short cut and autotrophic nitrogen removal from liquid wastes · short‐cut and autotrophic...

48
21/07/2014 1 DICA DICA Environmental section Shortcut and autotrophic nitrogen Ficara E removal from liquid wastes Malpei F., Canziani R., Scaglione D., Teli A.

Upload: dothu

Post on 15-Feb-2019

218 views

Category:

Documents


0 download

TRANSCRIPT

21/07/2014

1

1

DICADICAEnvironmental  section

Short‐cut and autotrophic nitrogen 

Ficara E 

removal from liquid wastes

Malpei F., Canziani R., Scaglione D., Teli  A. 

21/07/2014

2

Summary 2

•N emissions: environmental and sanitary concerns

•Biological N removal technologies•Biological N removal technologies

•The past: The N old style N cycle conventional WWTP

•The present: New processes innovative WWTP

oThe BRAIN projectoThe BRAIN project

•The future: cold anammox, N recovery

21/07/2014

3

N emissions: environmental and sanitary concerns 3

ENVIRONMENTAL:

• N in water bodies:• N in water bodies: eutrophication toxicity to aquatic organisms toxicity to aquatic organisms

• N in gaseous emissions:NH3 f fi ti l t d f ti NH3: precursor for fine particulate secondary formation

N2O: green house gas (GWP ≈ 300)

SANITARY:• Nitrate favour formation of toxic compounds in the intestinal

tracktrack• blue baby syndrome (methemoglobinemia)

21/07/2014

4

N emissions: Legislation 4

• DIRETTIVA NITRATI 91/676/CEE

LEGISLATION: protection of water quality from excess nitrogen

European • Water Framework Directive 2000/60/EC• DECRETO LEGISLATIVO 152/99: Disposizioni sulla tutela delle 

d ll'

National

acque dall'inquinamento• LEGGE REGIONALE  37/93: Norme per il trattamento, la maturazione e l’utilizzo dei reflui zootecnici”

• Decreto MIpaf 7 aprile 2006 Criteri e norme tecniche per laNational • Decreto MIpaf 7 aprile 2006: Criteri e norme tecniche per la disciplina regionale sulle attività di utilizzazione agronomica degli effluenti di allevamento e delle acque reflue

D 5868 d l 21/11/2007 P d’A i Ni i

Regional

• D.g.r. 5868 del 21/11/2007: Programma d’Azione Nitrati • D.g.r. 2208 del 14/09/2011: Programma d'Azione Nitrati 2012 per le zone vulnerabili

21/07/2014

5

Sensitive areas across Europe  5

‐ Sensitive areas :

Nitrogen removal technologies (biological)‐ Nitrogen removal technologies (biological)

21/07/2014

6

N emission limits 6

• 152/99, Allegato 5, Tabella 2:

Max N concentration in treated wastewaters:‐ Max N concentration in treated wastewaters:10 mg/L for larg plants (>100.000 IE)

15 /L f di l t (10 000 100 000 IE)15 mg/L for medium plants (10.000‐100.000 IE)

• Max N load to land spreading: 170 kgN/ha/y

Need for Nitrogen removal technologiesg gfrom N‐reach wastewaters

21/07/2014

7

7Conventional WWTPs – the old N‐cycle

Implementing the conventional cycle: 

NITRIFICATION ammonia o idation firstN‐fixation

•NITRIFICATION: ammonia oxidation first to nitrite and then to nitrate Chemolitotrophic aerobic bacteria  Chemolitotrophic aerobic bacteria   AOBAOB

N2NH4

pp(AOB ammonia oxidising bactera +(AOB ammonia oxidising bactera +NOB NOB  Nitrite oxidising Bacteria)Nitrite oxidising Bacteria)

AOBAOB

NOBNOB

NO2‐

•DENITRIFICATION Nitrate/nitrite reduction to N2 with concomitant 

NOBNOBNO3

oxidation of biodegradable organic compounds Heterotrophic facultative bacteria (denitrifiers)Heterotrophic facultative bacteria (denitrifiers)

21/07/2014

8

8Conventional WWTPs

Implementing the conventional cycle: 

