shagufta-final review

37
Performance and Reliability Evaluation of Solar PV Power Plant Presented by, Shagufta Shahnaz #13MEE0033 Internal Guide: Prof. M. Natarajan VIT University, Vellore,TN External Guide: Dr. Sagar Agravat Scientist-C, GERMI, Gujarat

Upload: shagufta-shahnaz

Post on 11-Apr-2017

116 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: shagufta-final review

Performance and Reliability Evaluation of

Solar PV Power Plant

Presented by,Shagufta Shahnaz

#13MEE0033

Internal Guide:Prof. M. NatarajanVIT University, Vellore,TN

External Guide:Dr. Sagar AgravatScientist-C, GERMI, Gujarat

Page 2: shagufta-final review

Content Introduction Literature review Methodology Work Done Results & Discussion Verification Conclusion References

Page 3: shagufta-final review

IntroductionScope:Impact on energy generation due to degradation of solar PV modules installed at Solar PV power plant since the date of installation till the present date and develop a reliability model for future solar PV plant installations.

Page 4: shagufta-final review

Objective» Degradation Study of PV modules installed at solar PV

power plant

» Comparison between performance of ground mounted

& canal top mounted modules

» Development of Loss Models

» Reliability Evaluation of Solar PV Power Plant based on

Loss Models developed

Page 5: shagufta-final review

Findings from Literature Survey» On global survey of degradation rate, it was

analyzed that mono-crystalline technology has undergone minimum range of degradation while the rate of degradation for polycrystalline technology varied in a wide range

» Outdoor Testing along with Data Acquisition System were the most reliable analysis methodology

» Several models for evaluating degradation were reported.

» Faulty PV identification and dynamic thermal model to evaluate instantaneous thermal effect on performance were remarkable.

Page 6: shagufta-final review

Study Site Location GTPS 1MW Solar PV

Power Plant» Technology: Multi-Tech» Located above closed

(filled) ash dyke of GSECL's Gandhinagar Thermal Power Station

» Latitude: 23°16' N» Longitude: 72°40' E» Operating since: Aug‘11

1 MW Narmada Canal Top Solar PV Power Plant

» Technology: Poly-crystalline

» Located above Narmada river canal at Sanand, Gujarat

» Latitude: 23°05' N» Longitude: 72°18' E» Operating since: Aug‘11

Page 7: shagufta-final review

1 MW Narmada Canal Top Solar PV Power Plant

GTPS 1MW Solar PV Power Plant

Page 8: shagufta-final review

Technical DetailsParameter GTPS

Module Technology

Poly-crystalline CIGS[Copper Indium

Gallium Selenide]

A-Si[Amorphous-Si]

Mono-crystalline CdTe[Cadmium Telluride]

Capacity of each PV module (Watt)

240 235 95 107 250 85

Total no. of each PV module

2088 432 1056 924 405 1170

Total DC Capacity (Watt)

500400 101520 100320 98868 101250 99450

Type of Inverter Central String

Capacity Of Inverter (kW)

500 7

Total no. of Inverter

1 75

Total Capacity of Inverter (kW)

1025

Page 9: shagufta-final review

Parameter Narmada Canal Top Plant

Module Technology Poly-crystalline

Capacity of each PV module (Watt)

275 280 285

Total no. of each PV module

1056 2480 80

Total DC Capacity (Watt)

290400 694400 22800

Type of Inverter Central

Capacity Of Inverter (kW)

220

Total no. of Inverter 4

Total Capacity of Inverter (kW)

880

Page 10: shagufta-final review

Block Diagram of GTPS

PV ModulesPolycrystalline-2088, 240Wp

DC Junction Box

Central Inverter

Transformer

HT Bus-bar

HT PanelHT Panel Transformer

PV ModulesI. Poly-crystalline-432, 235Wp

II. Mono-crystalline-405, 250Wp

III. Thin Filma. A-Si-924, 107Wp

b. CdTe-1170, 85Wp

c. CIGS-1056, 95Wp

String Inverter

Power Distribution Box

Low Voltage Distribution Box

Transmission Tower11KV AC

Page 11: shagufta-final review

Block Diagram of Narmada Canal Top Plant

Page 12: shagufta-final review

Methodology

Page 13: shagufta-final review

1. Degradation of ModulesOutdoor Testing using sun simulator along with Data Acquisition System

Page 14: shagufta-final review

1 set of reading takes place at: i. 15 minute durationii. Equal radiationiii. Equal wind speediv. Equal cloud castingv. Equal ambient temperature

