sikivie - university of california, los angelesaxions are present in many models of...

50
Axion Dark Matter : Motivation and Search Techniques Pierre Sikivie UCLA DM Conference February 17, 2016

Upload: others

Post on 25-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Axion Dark Matter : Motivation and Search Techniques

    Pierre Sikivie

    UCLA DM Conference February 17, 2016

  • •  Motivation

    Axions solve the strong CP problem

    Axions are present in many models of beyond-the-Standard Model physics Axions are a form of cold dark matter Axion BEC explains the existence and properties of caustic rings in galactic halos

  • •  Axion Search Techniques

    the cavity haloscope the axion helioscope

    shining light through walls NMR methods axion mediated long-range forces

    LC circuit atomic transitions

  • The Strong CP Problem 2

    QCD 2... 32a agL G G µνµνθ π

    = +

    %

    where arg ( ... )u tdm m mθ θ = − arg det ( )u dY Yθ= −

    The absence of P and CP violation in the strong interactions requires

    from upper limit on the neutron electric dipole moment

    1010θ −≤

  • If a symmetry is assumed,

    relaxes to zero,

    PQU (1)

    2

    2

    1... .32 2

    a a

    a

    a gL G G a af

    µν µµν µπ

    = + + ∂ ∂ + ..

    %

    and a light neutral pseudoscalar particle is predicted: the axion.

    Weinberg, Wilczek 1978

    �̄ =a

    fa

  • f f

    a

    a

    γγ

    610 GeVeVa

    a fm 6 ;

    = 0.97 in KSVZ model 0.36 in DFSZ model

    Laf̄f = igfa

    faf̄�5f

    La�� = g�a

    fa�E · �B

  • The remaining axion window

    laboratory searches

    510 15101010 (GeV)af

    (eV)am 1 510− 1010−

    stellar evolution

    cosmology

  • Axion production by vacuum realignment

    2 2 21 1 1 1

    1

    1

    2

    1

    2( ) ( ) ( ) ( )a a at t t tt

    n m a f α ; ;

    GeVT ≥ 1 GeVT ≤ 1

    V

    a

    V

    a

    1

    0

    3 76

    0 1( ) ( )a aa aR

    Rt tm mnρ −⎛ ⎞ ∝ ⎜ ⎟

    ⎝ ⎠ ;

    initial misalignment angle

    J. Preskill, M. Wise & F. Wilczek, L. Abbott & PS, M. Dine & W. Fischler, 1983

  • Cold axion properties

    •  number density

    •  velocity dispersion •  phase space density

    5 347 31

    3 12

    ( )4 10( )cm 10 GeV ( )

    af a tn ta t

    ⎛ ⎞⋅ ⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠:

    1

    1

    ( )1( )

    v( )a

    a tm t a t

    :

    83 361

    1234

    3

    (2 )( ) 1010 GeV( v)

    a

    a

    fn tmππ

    δ

    ⎛ ⎞ ⎜ ⎟ ⎝ ⎠ : :N

    if decoupled

  • Bose-Einstein Condensation

    if identical bosonic particles are highly condensed in phase space and their total number is conserved and they thermalize then most of them go to the lowest energy available state

  • why do they do that?

    by yielding their energy to the non-condensed particles, the total entropy is increased.

    BEC preBEC

  • the axions thermalize and form a BEC after a time

    t < � t > �

    the axion fluid obeys classical field equations, behaves like CDM

    the axion fluid does not obey classical field equations, does not behave like CDM

  • Quantum axion field dynamics

    H =�

    j

    �ja†jaj +

    ijkl

    14�ijkla

    †ka

    †l aiaj

    From self-interactions

    From gravitational self-interactions

    14!