Nitrification:    2 NH3 + (3+1) O2 2 NO3‐ + 2 H+ + 2 H2O

Denitrification: 2 NO3‐ + 8g COD + 2 H+ N2 + 3g SLUDGE

2 NH ‐ + 4 O + 4 COD N + 3g SLUDGE

N‐fixation

N22 NH3 + 4 O2 + 4 COD  N2 + 3g SLUDGE

Needs: Aeration energ

AOBAOB

NH4

‐ Aeration = energy‐ Degradable organic compounds 

(BOD)NOBNOB

NO2‐

(BOD)Sludge production (disposal costs) 

NO3‐

21/07/2014

9

9Conventional WWTPs

DENITRIFICATIONNitrification+ 

BOD OXIDATIONS/L

BODNH3

BODNH3

NO3‐ NO3

air

NO3‐

NH4+

DigesterNH4 S/L

Sludgedisposal

21/07/2014

10

10Conventional WWTPs

Cortegrande WWTP treating Robecco WWTP treatingCortegrande WWTP treating piggery wastewater 

Robecco  WWTP treating domestic wastewater 

21/07/2014

11

11Conventional WWTPs

Sequencying batch reactors  (Time instread of spacial sequence) 

Implementing the conventional cycle: the activated sludge unit

Influent

idle

Waste sludge

Fill Mixing

Effluent

Air

Anoxic (mix only) or aerobic (+ air)

Draw

Settling

21/07/2014

12

The ‘new’ nitrogen cycle 12

Anammox bacteria, the new players!Order: PlanctomycetalesCharacteristic feat reCharacteristic feature: 

intracellular compartment, ladderanes

Genetic Diversity:Brocadia Kuenenia (fresh water: several WWTP’s)‐Brocadia, Kuenenia (fresh water: several WWTP’s)‐Scalindua (marine conditions: Black sea, Golfo dulce)

Anaerobic & Autotrophic (extremely low growth rate)Minimal doubling time = 1 week

21/07/2014

13

The ‘new’ nitrogen cycle 13

Anammox bacteria, the new players!• 1979: Predicted in (based on thermodynamics + evolution)• 1988 Pilot at Gist brocades Delft ith “ ne pected nitro en loss”• 1988: Pilot at Gist brocades Delft with “unexpected nitrogen loss”• 1995: Discovered by Mulder/Kuenen in Delft• 1998: description of anammox bacteria• 2002 First full scale anammox reactor

21/07/2014

14

The ‘new’ nitrogen cycle 14

Anammox bacteria, the new players!

Catabolism: NH + + NO ‐ N + 2 H OCatabolism: NH4+ + NO2 N2 + 2 H2O

Anabolism: CO2 + 2 NO2‐ CH2O + 2 NO3

NH4+ + 1.3 NO2

‐ + 0.066 HCO3‐ + 0.15 H+

1 N + 0 3 NO ‐ + 2 H O + 0 066 CH O N1 N2 + 0.3 NO3‐ + 2 H2O +   0.066 CH2O0,5N0,15

21/07/2014

15

15The ‘new’ treatment options

NITRITATION + DENITRITATION

DENO2 PROCESS

PARTIAL NITRITATION + ANAMMOX

PARNIT + ANAMMOX

N‐fixation

N2NH

N‐fixation

N2

ANAMMOX

NH4 NH4

NO2‐

NO2‐

Objective: stop the nitrification at the first step (AOB)

NO3‐

NO3‐

1.5 times cheaper than 

NOBNOB NOBNOB

the first step (AOB) ‐25% O2 need  and ‐40% C need

conventional  biological treatments

21/07/2014

16

16The ‘new’ versus the ‘old’

PARNIT + ANAMMOXNitritation:    NH3 + 1.5 O2 NO2

‐ + H+ + H2O3 2 2 2

Anammox:    NO2‐ + NH3 + H+ N2 + 2 H2O

2 NH3‐ + 1.5 O2 N2

NITRIFICATION + DENITRIFICATION2 NH ‐ + 4 O + 4 COD N + 3g SLUDGE1.5 times cheaper than conventional  

b l l

2 NH3‐ + 4 O2 + 4 COD  N2 + 3g SLUDGE

biological treatments

The field of applicability is still to be fully defined: pp y yAnammox are sensitive microrganisms … 