4 modules were tested for each set of readings

Canal Top (CT) reference & Ground Mounted (GM) reference modules were tested at every set periodic assessment of performance

Readings for GM Test & CT Test modules were taken from different modules mounted respectively

Readings from CT Test & GM Test modules intimidated the overall performance trend of plant

2. Comparison of ground mounted & canal top mounted modules:

Page 15: shagufta-final review

Loss ModelsCalculation of In-plane Radiation

Incident Angle Modifier (IAM) Factor

Effect in Module Temperature

% Variation in Efficiency due to change in Temperature

Power Calculation for 1 module

% of Power loss due to DC & Cable Loss

% of Power Loss due Conversion Losses

Page 16: shagufta-final review

Results &

Discussion…

Page 17: shagufta-final review

0 1 2 3 4 5 6 730.0

35.0

40.0

45.0

50.0

55.0

f(x) = 0.050000000000002 x² + 0.589999999999982 x + 47.2600000000001R² = 0.73280992384392

f(x) = 0.0660714285714309 x² − 0.279642857142878 x + 41.4100000000001R² = 0.0760799031477024

Temperature Difference between Canal Top & Ground Mounted Reference Modules

CT refPolynomial (CT ref)GM refPolynomial (GM ref)

Set Number

Tem

pera

ture

(°C)

Average difference is 10°C

0 1 2 3 4 5 6 730.0

35.0

40.0

45.0

50.0

55.0

f(x) = 0.264285714285715 x² − 1.47285714285715 x + 50.38R² = 0.575688468158348

f(x) = 0.139285714285716 x² − 0.932142857142872 x + 41.3R² = 0.187466808284656

Temperature Difference between Canal Top & Ground Mounted Temp

CT testPolynomial (CT test)GM testPolynomial (GM test)

Set Number

Tem

pera

ture

(°C)

Average difference is 10°C

Page 18: shagufta-final review

0 2 4 6 8 10 12 1435.00

36.00

37.00

38.00

39.00

40.00

41.00

42.00

43.00

44.00

45.00

f(x) = − 0.0298351648351651 x + 44.2326923076923R² = 0.173618700596382

f(x) = − 0.155879120879121 x + 40.8896153846154R² = 0.513314427248437

Canal Top & Ground Mounted Open Circuit Voltage DifferenceGM Voc

Linear (GM Voc)

CT Voc

Linear (CT Voc)

Set Number

OC

Volta

ge (V

) Average difference is 4V

Page 19: shagufta-final review

0 1 2 3 4 5 6 732.8

33

33.2

33.4

33.6

33.8

34

34.2

34.4

34.6

34.8

f(x) = 0.0330357142857147 x² − 0.152107142857146 x + 33.973R² = 0.340263805895764

f(x) = 0.0785714285714294 x² − 0.604571428571435 x + 35.086R² = 0.839340343830221

CT Vmpp

Polynomial (CT Vmpp)

GM Vmpp

Polynomial (GM Vmpp)

Set Number

Volta

ge a

t Max

imum

Pow

er (V

mpp

)Maximum Voltage difference between Canal Top & Ground Mounted Reference Modules

Page 20: shagufta-final review

0 2 4 6 8 10 12 1413

13.5

14

14.5

15

15.5

16

16.5

f(x) = 0.0266272088650586 x² − 0.44467930665062 x + 16.2117350331651R² = 0.839239887125344

f(x) = 0.0146812663541104 x² − 0.276184043899337 x + 15.383962726224R² = 0.360027870867962

Canal Top & Ground Mounted Efficiency DifferenceGM EfficiencyPolynomial (GM Ef -ficiency)CT EfficiencyPolynomial (CT Ef -ficiency)

Set Number

Effici

ency

(%)

