sif 2014 - structures in fire 2014 shangai

1
Institut e f or Sustainability and OPTIMIZATION OF Institut e f or Sustainability and Innovation in Structural Engineering Filippo Gentili Franco Bontempi OPTIMIZATION OF THE TALL BUILDINGS STRUCTURAL SYSTEM AGAINST PROGRESSIVE COLLAPSE [email protected] [email protected] INTRODUCTION AGAINST PROGRESSIVE COLLAPSE Vertical bracing systems and outriggers play a Fire Scenario 1 [email protected] [email protected] Vertical bracing systems and outriggers play a decisive role on the progressive collapse susceptibility. Scala A Ascensore 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Fire Scenario 1 Scala A Ascensore 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Scala A Ascensore 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 In relation to a steel tall building (Figure 1). Evaluation of structural performances of steel tall building is performed thought full non-linear analyses on finite element models Ascensore Scala A Scala B IPE 270 IPE 270 I PE 270 IPE 270 IPE 270 IPE 270 HEA 240 HEA 240 IPE 270 IPE 300 HEM 260 IPE 270 IPE 2 70 IPE 300 IPE 270 IPE 270 IPE 270 IPE 300 IPE 270 HEA 240 HEM 280 HEA 240 IPE 270 IPE 300 IPE 270 IPE 270 HEA 240 IPE 270 IPE 270 IPE 300 IPE 270 IPE 270 IPE 270 IPE 300 IPE 270 IPE 270 IPE 270 HEA 260 IPE 270 HEA 240 IPE 270 HEM 260 HEM 260 HEM 260 IPE 270 IPE 270 IPE 270 IPE 270 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 160 m Frame B Ascensore Scala A Scala B IPE 270 IPE 270 I PE 270 IPE 270 IPE 270 IPE 270 HEA 240 HEA 240 IPE 270 IPE 300 HEM 260 IPE 270 IPE 2 70 IPE 300 IPE 270 IPE 270 IPE 270 IPE 300 IPE 270 HEA 240 HEM 280 HEA 240 IPE 270 IPE 300 IPE 270 IPE 270 HEA 240 IPE 270 IPE 270 IPE 300 IPE 270 IPE 270 IPE 270 IPE 300 IPE 270 IPE 270 IPE 270 HEA 260 IPE 270 HEA 240 IPE 270 HEM 260 HEM 260 HEM 260 IPE 270 IPE 270 IPE 270 IPE 270 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 35 m Ascensore Scala A Scala B IPE 270 IPE 270 IP E 2 70 IPE 270 IPE 270 IPE 270 HEA 240 HEA 240 IPE 270 IPE 300 HEM 260 IPE 270 I PE 270 IPE 300 IPE 270 IPE 270 IPE 270 IPE 300 IPE 270 HEA 240 HEM 280 HEA 240 IPE 270 IPE 300 IPE 270 IPE 270 HEA 240 IPE 270 IPE 270 IPE 300 IPE 270 IPE 270 IPE 270 IPE 300 IPE 270 IPE 270 IPE 270 HEA 260 IPE 270 HEA 240 IPE 270 HEM 260 HEM 260 HEM 260 IPE 270 IPE 270 IPE 270 IPE 270 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 analyses on finite element models Performances of initial (Figure 2) and optimized (Figure 3) configuration are compared. Figure 1 – Case Study: Three-dimensional view and Fire Scenarios Figure 2 – Initial Configuration: In blue vertical bracing systems Figure 3 – Optimized Configuration: in red the added vertical bracing systems in light blue the outrigger at 29 th floor Fire Scenario 2 Frame A 35 m OPTIMIZATION PROCEDURE Heated Fire Steel Fire Several configurations (Figure 4) have been A1 A2 A3 A4 A5 Heated Columns Fire Resistance No. Cases Avg Min Max 1 8 180 180 180 2 7 180 180 180 Conf. Steel Mass [ton] Fire Resistance [min] A1 799 75 A2 857 75 Several configurations (Figure 4) have been assessed. The displacement on the top floor (1 meter) has been considered as indicator of the global colapse. A1 A2 A3 A4 A5 2 7 