shang-fan lee et al- spintronics ----spin transfer torque in magnetic nanostructures and spin...

Upload: greamxx

Post on 06-Apr-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 Shang-Fan Lee et al- Spintronics ----Spin transfer torque in magnetic nanostructures and spin pumping effect

    1/46

    Shang-Fan Lee ()

    Y. D. Yao(), Y. Liou( )S. Y. Huang (), F. T. Yuan (), C. Yu ( ), T. W. Chiang (

    ), L. K. Lin (), L. J. Chang (), Faris B.

    Y. L. Chen(), Y. C. Chiu (), Y. H. Chiu ()Institute of Physics, Academia Sinica

    J. J. Liang () D. S. Hung()

    Dept. of Physics, Fu Jen University Dept. of Info. Telecom. Eng.

    Ming Chuan University

    Financial support from National Science Council and Academia Sinica

    ----

    Spintronics ---- Spin transfer torque in magnetic

    nanostructures and spin pumping effect

  • 8/3/2019 Shang-Fan Lee et al- Spintronics ----Spin transfer torque in magnetic nanostructures and spin pumping effect

    2/46

    Spintronics :

    Electronics with electron spin as an extra degree of freedomGenerate, inject, process, and detect spin currents

    Generation: ferromagnetic materials, spin Hall effect, spin

    pumping effect etc.

    Injection: interfaces, heterogeneous structures, tunnel

    junctions

    Process: spin transfer torque

    Detection: Giant Magnetoresistance, Tunneling MR 38, 898 (2007).

    30, 116 (2008).

    87, 82 (2009).

  • 8/3/2019 Shang-Fan Lee et al- Spintronics ----Spin transfer torque in magnetic nanostructures and spin pumping effect

    3/46

    Single Magnetic Domain Wall Resistance

    Phase diagram of magnetization reversals

    Edge roughness effect on domain wall mobility

    Current driven magnetization reversals

    Possible applications:

    Magnetic sensors, Reading heads Magnetic RAM

    Logic operation

    Magnetic Nano-structures

  • 8/3/2019 Shang-Fan Lee et al- Spintronics ----Spin transfer torque in magnetic nanostructures and spin pumping effect

    4/46

  • 8/3/2019 Shang-Fan Lee et al- Spintronics ----Spin transfer torque in magnetic nanostructures and spin pumping effect

    5/46

    -400 -200 0 200 400

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    MR(%)

    0.0 0.1 0.2 0.30.00

    0.05

    0.10

    0.15

    0.20

    one - step

    two - step

    wid

    th(m)

    b/a

    calculated one - step

    calculated two - step

    (a)P1

    P3

    -400 -200 0 200 400

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    H (Oe)

    MR(%)

    or

    P2P2

    Variation of magnetization reversal in pseudo-spin-valve elliptical rings

    APL 94, 233103 (2009)

  • 8/3/2019 Shang-Fan Lee et al- Spintronics ----Spin transfer torque in magnetic nanostructures and spin pumping effect

    6/46

    Exchange bias in spin glass (Fe9.6 at.%Au)/NiFe thin films

    APL 96, 162502 (2010)

    We investigated the exchange bias in the (Fe9.6 at.%Au)/NiFe.

    While the temperature was increased to a compensation

    point, sign change in exchange bias was observed in the

    thickness range of the FeAu layer from 5 to 100 nm. We

    suggest that the inverse bias originates from the magnetic

    relaxation of the SG layer induced by the reversible rotation

    of interfacial FeAu spins coupled to the magnetic moments of

    NiFe. The inverse bias was also found to decrease with the

    increasing maximum field of a hysteresis loop

  • 8/3/2019 Shang-Fan Lee et al- Spintronics ----Spin transfer torque in magnetic nanostructures and spin pumping effect

    7/46

    (tranport of magnetization by an electrical curent)

    - fundamentals

    - switching of magnetization by spin transfer torque

    applications (STT-RAM, reprogrammable devices)

    - microwave oscillations by spin transfer and applications totelecommunications

    Spin transfer Torque

  • 8/3/2019 Shang-Fan Lee et al- Spintronics ----Spin transfer torque in magnetic nanostructures and spin pumping effect

    8/46

    Compensation between magnetoresistance and switching

    current in Co/Cu/Co spin valve pillar structure

    MR ratio and current density for induced magnetization reversal showed compensation

    behaviors. In order to achieve maximum efficiency (MR ratio) and minimum

    consumption (critical current) in a practical device, the thickness of the injection layer

    should be around the spin diffusion length for optimum performance.