Page 21: shagufta-final review

set 1 set 2 set 3 set 4 set 5 set 610.00

12.00

14.00

16.00

18.00

40.0

42.0

44.0

46.0

48.0

50.0

52.0

Effect on Efficiency due to Temperature (Test) EfficiencyTemper-ature

Set Number

Effici

ency

(%)

Tem

pera

ture

(°C)

Page 22: shagufta-final review

set 1 set 2 set 3 set 4 set 5 set 610.00

15.00

20.00

20.0

25.0

30.0

35.0

40.0

45.0

Canal Top: Effect of Temperature (Test) on Efficiency Efficiency

Temperature

Set Number

Effici

ency

(%)

Tem

pera

ture

(°C)

Page 23: shagufta-final review

1 2 3 4 5 6 7 8 9 10 11 12 13860

870

880

890

900

910

920

930

940

100.00

120.00

140.00

160.00

180.00

200.00

220.00

240.00

260.00

280.00

300.00

Canal Top Power vs Radiation CT Ra-diationCT Power

Set Number

Radi

ation

(Wm

-2)

Pow

er (W

)

1 2 3 4 5 6 7 8 9 10 11 12 13850

860

870

880

890

900

910

920

930

255.00

260.00

265.00

270.00

275.00

280.00

285.00

Ground Mounted Power vs Radiation GM Ra-diationGM Power

Set Number

Radi

ation

(Wm

-2)

Pow

er (W

)

Page 24: shagufta-final review

0 1 2 3 4 5 6 7230.00

240.00

250.00

260.00

270.00

280.00

290.00

f(x) = 250.16569362323 x^0.0596081085157272R² = 0.677894338941042f(x) = 279.238654505279 x^-0.0142486370090853R² = 0.432506047171995

Canal Top & Ground Mounted Power CT refPower (CT ref)GM ref

Set Number

Power

Page 25: shagufta-final review

0.00 1.00 2.00 3.00 4.00 5.00 6.00230.00

235.00

240.00

245.00

250.00

255.00

260.00

265.00

270.00

275.00

280.00

f(x) = − 1.09464285714286 x² + 13.2139285714286 x + 237.67R² = 0.735986639011795

Dust Accumulation

Output PowerPolynomial (Output Power)

Set Number

Pow

er (W

)

Page 26: shagufta-final review

Results of work done» Mono-crystalline modules: 2.16-2.95% per year » CdTe modules:0.48-2.92% per year» A-Si modules: 9.85-11.16% per year » Poly-crystalline modules: GTPS: 1.73-3.89 % per year Narmada Canal Top Plant: 0.17-1.95 % per year Canal top mounted modules had an all time lower

temperature than ground mounted modules thereby had higher open circuit voltage and efficiency

Soiling reduces power output by: 24-25.6 Wefficiency by :1.08-1.61%

Page 27: shagufta-final review

Results From Models Calculation of In-plane Radiation: 523.527 Wm-2

Error: 0.05461-0.13181% Incident Angle Modifier (IAM) Factor: 0.942 to 0.411 % Drop in Module Temperature due to Wind: 9.821% Variation in Efficiency due to change in Temperature: 0.54% Power Calculation for 1 module:Poly-crystalline: 96.97 W, Mono-crystalline: 108.48 W, A-Si: 42.4 W, CdTe: 38.46 W, CIGS: 41.81 W Total power output: Poly-crystalline: 244364.4 W, mono-crystalline: 43934.4 W, A-Si: 39177.6 W, CdTe: 40786.2 W, CIGS: 44151.36 W Ohmic loss: 0.5576%-1.8958%. The ohmic losses were observed to be

more at higher values of irradiance. Conversion loss: 0.17%-4.50%. At times of inverter failure, conversion

losses were as high as 19.36%. Inverter efficiency: At an average, the efficiency of inverter was in the

range of 96.97-98.43%

Page 28: shagufta-final review

The loss parameters obtained closely match with that of simulated results with an average deviation of 2% for IAM Factor 3.78% for power loss due to temperature 0.22% for ohmic loss 0.07% for inverter efficiency

VERIFICATION:

Page 29: shagufta-final review
Page 30: shagufta-final review

january february march april may june july august september october november december0

