

The loss of sample mass was measured after a slid-ing distance of 100 m. The friction force F was alsomeasured and used to calculate the friction coefficient.

The electrical conductivity of contact materials wascarried out on electrical conductivity measurement de-vice (Fig. 3).

The conductivity of the annealed copper is5.8×107S/m and copper is defined to be 100% IACS at20◦C. All other conductivities are compared to annealedcopper and expressed in relative values.

Page 4: Silver – Based Infiltrated Composites

608

Fig. 3. Schematic view of the electrical conductivity measurementdevice: 1 – electric resistance tester, 2 – sample, 3 – grip spring

3. Results and discussion

The combined effects of the powder mix composi-tion and its processing route on relative densities of thecomposites are shown in Fig. 4.

The other properties of contact infiltrated compos-ites are given in Figs 5÷7.

Fig. 4. Relative densities of composites as a function of composition and temperature of infiltration

Fig. 5. Brinell Hardness of composites as a function of composition and temperature of infiltration

Page 5: Silver – Based Infiltrated Composites

609

Fig. 6. Bending Strength of composites as a function of composition and temperature of infiltration

Fig. 7. Electrical conductivity % IACS of composites as a function of composition and temperature of infiltration

As seen in Figure 4 the molten silver was drawninto the interconnected pores of the skeletons, througha capillary action, and filled virtually the entire porevolume to yield final densities exceeding 92.5÷96% ofthe theoretical value.

It can be seen that hardness of Ag-W and Ag-Moelectrical contact materials (Fig. 5) increased with in-creasing W/Mo content, but its electrical conductivity(Fig. 7) and bending strength (Fig. 6) decreased. Silverimparts conductivity while tungsten and molybdenumstrengthen the composites. The electrical conductivity ofboth Ag–W and Ag–Mo composites strongly depend onthe volume fraction of silver because there is practically

no mutual solubility of the components. The hardness ofW+30%Ag composite (∼230HB) is higher than that ofMo+30%Ag (150HB), and its electrical conductivity ishigher as well. Tungsten does not oxidize as readily asmolybdenum. Thus tungsten-based materials offer lowersurface resistance compared to their molybdenum-basedcounterparts.

It can be seen in Figs 5 and 7 that infiltration at1200◦C results in lower electrical conductivity and bend-ing strength. The values of electrical conductivity andhardness obtained from the present study are consistentwith the values given in the literature [3, 9, 10].

Page 6: Silver – Based Infiltrated Composites

610

The wear test results of composites infiltrated at1100◦C are given in Figures 8 and 9.

It has been found that the tribological behavior of theinvestigated composites depend on the chemical compo-sition of the material, and the wear resistance was higher

for the W-Ag materials. Interestingly, the lowest loss ofmass was observed in the W+40%Ag composites. Thismay be attributed to good sliding properties.

Characteristic surface topographies after the weartest are presented in Fig. 10.

Fig. 8. Loss of mass of as infiltrated composites

Fig. 9. Friction coefficient of as infiltrated composites

Fig. 10. The surface topographies of selected composites after the wear test

Page 7: Silver – Based Infiltrated Composites

611

The surface topographies of Mo+30%Ag andW+40%Ag specimens give evidence of massivemicro-ploughing by Mo and W particles pulled out of thematrix to act as abrasives. This seems to contribute to theincrease in the coefficient of friction. Fig. 10 also showssmearing of silver over the surface of the as-infiltratedcomposites which implies a marked contribution of ad-hesive wear.

The microstructures of as-infiltrated W-Ag andMo-Ag composites in Figs 11-14 illustrate uniformdistribution of tungsten/molybdenum (dark) and silver(gray), and small residual porosity, although it seems thatmolybdenum powder particles show higher tendency toform bigger agglomerates than tungsten.

Fig. 11. Microstructures of as-infiltrated W+30%Ag composites

Fig. 12. Microstructures of as-infiltrated W+40%Ag composites

Fig. 13. Microstructures of as-infiltrated Mo+30%Ag composites

Page 8: Silver – Based Infiltrated Composites

612

Fig. 14. Microstructures of as-infiltrated Mo+40%Ag composites

4. Conclusions

1. Infiltration of porous W/Mo skeletons with liquid sil-ver at between 1100 and 1200◦C has proved to bea suitable technique whereby fully dense electricalcontact materials are produced at low cost.

2. The electrical conductivity of W-Ag and Mo-Agcomposites increase with silver content.

3. The hardness of W-Ag and Mo-Ag composites in-crease with the amount of tungsten and molybdenum.

4. All contact materials studied in this work showrelatively homogenous distribution of tungsten andmolybdenum.

Acknowledgements

This work was financed by Ministry of Science and HigherEducation through the project No 11.11.110.788

REFERENCES

[1] W. S c h a t t, K-P. W i e t e r s, Powder MetallurgyProcessing and Materials (EPMA 1997).

[2] C-H. L e u n g, C.W. W i n g e r t, H.J. K i m, Compar-ison of reignition properties of several Ag/W, Ag/WC,

and Ag/Mo electrical contact material, IEEE Transac-tions on Components, and Manufacturing Technology9, 1 (1986).

[3] N.C. K o t h a r i, Factors affecting tungsten-copper andtungsten-silver electrical contact materials, Powder Met-allurgy International 14, 3 (1982).

[4] S. G a c e k, J. F r y d r y c h, S. S t o l a r z, Proper-ties of tungsten compacts and sintered parts intended forinfiltration with silver, Powder Metallurgy International13, 1 (1981).

[5] C.H. L e u n g, A. L e e, A comparison of reignitingproperties of several Ag/W, Ag/WC and Ag/Mo elec-trical contact materials, IEEE Trans. Comp. HybridsManuf. Technolgy 9, 1, (1986).

[6] http//www.amidoduco.com/cm2.html[7] M. M a d e j, The influence of production process pa-

rameters on properties of {W-Ag}, {Mo-Ag} composites,Materials Science Forum 534-536, 1513-1516 (2007).

[8] M. M a d e j, J. L e ż a ń s k i, Forming of the structureand properties of composites from mixed powders oftungsten with molybdenum and tungsten carbide with;Rudy i Metale Nieżelazne 51, 7, 428-433 (2006).

[9] M. M a d e j, J. L e ż a ń s k i, Copper infiltrated highspeed steel based composites, Archives of Metallurgyand Materials 50, 4, 871-877 (2005).

[10] M. M a d e j, The tribological properties of high speedsteel based composites, Archives of Metallurgy and Ma-terials 55, 1 61-68 (2010).

Received: 10 November 2011.