    APL 96, 093110 (2010)

  • 8/3/2019 Shang-Fan Lee et al- Spintronics ----Spin transfer torque in magnetic nanostructures and spin pumping effect

    9/46

    Transport geometry

    CIP resistance can be measured easily, CPP resistance

    needs special techniques.

    From CPP resistance in metallic multilayers, one canmeasure interface resistances, spin diffusion lengths, andpolarization in ferromagnetic materials, etc.

    lead

    CIP geometry

    ~

    CPP geometry

    ~

    lead

  • 8/3/2019 Shang-Fan Lee et al- Spintronics ----Spin transfer torque in magnetic nanostructures and spin pumping effect

    10/46

    Magnetic switching Generation of microwave oscillations

    SPIN TRANSFER

    H

  • 8/3/2019 Shang-Fan Lee et al- Spintronics ----Spin transfer torque in magnetic nanostructures and spin pumping effect

    11/46

    Transverse

    component

    The transverse spin component is lost by the

    conduction electrons, but is actually transferred to the

    global SPIN of the layer rotation ofS S

    S

    F1 F2

    0.1 m

    S

    Concept of spin transfer(Slonczewski 1996)

  • 8/3/2019 Shang-Fan Lee et al- Spintronics ----Spin transfer torque in magnetic nanostructures and spin pumping effect

    12/46

  • 8/3/2019 Shang-Fan Lee et al- Spintronics ----Spin transfer torque in magnetic nanostructures and spin pumping effect

    13/46

  • 8/3/2019 Shang-Fan Lee et al- Spintronics ----Spin transfer torque in magnetic nanostructures and spin pumping effect

    14/46

    Au

    4 nm

    10 nm

    Free magn. layer

    CuPolarizer

    Trilayered pillar or tunnel junction

    Metallic pillar 50x150 nm

    x

    1) Magnetization switching by spintransfer

    2) Sustained precession of themagnetization of the free layerand generation of radio-frequency

    oscillations

    Two regimes of spin transfer

    Applications: writing a memory, etc

    Applications: spin transfer nano-oscillators (NSTOs) for

    communications (telephone, radio,radar)

    Zero or low field

    Appl. field

    H

    Polarizermagnetization

    Free layer magnetization

    70 nm

    Au

    CoFeB

    MgO

    CoFeB

    Tunnel junction 50x170 nm

  • 8/3/2019 Shang-Fan Lee et al- Spintronics ----Spin transfer torque in magnetic nanostructures and spin pumping effect

    15/46

    Experimental observations

    A. Giant Magnetoresistance (Disc. 1988)

    Change Magnetic Order Change Resistance (or Current)

    F

    N

    F

    P

    AP

    Read Heads; Sensors; MRAM (Tunneling)

    B. Current-Driven Switching

    F

    F

    N

    J

    First F Polarizes J. Polarized J exerts Torqueon second F. +Jc Flips to AP; -Jc Flips to P.

    Write in MRAM? Write on MR Media?