180 180 180 3 6 143.6 80 180 4 5 88.4 78 103 5 4 67.5 66 69 A2 857 75 A3 877 180 A4 877 180 A5 877 180 The collapse can be avoided with outriggers (Table 1). The position has been varied in order to minimize lateral displacement. Table 1 Mass and Fire Table 2 Fire Resistance of to minimize lateral displacement. Spatial extension of fire has been increased in the best configurations (Table 2). Figure 4 – Sectional Configurations considered for Frame A Table 1 Mass and Fire Resistance of Frame A Table 2 Fire Resistance of Frame A5 increasing fire extension FIRE STRUCTURAL PERFORMANCES ANALSYS the best configurations (Table 2). Threedimensional spatial models have been 48 49 50 51 52 53 54 55 56 57 58 59 60 48 49 50 51 52 53 54 55 56 57 58 59 60 48 49 50 51 52 53 54 55 56 57 58 59 60 I Time [min] Collapsed Floor Area [m 2 ] Collapsed Floor Area Percentage [%] Original Optimized Original Optimized Threedimensional spatial models have been used. An explicit dynamic solver allowed to trace Scala A Ascensore Ascensore Scala A Scala B IPE 270 IPE 270 HEA 240 HEA 240 IPE 270 IPE 300 IPE 300 IPE 270 HEA 240 IPE 270 IPE 270 IPE 300 IPE 270 IPE 270 IPE 270 IPE 300 IPE 270 IPE 270 IPE 270 HEA 260 IPE 270 HEA 240 IPE 270 IPE 270 IPE 270 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 Scala A Ascensore Ascensore Scala A Scala B IPE 270 IPE 270 HEA 240 HEA 240 IPE 270 IPE 300 IPE 300 IPE 270 HEA 240 IPE 270 IPE 270 IPE 300 IPE 270 IPE 270 IPE 270 IPE 300 IPE 270 IPE 270 IPE 270 HEA 260 IPE 270 HEA 240 IPE 270 IPE 270 IPE 270 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 Scala A Ascensore Ascensore Scala A Scala B IPE 270 IPE 270 HEA 240 HEA 240 IPE 270 IPE 300 IPE 300 IPE 270 HEA 240 IPE 270 IPE 270 IPE 300 IPE 270 IPE 270 IPE 270 IPE 300 IPE 270 IPE 270 IPE 270 HEA 260 IPE 270 HEA 240 IPE 270 IPE 270 IPE 270 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 N I T I A Original Optimized Original Optimized 60 130.26 0.00 11.21 0.00 75 208.71 76.71 17.97 6.60 90 325.21 76.71 28.01 6.60 An explicit dynamic solver allowed to trace down the propagation of failures. Reduction in displacements of Initial and IPE 270 IPE 270 I PE 270 IPE 270 IPE 270 IPE 270 IPE 300 HEM 260 IPE 270 IPE 2 70 IPE 300 IPE 270 IPE 270 IPE 270 IPE 300 IPE 270 HEA 240 HEM 280 HEA 240 IPE 270 IPE 300 IPE 270 IPE 270 IPE 270 HEM 260 HEM 260 HEM 260 IPE 270 IPE 270 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 IPE 270 IPE 270 I PE 270 IPE 270 IPE 270 HEA 240 IPE 270 IPE 300 HEM 260 IPE 270 IPE 2 70 IPE 300 IPE 270 IPE 270 IPE 270 IPE 300 IPE 270 HEA 240 HEM 280 HEA 240 IPE 270 IPE 300 IPE 270 IPE 270 HEA 240 IPE 270 HEM 260 HEM 260 HEM 260 IPE 270 IPE 270 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 IPE 270 IPE 270 I PE 270 IPE 270 IPE 270 HEA 240 IPE 270 IPE 300 HEM 260 IPE 270 IPE 2 70 IPE 300 IPE 270 IPE 270 IPE 270 IPE 300 IPE 270 HEA 240 HEM 280 HEA 240 IPE 270 IPE 300 IPE 270 IPE 270 HEA 240 IPE 270 HEM 260 HEM 260 HEM 260 IPE 270 IPE 270 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 48 49 50 51 52 53 54 55 56 57 58 59 60 48 49 50 51 52 53 54 55 56 57 58 59 60 48 49 50 51 52 53 54 55 56 57 58 59 60 A L O P 120 350.21 230.31 30.16 19.83 150 No Con. 397.22 No Con. 34.21 