    �⇥4

    � ⇥p3,⇥p4� ⇥p1,⇥p2 = �⇥

    4m2V�⇥p1+⇥p2,⇥p3+⇥p4

    � �p3,�p4g �p1,�p2 = �4⇥Gm2

    V��p1+�p2,�p3+�p4

    �1

    |⇤p1 � ⇤p3|2+

    1|⇤p1 � ⇤p4|2

    O. Erken et al., PRD 85 (2012) 063520

  • After , axions thermalize in the “condensed” regime

    implies

    t1

    � >> �E

    d

    dtNl = i

    ijk

    12(�klija

    †ia

    †jakal � h.c.)

    � � 14n�m�2 for

    and for self-gravity

    �⇥4

    (⇥ � 1/�p)� � 4�Gnm2⇥2

  • Thermalization occurs due to gravitational interactions

    at time 1t

    -1with v)l mδ= (

    1 ( )( ) / ( ) ( )g a tt H t t a t −Γ ∝ ∝

    2

    2

    Gmq

    q

    PS + Q. Yang, PRL 103 (2009) 111301

    �g � 4�Gnm2l2

    � 5 · 10�7H(t1)�

    f

    1012 GeV

    ⇥ 23

  • Gravitational interactions thermalize the axions and cause them to form a BEC when the photon temperature

    After that 1vm t

    δ

    :

    3 3( ) / ( ) ( )g t H t t a t−Γ ∝

    T� � 500 eV�

    f

    1012 GeV

    ⇥ 12

  • Axion BEC thermalization has also been discussed by

    •  Saikawa and Yamaguchi, Phys. Rev. D87 (2015) 085010

    •  S. Davidson and Elmer, JCAP 1312 (2013) 034 •  J. Berges and J. Jaeckel, Phys. Rev. D91 (2015)

    025020

    •  A. Guth, M.P. Hertzberg and C. Prescod-Weinstein, Phys. Rev. D92 (2015) 103513

  • Guth et al. write: " ... we conclude that while a Bose-Einstein condensate is formed, the claim of long-range correlation is

    unjustified."

    the axion BEC is inhomogeneous because it is gravitationally unstable. However it does have the long range correlations that are characteristic of BEC. The BEC correlation length is not to be identified with the scale of homogeneity.

    homogeneity length scale

    BEC correlation length

  • Tidal torque theory

    neighboring protogalaxy

    Stromberg 1934; Hoyle 1947; Peebles 1969, 1971

  • Tidal torque theory with ordinary CDM

    neighboring protogalaxy

    the velocity field remains irrotational

    v 0∇× =ur r

  • Tidal torque theory with axion BEC

    v 0∇× ≠ur r

    in their lowest energy available state, the axions fall in with net overall rotation

  • simulation by Arvind Natarajan

    in case of net overall rotation

  • The caustic ring cross-section

    an elliptic umbilic catastrophe

    D -4

  • On the basis of the self-similar infall model (Filmore and Goldreich, Bertschinger) with angular momentum (Tkachev, Wang + PS), the caustic rings were predicted to be

    in the galactic plane with radii

    was expected for the Milky Way halo from the effect of angular momentum on the inner rotation curve.

    ( )1,2,3...n =

    maxj 0.18≅

    rot max40kpc v j220km/s 0.18

    nn

    a ⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

  • •  Axion Search Techniques

    the cavity haloscope the axion helioscope

    shining light through walls NMR methods axion mediated long-range forces

    LC circuit atomic transitions

  • Axion dark matter is detectable

    0Bur

    γa

    X

    A/D FFT 0Bur001TME

    ur

    PS '83

    La�� = g�a

    fa�E · �B

  • 3v 10c

    β − = :

    2 21

    2)ah m c βν = (1 +

    1aQ ν−

    1LQ ν−

    ν

    dPdν

    2 /am hc

    610aQ :

  • Axion Dark Matter eXperiment see talks here by G. Carosi and B. Brubaker

  • Gen 2 ADMX sensitivity

    Will scan the lower-mass decade at or below DFSZ sensitivity

  • Axion to photon conversion in a magnetic field

    Theory

    •  P. S. ’83 •  L. Maiani, R. Petronzio and E. Zavattini ’86 •  K. van Bibber et al. ’87 •  G. Raffelt and L. Stodolsky, ‘88 •  K. van Bibber et al. ’89

