shear viscosity and collective flow in heavy ion collisions within parton cascade calculations

28
Shear Viscosity and Collective Flow in Heavy Ion Collisions within Parton Cascade Calculations Zhe Xu, Carsten Greiner Trento, Sept. 17, 2009 Institut für Theoretische Physik Goethe-Universität Frankfurt, Germany

Upload: perrin

Post on 05-Feb-2016

55 views

Category:

Documents


0 download

DESCRIPTION

Shear Viscosity and Collective Flow in Heavy Ion Collisions within Parton Cascade Calculations. Zhe Xu, Carsten Greiner. Institut für Theoretische Physik Goethe-Universität Frankfurt, Germany. Trento, Sept. 17, 2009. Y. X. Motivation: how small is the QGP viscosity at RHIC?. - PowerPoint PPT Presentation

TRANSCRIPT

Shear Viscosity and Collective Flow in Heavy Ion Collisions within Parton Cascade Calculations

Zhe Xu, Carsten Greiner

Trento, Sept. 17, 2009

Institut für Theoretische PhysikGoethe-Universität Frankfurt, Germany

Zhe Xu, Trento 2009 2/23

Y

X

Motivation: how small is the QGP viscosity at RHIC?

P.Huovinen et al., PLB 503, 58 (2001)

Viscous HydrodynamicsMurongaLuzum / RomatschkeSong / HeinzTeaney / DuslingMolnar / Niemi / Rischke

Kinetic Transport Model(Z)MPC: Zhang / Molnar / GyulassyAMPT: Lin / Chen / Ma / Ko UrQMD: Petersen, Bleicher et al.BAMPS: Xu, Greiner et al.

Zhe Xu, Trento 2009 3/23

Outline

• Parton Cascade BAMPS

• Elliptic Flow at RHIC

• Extracting /s

• v2(pT)

• Summary

Zhe Xu, Trento 2009 4/23

),(),(),( pxCpxCpxfp ggggggggg

BAMPS: Boltzmann Approach of MultiParton Scatterings

A transport algorithm solving the Boltzmann-Equations for on-shell partons with pQCD interactions

new development ggg gg(Z)MPC, VNI/BMS, AMPT, PACIAE

Elastic scatterings are ineffective in thermalization !

Inelastic interactions are needed !

Transport Model

Zhe Xu, Trento 2009 5/23

Stochastic algorithm

3xcollision probability -- stochastic

Space is dividedinto small cells !

ZX and C. Greiner, PRC 71, 064901 (2005)

23232

32132

323

23

322

22

)(8

123for

32for

22for

x

t

N

I

EEEP

x

t

NvP

x

t

NvP

test

testrel

testrel

)''()2('2)2(

'

'2)2(

'

2

121321

)4(42

'2'11232

32

3

13

13

32 pppppME

pd

E

pdI

x

y

Zhe Xu, Trento 2009 6/23

)cosh()(

12

)(2

9

,)(2

9

222

22

222

242

222

242

ykmqkk

qg

mq

sgM

mq

sgM

gLPM

DDggggg

Dgggg

J.F.Gunion, G.F.Bertsch, PRD 25, 746(1982)

screened pQCD based partonic interactions

treatment for incoherent interactions:

the formation time g1 cosh

yk g: mean free path

LPM suppression:

),(1)2(

23

3

pxfNdm gppd

scGD

Zhe Xu, Trento 2009 7/23

Results: Transverse Energy in Au+Au at RHIC

Initial conditions: gluon minijets production in independent binary NN collisions

3GeV/fm 6.0 ,0.1 6.0 ,3.0 cs e

Zhe Xu, Trento 2009 8/23

Elliptic Flow at RHICusing BAMPS

ZX, Greiner, Stöcker, PRL 101, 2008

gg<->ggg processes generatelarge elliptic flow !

3GeV/fm 0.1ce

Zhe Xu, Trento 2009 9/23

Zhe Xu, Trento 2009 10/23

)3(2

2

uu

TTT

zz

zzyyxx

Navier-Stokes approximation

][fCfp Boltzmann-Eq.

Shear Viscosity PguuPeT )(

)( 32

uuu

]ln3ln[ln

])([ 31

21

i

teeq

iji

jj

iji

eqeq

PTEeEffp

uuuppffpfp

AMY, JHEP 11 (2000) ),()1( ,][ 1 pxffffffCfp eqeqeqeq

solve f1(x,p) using the variational method, which determinesthe coefficients of the functions of p in f1(x,p)

Zhe Xu, Trento 2009 11/23

][][

1)(

5

13

31

31

2

2

2

2

fCdwfR

En

ntr

E

p

E

p

NSz

z

][)41()3(15

2

][

2

2

2

2

2

2

fCdwE

puun

fCE

pdwfp

E

pdw

zzz

zeq

z

ZX and C.Greiner, PRL 100, 172301, (2008)

2

2

2

2

2

2

2

sin~

)31

(

][][

d

ddnn

Ep

n

fCdwEp

fCEp

dw

R tr

z

zz

tr

E

pddw

3

3

)2(

transport rate

ZX and C. Greiner, PRC 76, 024911 (2007)

Zhe Xu, Trento 2009 12/23

5.