Reduction in displacements of Initial and Optimized (Figure 5 top and bottom respectively) Configuration is considerable. Table 3 – Comparison of collapsed floor area between Original and Optimized Configuration for Fire Scenario 1 Scala A Ascensore Ascensore Scala A Scala B IPE 270 IPE 270 HEA 240 HEA 240 IPE 270 IPE 300 IPE 300 IPE 270 HEA 240 IPE 270 IPE 270 IPE 300 IPE 270 IPE 270 IPE 270 IPE 300 IPE 270 IPE 270 IPE 270 HEA 260 IPE 270 HEA 240 IPE 270 IPE 270 IPE 270 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 Scala A Ascensore Ascensore Scala A Scala B IPE 270 HEA 240 IPE 270 IPE 300 IPE 270 IPE 270 IPE 270 IPE 300 IPE 270 IPE 270 IPE 270 HEA 260 IPE 270 HEA 240 IPE 270 IPE 270 IPE 270 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 Scala A Ascensore Ascensore Scala A Scala B IPE 270 HEA 240 IPE 270 IPE 300 IPE 270 IPE 270 IPE 270 IPE 300 IPE 270 IPE 270 IPE 270 HEA 260 IPE 270 HEA 240 IPE 270 IPE 270 IPE 270 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 P T M I Z Also the portion of building, involved in the collapse, changes substantially (Table 3). Figure 5 – Displacement of the top floor over 1m of Initial (Figure 5 top) and Optimized (Figure 5 bottom) Configuration for Fire Scenario 1 IPE 270 IPE 270 IP E 2 70 IPE 270 HEM 260 IPE 270 I PE 270 IPE 270 IPE 270 IPE 300 IPE 270 HEA 240 HEM 280 HEA 240 IPE 270 IPE 300 IPE 270 IPE 270 HEM 260 HEM 260 HEM 260 IPE 270 IPE 270 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 IPE 270 IPE 270 IPE 270 IPE 270 IPE 270 HEA 240 IPE 270 IPE 300 HEM 260 IPE 270 I PE 2 70 IPE 300 IPE 270 IPE 270 IPE 270 IPE 300 IPE 270 HEA 240 HEM 280 HEA 240 IPE 270 IPE 300 IPE 270 IPE 270 HEA 240 IPE 270 HEM 260 HEM 260 HEM 260 IPE 270 IPE 270 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 IPE 270 IPE 270 I PE 270 IPE 270 IPE 270 HEA 240 IPE 270 IPE 300 HEM 260 IPE 270 IPE 2 70 IPE 300 IPE 270 IPE 270 IPE 270 IPE 300 IPE 270 HEA 240 HEM 280 HEA 240 IPE 270 IPE 300 IPE 270 IPE 270 HEA 240 IPE 270 HEM 260 HEM 260 HEM 260 IPE 270 IPE 270 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Z E D Non-linear push-over analyses are conducted. A triangular lateral load has (Figure 5 bottom) Configuration for Fire Scenario 1 (Eq. 1) ROBUSTNESS AND EFFICIENCY INDICES (Eq. 3) been applied at ambient temperature and after 30, 60 and 90 min fire exposure. (Eq. 1) (Eq. 2) (Eq. 3) (Eq. 4) 1.11 1.40 1.19 1.5 2 1.00 0.72 0.71 0.75 1 A robustness index at ambient (Eq. 1) and elevated (Eq. 2) temperature, function of stiffness K, strength R and 1.06 1.11 1.19 0.5 1 I E [-] 0.50 0.12 0.27 0.25 0.5 I R [-] ductility μ is proposed (Figure 6). A quantitative evaluation (Figure 7) of the performance improvement due to 0 No Fire 30 min 60 min 90 min Fire Scenario 1 0.00 0 No Fire 30 min 60 min 90 min Initial Optimized the performance improvement due to structural measures is achieved through the definition of an efficiency index (Eq. 3 and Eq. 4). Figure 7 Evolution of Efficiency Index Figure 6 Evolution of Robustness Index Figure 7 Evolution of Efficiency Index Str StroNGER S.r.l. Figure 6 Evolution of Robustness Index Str o N GER www.stronger2012.com StroNGER S.r.l. Structures of the Next Generation Energy harvesting and Resilience