21/07/2014

17

17The WWTP ‘upgrade’

APPLICATION IN SIDE STREAM TREATMENT

DENITRIFICATIONNitrification+ 

BOD OXIDATIONS/L

BODNH3

BODNH3

NO3‐ NO3

NO3‐

N2

air

NO3‐

NH4+

N2

DigesterPARNITAnammox

NH4 S/L

Sludge disposal

21/07/2014

18

The biogas contest: AD + anammox = green wedding? 18

Anaerobic digestion is largely applied in Pianura Padana

Digestate is rich in N (ammonium) LAND SHORTAGE to comply withDigestate is rich in N (ammonium) LAND SHORTAGE to comply withthe Nitrate Directive 91/676/EEC

Technological solutions to reduce nitrogen load are neededg g

21/07/2014

19

19

Biotechnologies for the nitrogen reduction from digestates by applying innovative processes and to promote economic andapplying innovative processes and to promote economic and environmental sustainability of biogas production

Biotecnologie per la Riduzione dell’Azoto dai digestati con processi INnovativi eBiotecnologie per la Riduzione dell Azoto dai digestati con processi INnovativi e per promuovere la sostenibilità economica ed ambientale della produzione del biogas

•Funded:  MiPAF Italian Ministery for Agricolture and Forestry •Time table:  Started:  July 2010,  End:  December 2012C di t POLIMI C f C P f F M l i•Coordinator: POLIMI, Campus of Cremona, Prof. Francesca Malpei•Partners:  POLIMI, University of Florence, Prof. Claudio Lubello

21/07/2014

20

Task 2 @pilot scale

Task 1Technological tasks

DENO2 Nitritation+ Denitritation

Task 1

Agrowastes Centrifuge

Solids to composting

Task 3: Anammox@LabAnaerobicdigester

Task 4: @pilot scaleTask 5: LCA e economic evaluations

Partial Nitritiation 

Task 6: Transferability  – SWOT analysis, transferability of industrial‐scale;Task 7: Involvement of stakeholders

20

+ Anammox

Task 7: Involvement of stakeholders, disclosure and publication.

21/07/2014

21

The BRAIN project 21

Technical research objectives:

• Evaluation of DENO2 process stability andefficiency (PILOT) when treating the liquidfraction of agricultural digestatefraction of agricultural digestate

• Evaluation of complete autotrophic process(Partial Nitritation + ANAMMOX) long termt bilit (PILOT LAB/PILOT) t ti th li idstability (PILOT + LAB/PILOT) treating the liquidfraction of agricultural digestate

21/07/2014

22

Experimentation – context 22

screw pressf +

Flotation

PIGGERY WASTE

Conventional WWTPfarm 

(20.000 pigs)

PIGGERY WASTE32 ‐ 100%VS (60±12%)

ENERGY CROPS0 ‐ 51%VS (15±16%)

Anaerobicdigester

Centrifuge

POULTRY MANURE

g

0 ‐ 37%VS (15±11%) FIELD

21/07/2014

23

Experimentation – context 23

PIGGERY WASTE32 ‐ 100%VS (60±12%)

ENERGY CROPS0 ‐ 51%VS (15±16%)

Anaerobicdigester

Centrifuge

POULTRY MANURE

d geste

Range Mean ± St. dev.

Digested supernatant

POULTRY MANURE0 ‐ 37%VS (15±11%)

Range Mean ± St. dev.

N‐NH4 mgN/L 619 ‐ 1 616 1 151 ± 251COD mg/L 1 325 ‐ 7 500 2 634 ± 1 178

/ /COD/N    g/g 0.9 ‐ 6.3 2.2 ± 1.2High variability due to:‐ variations in piggery waste productionchanges in substrates fed to AD‐ changes in substrates fed to AD 

‐ unstable digester efficiency

21/07/2014

24

DENO2 PROCESS – Pilot plant 24

Buffer tank

SBR reactor Typical parameters

Vmax SBR 660 680 LControl system

Vmax SBR 660‐680 LTemperature 25‐30°C

pH (min – max) 7.5 – 8.5

Dissolved oxygen 0.5 mg/L O2

Cycle Length 6 hours

Feed +Anoxic AerationAnoxic Post‐aerationSettling+DischargeCycle phases

1.25 3.00 0.80 0.20 0.75

0 00 1 00 2 00 3 00 4 00 5 00 6 00

Period VI (169‐204)