22

.32

.23 tr

trtr

R

RR

.

.32

.23

.22

trdrift

tr

tr

tr

R

R

R

R

Transport Rates

Zhe Xu, Trento 2009 13/23

gg gg: small-angle scatterings

gg ggg: large-angle bremsstrahlung

distribution of collision angles

at RHIC energies

central plateau

Zhe Xu, Trento 2009 14/23

Elliptic Flow and Shear Viscosity at RHIC 2-3 Parton cascade BAMPS ZX, Greiner, Stöcker, PRL 101, 2008

viscous hydro.Romatschke, PRL 99, 2007

/s > 0.08

/s at the collision center

Zhe Xu, Trento 2009 15/23

A. El, A. Muronga, ZX and C. Greiner, PRC 79, 044914 (2009)

ppxpxf )(),(1 6

00 ~ , CC

Shear Viscosity

),(1 pxffff eqeq

PTC

TJs

fCppdwPPCs

ffpdws

Grad0

1

2

)2(ln withcomparing

][ withln

)1(ln

Grad´s method

Zhe Xu, Trento 2009 16/23

Zhe Xu, Trento 2009 17/23

comparison

][)31

(4][31

][5

1

][33

1][

3

9

4

2

22

22

fCdwEp

fCdwfCEp

dw

n

fCTE

dwfCTp

dw

n

zz

zzNS

z

zzGrad

= 0in chemical equilibration

For minijets initial conditions:

0][

3

12

2

fCdw

E

pz No kinetic equilibrium

No chemical equilibrium

Zhe Xu, Trento 2009 18/23

Uncertainty: dependence of v2 on freeze-out condition3GeV/fm 6.0 ,0.1 6.0 ,3.0 cs e

3

3

GeV/fm 0.1 and 6.0

GeV/fm 6.0 and 3.0

cs

cs

e

e

generate the same elliptic flow.

Therefore, /sbetween 0.08 and 0.16.

Zhe Xu, Trento 2009 19/23

V2(pT)

lower than data

ZX and C. Greiner, PRC 79, 014904 (2009)

Zhe Xu, Trento 2009 20/23

)(22 TT

T pvdp

dNdpv

4/34/13d

4 ~~n ,~ eNTNTNe dccd

e does not depend on Nd.If changing Nd from 16 to 40 (gluons+quarks with 2 flavors),<pT> ~ e/n decreases by a factor of 1.26.

)()(

)()(

pionNgluonN

pionEgluonE TT

Zhe Xu, Trento 2009 21/23

Including `quarks´ in BAMPS

3GeV/fm 0.1

6.0

c

s

e

Assume: Quark dynamics is as same as the gluon one.Changing the degrees of freedom of gluons 16to 40 (gluons+quarks with 2 flavors)

Zhe Xu, Trento 2009 22/23

Including `quarks´

15% effect instead of 26% due to imcomplete chemical equilibration

Zhe Xu, Trento 2009 23/23

Summary

Inelastic pQCD based interactions (23 + 32) explain:

• Large Collective Flow

• Small shear Viscosity of QCD matter at RHIC

/s: 0.08 ~ 0.2

Uncertainties of /s: freezeout conditions, initial conditions,

quark dynamics, hadronization, hadron cascade

v2(pt) and v2 do not match data simultanously:

need better understanding of quark dynamics and hadronization

Zhe Xu, Trento 2009 24/23

Variational method: AMY, JHEP 11 (2000)

1000

0

)1(

)],,([),( BE linearized

)],([),( BE

fffff

pxfCpxfp

pxfCpxfp

f1 to be solved.

|)(|)3

1ˆˆ(2

3)(

)3

2(

6

1)(

with

)()(21

pppp

uuuxX

pxXf

ijji

ijijji

Zhe Xu, Trento 2009 25/23

p

ijji

ijji

phpghg

ppffpTpS

pppp

)()(),(

)3

1ˆˆ(2

3)1(||)(

|)(|)3

1ˆˆ(2

3)(

3

00

The maximun value of S) –(,C)/2 occurs when satisfied the linearized BE.

||)()1(

1)(

1

)(

|||)(| |,||)(|

or ,|)|1(

|)|(|)(|

sets with

|)(||)(|

pcm

N

mm

N

m

mm

mepppp

p

pp

pap

Zhe Xu, Trento 2009 26/23

Transport Rates

trggggg

trggggg

trgggg

trdrift

z

z

eq

RRRRtEp

Epdtd

)(/3/1

/122

22

ZX and C. Greiner, PRC 76, 024911 (2007)

ggggggggggggggi

Ep

n

fCdwEp

fCEp

dw

Rz

iz

iz

tri

,,

,

)31

(

][][

with

2

2

2

2

2

2

• Transport rate is the correct quantity describing kinetic equilibration.

• Transport collision rates have an indirect relationship to the collision-angle distribution.

Zhe Xu, Trento 2009 27/23

Zhe Xu, Trento 2009 28/23

De Broglie length over mean free path

Changing the mean free path by the inverse of the transport rate will lower the ratios.