Upload: franco-bontempi

Post on 06-May-2015

127 views

Category:

Engineering


6 download

DESCRIPTION

OPTIMIZATION OF THE TALL BUILDINGS STRUCTURAL SYSTEM AGAINST PROGRESSIVE COLLAPSE. Vertical bracing systems and outriggers play a decisive role on the progressive collapse susceptibility. In relation to a steel tall building. Evaluation of structural performances of steel tall building is performed thought full non-linear analyses on finite element models. Performances of initial and optimized configuration are compared.

TRANSCRIPT

Page 1: SIF 2014 - Structures in Fire 2014 Shangai

Institute for Sustainability and OPTIMIZATION OF Institute for Sustainability and

Innovation in Structural Engineering

Filippo Gentili Franco Bontempi

OPTIMIZATION OF THE TALL BUILDINGS STRUCTURAL SYSTEM

AGAINST PROGRESSIVE [email protected] [email protected]

� INTRODUCTION

AGAINST PROGRESSIVE COLLAPSE

Vertical bracing systems and outriggers play a Fire Scenario 1

[email protected] [email protected]

Vertical bracing systems and outriggers play a decisive role on the progressive collapse susceptibility.

Scala A Ascensore

31 32 33 34 35 36 37 38

39 40 41 42 43 44 45 46 47

48 49 50 51 52 53

54 55 56 57 58 59 60

Fire Scenario 1

Scala A Ascensore

31 32 33 34 35 36 37 38

39 40 41 42 43 44 45 46 47

48 49 50 51 52 53

54 55 56 57 58 59 60

Scala A Ascensore

31 32 33 34 35 36 37 38

39 40 41 42 43 44 45 46 47

48 49 50 51 52 53

54 55 56 57 58 59 60

In relation to a steel tall building (Figure 1). Evaluation of structural performances of steel tall building is performed thought full non-linear analyses on finite element models