Settling+DischargeCycle phases

0.00 1.00 2.00 3.00 4.00 5.00 6.00

Time [h] Cext (acetate)

21/07/2014

25

DENO2 PROCESS – Operation & Results 25

ParameterPeriod 1 Period 2 Period 3 Period 4 Period 5      Period 6

I start upInfluent variation

II start upSteady state

Influent variation

T 25°C

Exp.  days 0 ‐ 28 29 ‐ 78 79 ‐ 105 106 ‐ 134 135 ‐ 168 169 ‐ 204

NLR (gN/Lreact/d) 0.50 ± 0.12 0.34 ± 0.06 0.31 ± 0.08 0.44 ± 0.03 0.44 ± 0.10 0.52 ± 0.04HRT (d) 2 ‐ 3 3 ‐ 4 2 ‐ 4 2 2 2‐3

SRT (d) 4 ‐ 5 3 ‐ 4 20 ‐ 40 20 ‐ 25 25 ‐ 30 18 ‐ 25

Eff. N rem (%) 63±19 32±25 54±16  77±19 66±7 80±12

Stable NOB activity suppression: rapidly achieved, 80‐85 % NO2/NOx produced

Working at high SRT (20‐25d) allowed to cope with influent variability (COD/N):NH4 removal from 60‐70% to 90‐95%

DENO2 process in SBR configuration is a technically feasible option to treat liquid fraction of agricultural digestate despite the high influent variability

21/07/2014

26

DENO2 PROCESS – process insight  26

N2O emissions 

Sampling 

Feed +Anoxic AerationAnoxic Post‐aerationSettling+Discharge

gas‐bag

0 1 2 3 4 5 6

Time [h]

• Off‐gas sampling during the first 60min of aeration• GC determination of NO concentration• Mass balances to compute the relevance of N2O emissions

21/07/2014

27

DENO2 PROCESS – Results 27

Off‐gas sampling during the first 60min of aeration

Feed +Anoxic AerationFeed +Anoxic AerationAnoxic Post‐aerationSettling+Discharge

Factors related to high N2O emissions N O emitted:

0 1 2 3 4 5 6Time [h]

(Kampschreur et al. 2009, Wunderlin et al. 2012):

‐ Low C/N during denitrification (1.6‐1.3)‐ High nitrite concentration

N2O emitted:17‐24% of the N removed

Under non limiting BOD High nitrite concentration‐ Low dissolved oxygen concentration‐ Rapidly changing operating conditions

gavailability:3% of the N removed

21/07/2014

28

28Complete autotrophic treatment

i dPILOT

NITRITATION/DENITRITATION

Digestedsupernatant

LABANAMMOX

PILOT PILOTPARTIAL NITRITATION ANAMMOX

21/07/2014

29

PARNIT 29

Same pilot plant

•Parameters:HRT = 2.0 d, NLR = 0 5‐0 6 gN/L/dNLR = 0.5‐0.6 gN/L/d6 h cycle (45 min FILL, 3.5 h AEROBIC REACT (included FILL), 30 min 

h )SETTLE+DRAW, 1 h IDLE)

•Ammonium oxidation controlled by reducing the influent alkalinity•Ammonium oxidation controlled by reducing the influent alkalinity(acid dosage) to obtain the optimal ratio:

Alk : N‐NH + = 1 : 1Alk : N‐NH4 = 1 : 1

21/07/2014

30

PARNIT results 30

Influent characteristics

TKN mg/L 1590 ±10%NH4 N /L 1225± 16%NH4‐N mg/L 1225± 16%

CODsol mg/L 2348 ± 50%BOD5sol mg/L 500 ± 48%BOD20 sol mg/L 620 ± 37%

pH ‐ 8,1 ± 1%Conductivity (mS/cm) 14,7 ± 8%

VSS mg/L 274 ± 45%TSS mg/L 326 ± 54%

Alkalinity mgCaCO3/L 6333 ± 11%Alkalinity mgCaCO3/L 6333 ± 11%

NH4/alk mol/mol 0,70± 13%

• Variability of the content and degradability of organic compoundsVariability  of the  content and degradability of organic  compounds