    Experiment •  D. Lazarus et al. ’92 •  R. Cameron et al. ‘93 •  S. Moriyama et al. ’98, Y. Inoue et al. ’02 •  K. Zioutas et al. 04 •  E. Zavattini et al. 05

    0Bur

    γa

    22

    2 2sin

    ( )z

    za

    Lqg

    af q

    p γα

    γπ 0

    ⎛ ⎞ ⎜ ⎟⎛ ⎞←→ = ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎜ ⎟

    ⎝ ⎠

    Β

    x

    with

    conversion probability

    2 2pl

    2za

    aE

    mq

    ω − =

  • Tokyo Axion Helioscope

  • CAST Collaboration: Phys. Rev. Lett. 112 (2013) 091302

  • Shining light through walls K. van Bibber et al. ‘87 A. Ringwald ‘03 R. Rabadan, A. Ringwald and C. Sigurdson ‘05 P. Pugnat et al. '05 C. Robilliard et al. '07 A. Afanasev et al. '08 A. Chou et al. '08 K. Ehret et al. '10

    0Bur

    γ

    x 0Bur

    γa

    x

    rate 41

    af∝

  • Limits from "light through wall" axion searches

  • (a)

    (b)

    Wall Photon DetectoraγLaser

    L

    B0

    Magnet

    B0

    Magnet

    L

    Matched Fabry-Perots

    IOLaser

    MagnetMagnet

    Photon Detectors

    Resonantly Enhanced Axion-Photon Regeneration

    F. Hoogeveen (1996); P.S., D. Tanner and K. van Bibber (2007)

  • ALPS II at DESY

    Expected sensitivity : 2 · 10�11 GeV�1

  • PVLASLaser experiments

    Solar search

    HB StarsResonantly enhancedphoton regeneration

    ma (eV)10-6 10-5 10-4 10-3 10-2

    10-16

    10-8

    10-10

    10-12

    10-14

    10-4

    10-6

    g aγγ

    (GeV

    -1)

    Microwave cavity dark matter searches

    Axion models

  • Macroscopic forces mediated by axions

    Theory:

    J. Moody and F. Wilczek ’84 Experiment: A. Youdin et al. ’96 W.-T. Ni et al. ‘96

    ( )5ff ffa fa

    mf

    fL a i fg θγ + =

    forces coupled to the f number density

    forces coupled to the f spin density

    1710fϑ− :background of magnetic forces

  • NMR with long range axion field

    th

    A. Arvanitaki and A. Geraci, 2014

    ⇥ = �NB0

    the rotating mass on the left produces an oscillating axion field

    the oscillating axion field is an effective magnetic field in an NMR experiment

    Hint =gfmf�f

    faa(x) Hint =

    gfmffa

    ⇥�a(x) · ⇥�

  • de � 10�16 e cma(x)fa

    the axion field induces an oscillating nuclear electric dipole moment

  • Axion dark matter detection using an LC circuit

    to re

    PS, D. Tanner and N. Sullivan, 2013

    circuit should be cooled to milli-Kelvin temperatures

    ⇥⇤� ⇥Ba = ⇥ja ⇥ ga�� ⇥B0(⇥x) �ta(⇥x, t)

  • Axion dark matter detection using atomic transitions

    - tune using the Zeeman effect - use laser techniques to count axion induced transitions - must cool to milli-Kelvin temperatures

    PS 2014

    Laf̄f = �gf2fa

    ⇥µa(x)f̄(x)�µ�5f(x)

    f is electron, or nucleon

    Haf̄f = +gf2fa

    ⇥�f · ⇥�aa

    ���

  • Conclusions

    •  Axion dark matter is well motivated

    •  Axion dark matter can be detected over most of the plausible mass range