Ascensore Scala A

Scala B

IPE 270

IPE 270

IPE 270

IPE 270

IPE 270

IPE 270 HEA 240

HEA 240 IPE 270 IPE 300

HEM 260 IPE 270

IPE 2

70

IPE 300 IPE 270

IPE

270

IPE

270

IPE

300

IPE

270

HE

A 2

40

HE

M 2

80

HE

A 2

40IP

E 2

70

IPE

300

IPE

270

IPE

270

HEA 240 IPE 270

IPE

270

IPE

300

IPE

270

IPE

270

IPE

270

IPE

300

IPE

270

IPE

270

IPE 270 HEA 260 IPE 270 HEA 240 IPE 270

HEM 260 HEM 260 HEM 260

IPE 270IPE 270

IPE

270

IPE

270

1 2 3 4 5 6 7

8 9 10 11 12 13

14 15 16 17 18 19 20 21 22

23 24 25 26 27 28 29 30

31 32 34

160 m

Frame BAscensore Scala A

Scala B

IPE 270

IPE 270

IPE 270

IPE 270

IPE 270

IPE 270 HEA 240

HEA 240 IPE 270 IPE 300

HEM 260 IPE 270

IPE 2

70

IPE 300 IPE 270

IPE

270

IPE

270

IPE

300

IPE

270

HE

A 2

40

HE

M 2

80

HE

A 2

40IP

E 2

70

IPE

300

IPE

270

IPE

270

HEA 240 IPE 270

IPE

270

IPE

300

IPE

270

IPE

270

IPE

270

IPE

300

IPE

270

IPE

270

IPE 270 HEA 260 IPE 270 HEA 240 IPE 270

HEM 260 HEM 260 HEM 260

IPE 270IPE 270

IPE

270

IPE

270

1 2 3 4 5 6 7

8 9 10 11 12 13

14 15 16 17 18 19 20 21 22

23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38

35 mAscensore Scala A

Scala B

IPE 270

IPE 270

IPE 270

IPE 270

IPE 270

IPE 270 HEA 240

HEA 240 IPE 270 IPE 300

HEM 260 IPE 270

IPE 27

0

IPE 300 IPE 270

IPE

270

IPE

270

IPE

300

IPE

270

HE

A 2

40

HE

M 2

80

HE

A 2

40IP

E 2

70

IPE

300

IPE

270

IPE

270

HEA 240 IPE 270

IPE

270

IPE

300

IPE

270

IPE

270

IPE

270

IPE

300

IPE

270

IPE

270

IPE 270 HEA 260 IPE 270 HEA 240 IPE 270

HEM 260 HEM 260 HEM 260

IPE 270IPE 270

IPE

270

IPE

270

1 2 3 4 5 6 7

8 9 10 11 12 13

14 15 16 17 18 19 20 21 22

23 24 25 26 27 28 29 30

31 32 34

analyses on finite element models

Performances of initial (Figure 2) and optimized (Figure 3) configuration are compared.

Figure 1 – Case Study: Three-dimensional view and Fire Scenarios

Figure 2 – Initial Configuration:In blue vertical bracing systems

Figure 3 – Optimized Configuration:in red the added vertical bracing systems

in light blue the outrigger at 29th floor

Fire Scenario 2Frame A35 m

� OPTIMIZATION PROCEDURE

in light blue the outrigger at 29 floor

Heated Fire Steel Fire Several configurations (Figure 4) have been A1 A2 A3 A4 A5Heated Columns

Fire Resistance

No. Cases Avg Min Max

1 8 180 180 180

2 7 180 180 180

Conf.SteelMass[ton]

Fire Resistance

[min]

A1 799 75

A2 857 75

Several configurations (Figure 4) have beenassessed. The displacement on the top floor (1 meter) has been considered as indicator of theglobal colapse.

A1 A2 A3 A4 A5

2 7 180 180 180

3 6 143.6 80 180

4 5 88.4 78 103

5 4 67.5 66 69

A2 857 75

A3 877 180

A4 877 180

A5 877 180

The collapse can be avoided with outriggers (Table 1). The position has been varied in order to minimize lateral displacement. Table 1 – Mass and Fire Table 2 – Fire Resistance of to minimize lateral displacement.

Spatial extension of fire has been increased in the best configurations (Table 2).

Figure 4 – Sectional Configurations considered for Frame ATable 1 – Mass and Fire Resistance of Frame A

Table 2 – Fire Resistance of Frame A5 increasing fire extension

� FIRE STRUCTURAL PERFORMANCES ANALSYS

the best configurations (Table 2).

Three–dimensional spatial models have been48 49 50 51 52 53

54 55 56 57 58 59 60

48 49 50 51 52 53

54 55 56 57 58 59 60

48 49 50 51 52 53

54 55 56 57 58 59 60

I

Time[min]

Collapsed Floor Area [m2]

Collapsed Floor Area Percentage [%]

Original Optimized Original Optimized

Three–dimensional spatial models have beenused.