21/07/2014

31

PARNIT results 31

PARNIT effluent

BOD degradation

IN OUTIN OUTCODsol mg/L 2348 ± 50% 1324 ±35%BOD5sol mg/L 500 ± 48% 25 ±60%BOD sol m /L 620 ± 37% 49± 53%BOD20sol mg/L 620 ± 37% 49± 53%

21/07/2014

32

PARNIT results 32

PARNIT effluent: NITROGEN

IN OUTTKN mg/L 1590 ±10% 486 ±35%

N‐NH4 mg/L 1225± 16% 452 ±28%N‐NO2 mg/L n.d. 570±27%

5,00

6,00g/

N‐NO3 mg/L n.d. 13± 30%

2 00

3,00

4,00

‐NO2/N‐NH4 

0 00

1,00

2,00N‐

N‐NO2/N‐NH4 = 1.26Suitable to feed 

Anammox reactor  0,000 50 100 150 200 250 300 350

time (days)Time (days)

21/07/2014

33

ANAMMOX Lab‐reactors 33

inoculum FEED: 

•synthetic medium + DENO2 effluent DENO2 effluent + NH4Cl, NaNO2

Parameter SBR MBRVolume (L) Min:  5 ‐Max: 6.8 6.2 

12h = 9h FEED + 2.5h  Flux: 5 L /m2/hOperating conditions REACT + 5min SETTLE + 

25min DRAW+IDLEGas scouring: 5 L/minRelaxation : 2:1 min

Initial biomass concentration (gSV/L) 2.8 2.4HRT (d) 2.5 ±0.5 2HRT (d) 2.5 ±0.5 2

SRT (d) from 60 to 150 [average 75]

from 100 to 300 [average 225]

Ni L di R NLR ( N L 1 d 1) 0 51 0 18 0 43 0 10Nitrogen Loading Rate NLR (gN L‐1 d‐1) 0.51 ±0.18 0.43 ±0.10

21/07/2014

34

ANAMMOX  Lab‐reactors 34

Loading plan

Experimental period (d)

DENO2 effluent (% v/v)

0‐43 00 43 044‐52 1053‐69 Summer break (biomass at 4°C)70 84 070‐84 085‐90 1091‐106 25107‐116 40119‐162 70163‐169 100170‐172 0

21/07/2014

35

ANAMMOX Lab‐reactors 35

Reactors monitoring:

Activity batch tests in the reactor to estimate the maximumActivity batch tests in the reactor  to estimate the maximum nitrogen removal rate (NRRmax) of SBR and MBR

100

150NO2 NH4 NO2+NH4

50

100

mgN

L‐1

00 20 40 60 80 100

t (min)

21/07/2014

36

Anammox removal efficiency  36

100

120

%)

NH4+NO2 removal efficiency SBR

MBR

40

60

80NRR

/NLR

 (%

0

20

0 10 25 40 70 100

N

% DENO2 effluent in the feed

• Similar removal efficiency

• Increased ΔN‐NO2/ Δ N‐NH4 when operating at 100% real WW     2/ 4 p g(increased COD load, denitrification)

21/07/2014

37

Results – Anammox removal stoichiometry  37

2 0

SBR NO2/NH4 SBR NO3/NH4

MBR NO2/NH4 MBR NO3/NH4

1 01,21,41,61,82,0

ratio

 [‐]

Theoretical

0 00,20,40,60,81,0

molar r Theoretical 

stoichiometricratios

0,00 25 50 75 100 125 150 175

time (d)

• Lower ΔN‐NO2/ Δ N‐NH4 in MBR (O2 permeation, nitritation)• Increased ΔN‐NO2/ Δ N‐NH4 when operating at 100% real WW     2/ 4 p g(increased COD load, denitrification)

21/07/2014

38

Results – NRRmax  38

SBR MBR

100%

120%

ater 5

6

d‐1]

% real waste water NLR NRRmax

100%

120%

ater

2

2.5

d‐1]

% real waste water NLR NRRmax

SBR MBR

40%

60%

80%

% re

al waste wa

2

3

4

, NRR

max [g

N L

‐1

40%

60%

80%

% re

al waste wa

1

1.5

2

, NRR

max [g

N L

‐1d

0%

20%

0 25 50 75 100 125 150 175

time (d)