    Q: Physics; Minimize Jc

    1.40

    1.45

    1.50

    1.55

    1.60

    1.65

    dV/dI()

    AP

    P295K

    Py/Cu/Py

    1.40

    1.45

    -0.2 0 0.2

    dV/dI()

    H (kOe)

    P

    AP

    1.0

    1.1

    1.2

    1.3

    1.4

    -6 -4 -2 0 2 4 6

    dV/dI()

    I (mA)

    4.2KP

    AP

    1.0

    1.1

    -0.4 0 0.4d

    V/dI()

    H (kOe)

    AP

    P

    P AP

  • 8/3/2019 Shang-Fan Lee et al- Spintronics ----Spin transfer torque in magnetic nanostructures and spin pumping effect

    16/46

    Compensation between magnetoresistance and switching

    current in Co/Cu/Co spin valve pillar structure

    MR ratio and current density for induced magnetization reversal showed compensation

    behaviors. In order to achieve maximum efficiency (MR ratio) and minimum

    consumption (critical current) in a practical device, the thickness of the injection layer

    should be around the spin diffusion length for optimum performance.

    APL 96, 093110 (2010)

    )2(2

    sksc MHtM

    p

    eJ

  • 8/3/2019 Shang-Fan Lee et al- Spintronics ----Spin transfer torque in magnetic nanostructures and spin pumping effect

    17/46

    The Definition of Spin Polarization

    Spin polarization ():

    NN

    NNNP

    normal metal

    E

    metallic ferromagnet

    E

    4s3d

    half-metallicferromagnet

    E

    Uex

    P = 0 P = 10 < P < 1

    Spin polarization of current: Ballistic or diffusiveII

    IIP

    Mazin, PRL 87, 1427 (1999)

  • 8/3/2019 Shang-Fan Lee et al- Spintronics ----Spin transfer torque in magnetic nanostructures and spin pumping effect

    18/46

    How to Determine the Spin Polarization

    NNNNP

    E

    D(E)

    h

    Spin-polarizedphotoemission

    Point-contact

    Andreev reflection

    S tip

    FV

    ~

    Spin-LED

    Substrate

    FSemi-conductor spacerQW

    ~

    Spin-polarizedtunneling

    H

    S

    F

    I

    V

    ~

    Efficiency of spin

    injection. Effects ofthe interface and

    spacer are included.

    P is barrier

    dependent and

    junction dependent

    ff

    ff

    NN

    NN

    P

  • 8/3/2019 Shang-Fan Lee et al- Spintronics ----Spin transfer torque in magnetic nanostructures and spin pumping effect

    19/46

    Andreev Reflection : A Probe of Spin Polarization

    Andreev reflection:A conversion of normal current

    to supercurrent occuring at ametallic N/S interface.

    N SE

    N(E)

    D

    DEF

    eVE

    N (E)N(E)

    The suppression of Andreevreflection due to spinpolarization serves as aprobe of the degree ofspin polarization.

    When N is ferromagnetic,

    only part of the electronsare paired.

  • 8/3/2019 Shang-Fan Lee et al- Spintronics ----Spin transfer torque in magnetic nanostructures and spin pumping effect

    20/46

    Tip-Sample Approach: Differential Screw

    differential

    screw

    The turning shaft

    The tip

    The sample

    The sliding tank

    net

    movement

    0.79375 mm

    0.75mm

    0.04375mm

    Differential screw gives abetter control of theplacement of the tip of 40 mper revolution.

  • 8/3/2019 Shang-Fan Lee et al- Spintronics ----Spin transfer torque in magnetic nanostructures and spin pumping effect

    21/46

    Modified BTK Theory

    Superconducting gapSpin polarizationPInterface barrierZ

    Pdependence Z dependence T dependence

    -4 -2 0 2 40.0

    0.5

    1.0

    1.5

    2.0

    P=0.4

    P=0

    Norm

    alizedconductance

    V (mV)

    T=1.5K

    DmV

    Z=0

    P=1

    -4 -2 0 2 40.0

    0.5

    1.0

    1.5

    2.0

    Z=0.4

    Z=0

    V (mV)

    T=1.5K

    DmV

    Z=0

    Z=1

    Three parameters :

    G. E. Blonder et al., PRB 25, 4515 (1982).

    Y. Ji, G. J. Strijkers et al., PRL 86, 5585 (2001).

    -4.0 -2.0 0.0 2.0 4.0

    1.0

    1.5

    2.0

    T=5K

    T=7K

    V (mV)