An explicit dynamic solver allowed to trace

Scala A Ascensore

Ascensore Scala A

Scala B

IPE 270

IPE 270 HEA 240

HEA 240 IPE 270 IPE 300 IPE 300 IPE 270 HEA 240 IPE 270

IPE

270

IPE

300

IPE

270

IPE

270

IPE

270

IPE

300

IPE

270

IPE

270

IPE 270 HEA 260 IPE 270 HEA 240 IPE 270

IPE

270

IPE

270

23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38

39 40 41 42 43 44 45 46 47

Scala A Ascensore

Ascensore Scala A

Scala B

IPE 270

IPE 270 HEA 240

HEA 240 IPE 270 IPE 300 IPE 300 IPE 270 HEA 240 IPE 270

IPE

270

IPE

300

IPE

270

IPE

270

IPE

270

IPE

300

IPE

270

IPE

270

IPE 270 HEA 260 IPE 270 HEA 240 IPE 270

IPE

270

IPE

270

23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38

39 40 41 42 43 44 45 46 47

Scala A Ascensore

Ascensore Scala A

Scala B

IPE 270

IPE 270 HEA 240

HEA 240 IPE 270 IPE 300 IPE 300 IPE 270 HEA 240 IPE 270

IPE

270

IPE

300

IPE

270

IPE

270

IPE

270

IPE

300

IPE

270

IPE

270

IPE 270 HEA 260 IPE 270 HEA 240 IPE 270

IPE

270

IPE

270

23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38

39 40 41 42 43 44 45 46 47

INITIA

[min]Original Optimized Original Optimized

60 130.26 0.00 11.21 0.00

75 208.71 76.71 17.97 6.60

90 325.21 76.71 28.01 6.60

An explicit dynamic solver allowed to trace down the propagation of failures.

Reduction in displacements of Initial and

IPE 270

IPE 270

IPE 270

IPE 270

IPE 270 HEA 240 IPE 270 IPE 300

HEM 260 IPE 270

IPE 2

70

IPE 300 IPE 270

IPE

270

IPE

270

IPE

300

IPE

270

HE

A 2

40

HE

M 2

80

HE

A 2

40IP

E 2

70

IPE

300

IPE

270

IPE

270

HEA 240 IPE 270

HEM 260 HEM 260 HEM 260

IPE 270IPE 270

1 2 3 4 5 6 7

8 9 10 11 12 13

14 15 16 17 18 19 20 21 22

IPE 270

IPE 270

IPE 270

IPE 270

IPE 270 HEA 240 IPE 270 IPE 300

HEM 260 IPE 270

IPE 2

70

IPE 300 IPE 270

IPE

270

IPE

270

IPE

300

IPE

270

HE

A 2

40

HE

M 2

80

HE

A 2

40IP

E 2

70

IPE

300

IPE

270

IPE

270

HEA 240 IPE 270

HEM 260 HEM 260 HEM 260

IPE 270IPE 270

1 2 3 4 5 6 7

8 9 10 11 12 13

14 15 16 17 18 19 20 21 22

IPE 270

IPE 270

IPE 270

IPE 270

IPE 270 HEA 240 IPE 270 IPE 300

HEM 260 IPE 270

IPE 2

70

IPE 300 IPE 270

IPE

270

IPE

270

IPE

300

IPE

270

HE

A 2

40

HE

M 2

80

HE

A 2

40IP

E 2

70

IPE

300

IPE

270

IPE

270

HEA 240 IPE 270

HEM 260 HEM 260 HEM 260

IPE 270IPE 270

1 2 3 4 5 6 7

8 9 10 11 12 13

14 15 16 17 18 19 20 21 22

48 49 50 51 52 53

54 55 56 57 58 59 60

48 49 50 51 52 53

54 55 56 57 58 59 60

48 49 50 51 52 53

54 55 56 57 58 59 60

AL

OP120 350.21 230.31 30.16 19.83

150 No Con. 397.22 No Con. 34.21

Reduction in displacements of Initial andOptimized (Figure 5 top and bottomrespectively) Configuration is considerable.

Table 3 – Comparison of collapsed floor area between Original and Optimized Configuration for Fire Scenario 1

Scala A Ascensore

Ascensore Scala A

Scala B

IPE 270

IPE 270 HEA 240

HEA 240 IPE 270 IPE 300 IPE 300 IPE 270 HEA 240 IPE 270

IPE

270

IPE

300

IPE

270

IPE

270

IPE

270

IPE

300

IPE

270

IPE

270

IPE 270 HEA 260 IPE 270 HEA 240 IPE 270

IPE

270

IPE

270

23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38

39 40 41 42 43 44 45 46 47

Scala A Ascensore

Ascensore Scala A

Scala B

IPE 270 HEA 240

IPE

270

IPE

300

IPE

270

IPE

270

IPE

270

IPE

300

IPE

270

IPE

270

IPE 270 HEA 260 IPE 270 HEA 240 IPE 270

IPE

270

IPE

270

23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38

39 40 41 42 43 44 45 46 47

Scala A Ascensore

Ascensore Scala A

Scala B

IPE 270 HEA 240

IPE

270

IPE

300

IPE

270

IPE

270

IPE

270

IPE

300

IPE

270

IPE

270

IPE 270 HEA 260 IPE 270 HEA 240 IPE 270

IPE

270

IPE

270

23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38

39 40 41 42 43 44 45 46 47

PTMIZ

Also the portion of building, involved in thecollapse, changes substantially (Table 3).