0

1

NLR

,

0%

20%

0 25 50 75 100 125 150 175

time (d)

0

0.5

NLR

time (d) time (d)

Maximum Nitrogen Removal Rate (NRRmax):• Initial decrease in SBR (detachment & wash‐out of active anammox   bacteria from granules)• Increase with increasing % of real WW up to 70% (to 5.6 gN L‐1 d‐1 in the SBR and of  2.0 gN L‐1 d‐1 in the MBR)Fi d @ 75% l WW ( f 4 d @ 15°C f d)• First drop @ 75% real WW  (after 4 days @ 15°C, no feed)

• Second drop @ 100% real WW

21/07/2014

39

ANAMMOX lab 39

ANAMMOX – lab

Second experimental campagn on SBR only

FEED: PARNIT effluent + synthetic wastewater

NLR % real ww

70%80%90%100%

0,70,80,91,0

w/d

Since february 2013  NO DILUTION of 

20%30%40%50%60%

0 20,30,40,50,6

% real ww

NLR gN

/L/

PARNIT effluent

0%10%20%

0,00,10,2

0 50 100 150 200 250time (days)time (days)

21/07/2014

40

ANAMMOX lab 40

ANAMMOX ‐ lab

Nitrogen removal efficiency

80%

90%

100%

0 8

0,9

1,0

%)

N removal efficiency % real ww fraction

50%

60%

70%

80%

0,5

0,6

0,7

0,8

ww fractio

n

al efficiency (%

20%

30%

40%

0,2

0,3

0,4

% re

al w

N re

mov

a

0%

10%

0,0

0,1

0 50 100 150 200 250time (days)

21/07/2014

41

ANAMMOX lab 41

ANAMMOX ‐ lab

Anammoxmaximum activity measurement

80

100

4

5

603

w fractio

n

(gN/L/d)

402

% re

al ww

NRR

max (

0

20

0

1

0 50 100 150 200 250time (days)

Progressive  adaptation

21/07/2014

42

ANAMMOX @ pilot scale 42

SBR mixing provided by liquid and gas recirculation

C

AnammoBuffer (gas accumulation)

Compressor

Anammox reactor (150L)

probespH, ORPconductivity

PLC / signals

Influent buffer tank

21/07/2014

43

ANAMMOX reactor (PILOT scale) 43

Removal ratios

60%2,0NO3/NH4 NO2/NH4 % real ww

40%

50%

1 21,41,61,8

wwol

N‐NO2/N‐NH4 Measured= 1,32±5% 

h

20%

30%

0,60,81,01,2

% re

al w

mol/mStoichiom.= 1,32

0%

10%

0,00,20,4

0 50 100 150 200 250 300

N‐NO3/N‐NH4 Measured= 0,14±49% Stoichiom.= 0,26

time (days)

21/07/2014

44

ANAMMOX reactor (PILOT scale) 44

ANAMMOX pilot: IN and OUT

NH4 in NO2 in NH4 outNO2out NO3outNH4 in NO2 in NH4 outNO2out NO3out

700

800

900NO2 out NO3 out

700

800

900NO2 out NO3 out

500

600

700

gN/L 500

600

700

gN/L

200

300

400mg

200

300

400mg

0

100

200

0 50 100 150 200 250 300 3500

100

200

0 50 100 150 200 250 300 3500 50 100 150 200 250 300 350tempo (giorni)

0 50 100 150 200 250 300 350tempo (giorni)Time (days)

21/07/2014

45

BRAIN ‐ CONCLUSIONS 45

PARNIT: Stable process producing an effluent suitable foranammox reactor feeding (despite high influent variability)

Anammox:

•PARNIT effluent can be treated by Anammox bacteria alsoPARNIT effluent can be treated by Anammox bacteria alsowithout dilution (granules help)

•Nitrogen removal efficiency between 85 e 93%g y

Ready for optimization and scale‐up!