    T=3K

    Note : ballistic transport assumed

  • 8/3/2019 Shang-Fan Lee et al- Spintronics ----Spin transfer torque in magnetic nanostructures and spin pumping effect

    22/46

    Domain wall

    Another spin transfer effect:

    displacement of a wall between magnetic domains

    Magnetic film

    Magnetization to the right Magnetization to the left

  • 8/3/2019 Shang-Fan Lee et al- Spintronics ----Spin transfer torque in magnetic nanostructures and spin pumping effect

    23/46

    Edge Roughness effect on the magnetization reversal

    process of spin valve submicron wires

    -40 -20 0 20 40

    1.000

    1.005

    1.010

    1.015

    -40 -20 0 20 40

    1.000

    1.005

    1.010

    1.015

    -40 -20 0 20 40

    1.000

    1.005

    1.010

    1.015

    -40 -20 0 20 40

    1.000

    1.005

    1.010

    1.015

    (d)(c)

    (b)

    MRRatio

    no spike(a)

    spike 26nm (pitch 200nm)

    MRRatio

    H(Oe)

    spike 33nm (pitch 100nm)

    H(Oe)

    spike 51nm (pitch 200nm)

    Submitted to APL

  • 8/3/2019 Shang-Fan Lee et al- Spintronics ----Spin transfer torque in magnetic nanostructures and spin pumping effect

    24/46

    Non-local measurement

    Spin diffusion lengthHanle effect

    Spin Hall effect & Inverse Spin Hall effect

    Spin Pumping (spin battery)

    Pure spin current

    Spin Hall effect & Inverse Spin Hall effect

  • 8/3/2019 Shang-Fan Lee et al- Spintronics ----Spin transfer torque in magnetic nanostructures and spin pumping effect

    25/46

    The extrinsic SHE is due to asymmetry in electron scattering for up and

    down spins. spin dependent probability difference in the electron

    trajectories

    The Intrinsic SHE is topological band structures,

  • 8/3/2019 Shang-Fan Lee et al- Spintronics ----Spin transfer torque in magnetic nanostructures and spin pumping effect

    26/46

    26

    Pure Spin Currents: The Johnson Transistor

    F1 F2

    N V

    e-

    L

    F1 N F2

    Emitter Base

    or

    Collector

    M. Johnson,

    Science 260, 320 (1993)

    M. Johnson and R. H. Silsbee,Phys. Rev. Lett. 55, 1790 (1985)

    0

    F2

    F2

    First Experimental Demonstrations

    I+

    I- V

    Jedema et al., Nature 410, 345 (2001)

    Cu film: s = 1 m (4.2 K)

  • 8/3/2019 Shang-Fan Lee et al- Spintronics ----Spin transfer torque in magnetic nanostructures and spin pumping effect

    27/46

    27

    Spin Pumping

    F N

    Spin accumulation gives rise to spin current

    in neighboring normal metal

    IS

    t

    m

    mgI rpump

    S

    4

    In the FMR condition, thesteady magnetization

    precession in a F is maintained

    by balancing the absorption of

    the applied microwave

    and the dissipation of the spin

    angular momentum --thetransfer of angular momentum

    from the local spins to

    conduction electrons, which

    polarizes the conduction-

    electron spins.

  • 8/3/2019 Shang-Fan Lee et al- Spintronics ----Spin transfer torque in magnetic nanostructures and spin pumping effect

    28/46

    tmmgI r

    pumpS

    4

  • 8/3/2019 Shang-Fan Lee et al- Spintronics ----Spin transfer torque in magnetic nanostructures and spin pumping effect

    29/46

    29

    Direct Detection of Spin Pumping via Inverse Spin

    Hall Effect

    FMR

    Spin Current

    in adjacent

    normal metal

    Transverse

    Charge Current

    E. Saitoh, et al., Appl. Phys. Lett. 88, 182509 (2006).

    The spin-orbit interaction bends

    these two electrons in the

    same direction and induces a

    charge current transverse to Js,

    The surface of the Py layer is of a

    1*1 mm2 square shape. Two

    electrodes are attached to both

    ends of the Pt layer.