Figure 5 – Displacement of the top floor over 1m of Initial (Figure 5 top) and Optimized (Figure 5 bottom) Configuration for Fire Scenario 1

IPE 270

IPE 270

IPE 270

IPE 270

IPE 270 HEA 240 IPE 270 IPE 300

HEM 260 IPE 270

IPE 27

0

IPE 300 IPE 270

IPE

270

IPE

270

IPE

300

IPE

270

HE

A 2

40

HE

M 2

80

HE

A 2

40IP

E 2

70

IPE

300

IPE

270

IPE

270

HEA 240 IPE 270

HEM 260 HEM 260 HEM 260

IPE 270IPE 270

1 2 3 4 5 6 7

8 9 10 11 12 13

14 15 16 17 18 19 20 21 22

IPE 270

IPE 270

IPE 270

IPE 270

IPE 270 HEA 240 IPE 270 IPE 300

HEM 260 IPE 270

IPE 2

70

IPE 300 IPE 270

IPE

270

IPE

270

IPE

300

IPE

270

HE

A 2

40

HE

M 2

80

HE

A 2

40IP

E 2

70

IPE

300

IPE

270

IPE

270

HEA 240 IPE 270

HEM 260 HEM 260 HEM 260

IPE 270IPE 270

1 2 3 4 5 6 7

8 9 10 11 12 13

14 15 16 17 18 19 20 21 22

IPE 270

IPE 270

IPE 270

IPE 270

IPE 270 HEA 240 IPE 270 IPE 300

HEM 260 IPE 270

IPE 2

70

IPE 300 IPE 270

IPE

270

IPE

270

IPE

300

IPE

270

HE

A 2

40

HE

M 2

80

HE

A 2

40IP

E 2

70

IPE

300

IPE

270

IPE

270

HEA 240 IPE 270

HEM 260 HEM 260 HEM 260

IPE 270IPE 270

1 2 3 4 5 6 7

8 9 10 11 12 13

14 15 16 17 18 19 20 21 22ZED

Non-linear push-over analyses are conducted. A triangular lateral load has

(Figure 5 bottom) Configuration for Fire Scenario 1

(Eq. 1)

� ROBUSTNESS AND EFFICIENCY INDICES

(Eq. 3)conducted. A triangular lateral load has been applied at ambient temperature and after 30, 60 and 90 min fire exposure.

(Eq. 1)

(Eq. 2)

(Eq. 3)

(Eq. 4)

1.11

1.401.19

1.5

21.00

0.72 0.710.75

1A robustness index at ambient (Eq. 1) and elevated (Eq. 2) temperature,function of stiffness K, strength R and

1.06 1.11 1.19

0.5

1IE [-]0.50

0.12

0.270.25

0.5IR [-]

function of stiffness K, strength R and ductility μ is proposed (Figure 6).

A quantitative evaluation (Figure 7) of the performance improvement due to 0

No Fire 30 min 60 min 90 min

Fire Scenario 1

0.120.00

0No Fire 30 min 60 min 90 min

Initial Optimized

the performance improvement due to structural measures is achieved through the definition of an efficiency index (Eq. 3 and Eq. 4). Figure 7 – Evolution of Efficiency IndexFigure 6 – Evolution of Robustness Index3 and Eq. 4). Figure 7 – Evolution of Efficiency Index

StrStroNGER S.r.l.

Figure 6 – Evolution of Robustness Index

Stro N

GERwww.stronger2012.com

StroNGER S.r.l.Structures of the Next GenerationEnergy harvesting and Resilience