21/07/2014

46

The future: anammox in the main stream? 46

Aerated tankParnit +anammox

Settler Settler

S/LS/LAerated tank S/L

PARNIT

DigesterS/LPARNIT

Anammox

Sludge disposal

Low temperatureLow temperatureLow Concentrations

21/07/2014

47

References 1/2 47

l l l ( ) f f•Scaglione D., Tornotti G., Teli A., Ficara E., Canziani R., Malpei F. (2012). Nitrification Denitrificationvia Nitrite in a Pilot‐Scale SBR Treating the Liquid Fraction of co‐Digestated Piggery/Poultry Manure and Agro‐Wastes. Accepted for IWA Nutrient Removal and Recovery 2012: Trends in NRR. September 23‐25, 2012. Harbin, China.

•Scaglione D., Tornotti G., Ficara E., Canziani R., Malpei F. (2012). Nitrification denitrification via nitrite in a pilot‐scale SBR treating the liquid fraction of co‐digested piggery/poultry manure and agro‐wastes. Proceedings of the International Symposium of Sanitary and Environmental Engineering, 9th Ed. ‐ SIDISA 2012 ‐ Sustainable Technology for Environmental Protection, 26 ‐ 29 June, Milan, Centro Congressi Fondazione CARIPLO, ISBN 978‐88‐903557‐1‐4, Session Nutrient Removal, paper ID 1134, p. 1‐8; http://www.sidisa2012.dreamgest.net/pdf/1134.pdf.

•Canziani R., Ficara E., Scaglione D., Teli A., Tornotti G., Malpei F. (2012). Autotrophic nitrogen removal from digested agro‐wastes Proceedings of the International Symposium of Sanitary andfrom digested agro wastes. Proceedings of the International Symposium of Sanitary and Environmental Engineering, 9th Ed. ‐ SIDISA 2012 ‐ Sustainable Technology for Environmental Protection, 26 ‐ 29. June, Milan, Centro Congressi Fondazione CARIPLO, ISBN 978‐88‐903557‐1‐4, International IWA Session on “Autotrophic Nitrogen Removal: from Research to Applications”, paper ID 1428 p 1‐8;ID 1428, p. 1 8; 

•Scaglione D., Lotti T., Ficara E., Caffaz S., Canziani R., Lubello C. and Malpei F. (2010). Anammox enrichment in conventional sludge samples via a simple fed‐batch procedure with activity measures. Proceedings: IWA World Water Congress and Exhibition, 19–24 September 2010 Montréal, Canada, P t P #460 1 8 CD RPoster Paper #460, pp. 1‐8, on CD‐Rom.

21/07/2014

48

References 48

•D. Scaglione, E. Ficara, V. Corbellini, A. Teli, R. Canziani and F. Malpei (2014) Treatability of digestedpiggery/poultry manure by anammox bacteria. In: Proceedings 2nd IWA Specialized InternationalConference, ecoSTP2014 ‐ EcoTechnologies for Wastewater Treatment, Technical, Environmental &Economic Challenges, Verona, Italy, 23‐27 June 2014, p. 61‐65.g , , y, , p

•D. Scaglione, G. Tornotti, A. Teli, E. Ficara, R. Canziani, F. Malpei (2013) Advanced bioprocesses for Nremoval from the liquid fraction of co‐digestated piggery/poultry manure and agro‐wastes. Platformpresentation. Proceedings of international IWA 13th World Congress on Anerobic Digestion:“Recovering (bio) Resources for the World Santiago de Compostela (ES) 25 28 June 2013 p 1 4Recovering (bio) Resources for the World. Santiago de Compostela (ES) 25‐28 June 2013. p. 1‐4.

•Scaglione D., Teli A., Ficara E., Canziani R., Malpei F. (2012). Anaerobic Ammonia Oxidation of Partially Nitrified Supernatant from Piggery and Poultry Manure Digestion. Accepted for IWA Nutrient Removal and Recovery 2012: Trends in NRR. September 23‐25, 2012. Harbin, China. 

•Scaglione D., Tornotti G., Teli A., Ficara E., Canziani R., Malpei F. (2012). Nitrification Denitrificationvia Nitrite in a Pilot‐Scale SBR Treating the Liquid Fraction of co‐Digestated Piggery/Poultry Manure and Agro‐Wastes. Accepted for IWA Nutrient Removal and Recovery 2012: Trends in NRR. September 23‐25, 2012. Harbin, China.