  • 8/3/2019 Shang-Fan Lee et al- Spintronics ----Spin transfer torque in magnetic nanostructures and spin pumping effect

    30/46

    The microwave mode with a frequency

    off =9.45 GHz is exited in the cavity,

    and The microwave power is 100 mW.

    The FMR spectrum shows that the

    magnetization in the Py layer resonates at

    HFMR=130 mT.

    A possible small discrepancy in the

    sample position from the center of the cavity

    may cause a microwave electric field at the

    sample position and may generate dc AHE in

    cooperation with FMR.

    the ISHE contribution dominates the observed

    V signal

  • 8/3/2019 Shang-Fan Lee et al- Spintronics ----Spin transfer torque in magnetic nanostructures and spin pumping effect

    31/46

    31

    E. Saitoh, et al., Appl. Phys. Lett. 88, 182509 (2006).

  • 8/3/2019 Shang-Fan Lee et al- Spintronics ----Spin transfer torque in magnetic nanostructures and spin pumping effect

    32/46

    32

    Spin Pumping

    Ferromagnetic Resonance results in time-

    dependent interfacial spin accumulation

    This spin accumulation diffuses away from the

    interface

    Results in net dc spin current perpendicular to

    interface

    Additional spin current gives rise to additional

    damping

    Quantify spin current from

    linewidth broadening

    F N

    IS

  • 8/3/2019 Shang-Fan Lee et al- Spintronics ----Spin transfer torque in magnetic nanostructures and spin pumping effect

    33/46

    33

    Combine Spin Pumping and

    Inverse Hall Effect

    Use Spin Pumping to Generate Pure Spin Current

    Quantify Spin Current from FMR

    Measured Voltage Directly Determines Spin Hall Conductivity

    Key Advantage: Signal Scales with Device Dimension

  • 8/3/2019 Shang-Fan Lee et al- Spintronics ----Spin transfer torque in magnetic nanostructures and spin pumping effect

    34/46

    34

    Determine Spin Hall Angle for Many Materials

    Pt Au Mo

    = 0.01200.0001

    = 0.00250.0006

    = -0.000960.00007

  • 8/3/2019 Shang-Fan Lee et al- Spintronics ----Spin transfer torque in magnetic nanostructures and spin pumping effect

    35/46

  • 8/3/2019 Shang-Fan Lee et al- Spintronics ----Spin transfer torque in magnetic nanostructures and spin pumping effect

    36/46

  • 8/3/2019 Shang-Fan Lee et al- Spintronics ----Spin transfer torque in magnetic nanostructures and spin pumping effect

    37/46

  • 8/3/2019 Shang-Fan Lee et al- Spintronics ----Spin transfer torque in magnetic nanostructures and spin pumping effect

    38/46

    Enhancement of magnetic damping in NiFe thin

    films by structural defects

    H = H0 + 4f/

    = g|e|/2mc

  • 8/3/2019 Shang-Fan Lee et al- Spintronics ----Spin transfer torque in magnetic nanostructures and spin pumping effect

    39/46

    H = H0 + 4f/ = g|e|/2mc

  • 8/3/2019 Shang-Fan Lee et al- Spintronics ----Spin transfer torque in magnetic nanostructures and spin pumping effect

    40/46

    Summary

    GMR effect charge can be controlled

    by magnetization (spin).

    STT (spin transfer torque) effect

    -- magnetization can be controlled by

    spin polarized current.

    -- New materials with high spin polarization,low saturation moments,

    high Curie temperature are needed.

    Pure spin current will it be realized in circuits?

  • 8/3/2019 Shang-Fan Lee et al- Spintronics ----Spin transfer torque in magnetic nanostructures and spin pumping effect

    41/46

    The Definition of Spin Polarization

    Spin polarization ():

    NN

    NNNP

    normal metal

    E

    metallic ferromagnet

    E

    4s3d

    half-metallicferromagnet

    E

    Uex

    P = 0 P = 10 < P < 1

    Spin polarization of current: Ballistic or diffusiveII

    IIP

    Mazin, PRL 87, 1427 (1999)

  • 8/3/2019 Shang-Fan Lee et al- Spintronics ----Spin transfer torque in magnetic nanostructures and spin pumping effect

    42/46

    How to Determine the Spin Polarization

    NNNNP

    E

    D(E)

    h

    Spin-polarizedphotoemission

    Point-contactAndreev reflection

    S tip

    FV

    ~

    Spin-LED

    Substrate

    FSemi-conductor spacerQW

    ~

    Spin-polarizedtunneling

    H

    S

    F

    I

    V

    ~

    Efficiency of spin

    injection. Effects ofthe interface and

    spacer are included.

    P is barrier

    dependent and

    junction dependent

    ff

    ff

    NN

    NNP

  • 8/3/2019 Shang-Fan Lee et al- Spintronics ----Spin transfer torque in magnetic nanostructures and spin pumping effect

    43/46

    Andreev Reflection : A Probe of Spin Polarization

    Andreev reflection:A conversion of normal current

    to supercurrent occuring at ametallic N/S interface.

    N SE

    N(E)

    D

    DEF

    eV E

    N (E)N(E)

    The suppression of Andreevreflection due to spinpolarization serves as aprobe of the degree ofspin polarization.

    When N is ferromagnetic,

    only part of the electronsare paired.

    Tip-Sample Approach: Differential Screw

  • 8/3/2019 Shang-Fan Lee et al- Spintronics ----Spin transfer torque in magnetic nanostructures and spin pumping effect

    44/46

    Tip-Sample Approach: Differential Screw

    differential

    screw

    The turning shaft

    The tip

    The sample

    The sliding tank

    net

    movement

    0.79375 mm

    0.75mm

    0.04375mm

    Differential screw gives abetter control of theplacement of the tip of 40 mper revolution.

    M difi d BTK Th

  • 8/3/2019 Shang-Fan Lee et al- Spintronics ----Spin transfer torque in magnetic nanostructures and spin pumping effect

    45/46

    Modified BTK Theory

    Superconducting gapSpin polarizationPInterface barrierZ

    Pdependence Z dependence T dependence

    -4 -2 0 2 40.0

    0.5

    1.0

    1.5

    2.0

    P=0.4

    P=0

    Nor

    malizedconductance

    V (mV)

    T=1.5KDmV

    Z=0

    P=1

    -4 -2 0 2 40.0

    0.5

    1.0

    1.5

    2.0

    Z=0.4

    Z=0

    V (mV)

    T=1.5K

    DmV

    Z=0

    Z=1

    Three parameters :

    G. E. Blonder et al., PRB 25, 4515 (1982).

    Y. Ji, G. J. Strijkers et al., PRL 86, 5585 (2001).

    -4.0 -2.0 0.0 2.0 4.0

    1.0

    1.5

    2.0

    T=5K

    T=7K

    V (mV)

    T=3K

    Note : ballistic transport assumed

    Point contact Andreev reflection

  • 8/3/2019 Shang-Fan Lee et al- Spintronics ----Spin transfer torque in magnetic nanostructures and spin pumping effect

    46/46

    Point contact Andreev reflection

    Superconducting tip -10 -5 0 5 10

    1.00

    1.05

    1.10

    MBTK:

    T=4.20K

    z=0.00

    p=0.475

    D=1.00 meV=0.030

    3D BTK:

    T=4.20K

    z1=0.155

    z2=1.05

    z3=11.5

    p=0.385

    D=0.950 meV=0.030

    Co

    nductance

    V(mV)

    data

    MBTK

    3D BTK

    Our new BTK model

    D dEeVEfEZZZPFGG

    NN

    NS )(),,3,2,1,(

    IIIII ddcczaazzz )**(3)*(21

    II

    I

    III

    N S

    Modified BTK theory

    D dEeVEfEZPFGG

    NN

    NS )(),,,(