20000

40000

60000

80000

100000

120000

140000

160000

180000

Simulated and Real Time Generation

2013 simu-lated2013 real time2014 simu-lated2014 real time

Month

Ene

rgy

(kW

h)

Page 31: shagufta-final review

Conclusion Average rate of degradation: nearly 1%

GTPS: 2.81%NCT: 1.06% Expected plant performance: GTPS Ash-dyke Plant: up to 2037Narmada Canal Top Plant: up to 2048 Regular cleaning is required to avoid power and

efficiency loss by nearly 25W and 1.61 % respectively for each module

The model developed and results obtained for losses nearly matches with theoretical simulation

Page 32: shagufta-final review

References 1. Mukadam K, Chenlo F, Rebollo L, Matas A, Zarauza L, Valera P, Garcia P. Three years of operation

and experience of the 1 MW photovoltaic plant. Proceedings of the 14th European Photovoltaic Solar Energy Conference, Barcelona, Spain, 1997; 705–708.

2. Alonso-Abella M, Chenlo F, Vela N, Chamberlain J, Arroyo R, Alonso Martínez FJ. Toledo PV plant 1MWp—10 years of operation.Proceedings of the 20th European Photovoltaic Solar Energy Conference, Barcelona, Spain, 2005; 2454–2457.

3. Marion B, del Cueto J, McNutt P, Rose D. Performance summary for the first solar CdTe 1-kW system, NREL/CP-520-30942, Lakewood, CO, USA, October 2001.

4. Multi-pronged analysis of degradation rates of photovoltaic modules and arrays deployed in Florida; K. O. Davis1*, S. R. Kurtz2, D. C. Jordan2, J. H. Wohlgemuth2 and N. Sorloaica-Hickman1

5. Realini A. Mean time before failure of photovoltaic modules, Federal Office for Education and Science, Final report BBW 99.0579, June 2003.

6. Realini A, Burá E, Cereghetti N, Chianese D, Rezzonico S, Sample T, Ossenbrink H. Study of a 20 year old PV plant (MTBF project).Proceedings of the 17th European Photovoltaic Solar Energy Conference, Munich, Germany, 2001; 447–450.

7. Marion B, Adelstein J. Long-term performance of the SERF PV systems. Proceedings of the NCPV and Solar Programme Review Meeting, Denver, 24–26 March 2003; 199–201. NREL/CD-520-33586.

8. Carr AJ, Pryor TL. A comparison of the performance of different PV module types in temperate climates.SolarEnergy2004; 76:285–94.

Page 33: shagufta-final review

9. McNutt P, Adelstein J, Sekulic W. Performance evaluation of a 1.5-kW a-Si PV array using the PVUSA power rating method at NREL's outdoor test facility, 2005 DOE Solar Energy Technologies Program Review Meeting, Denver, CO, USA, NREL/CP-520-38971, November 2005. 10. Adelstein J, Sekulic W. Small PV systems performance evaluation at NREL's outdoor test facility using the PVUSA power rating method, 2005 DOE Solar Energy Technologies Program Review Meeting, Denver, CO, USA, NREL/CP-520-39135, November2005.11. Akamoto S, Oshiro T. Dominant degradation of crystalline silicon photovoltaic modules manufactures in 1990 20th EPSEC 2005.12. Dunlop ED, Halton D. The performance of crystalline silicon photovoltaic solar modules after 22 years of continuous outdoor exposure. Progress in Photovoltaics Research and Applications 2006; 14:53–64.13. Raghuraman B, Lakshman V, Kuitche J, ShislerW, Tamizh Mani G, Kapoor H. An overview of SMUD’s outdoor photovoltaic test program at Arizona State University. IEEE; 2006.14. Foster RE, Gómez Rocha LM, Gupta VP, Sánchez-Juárez A, Cruz JO, Rosas JC. Field testing of CdTe PV modules in Mexico.Proceedings of the 35th American Solar Energy Society Annual Solar Conference, Denver, CO, USA, 2006. 15. Hedström J, Palmblad L. Performance of old PV modules: measurement of 25 years old crystalline silicon modules, Elforsk Rapport 06:71, October 2006. 16. Guastella S. Assessment of PV plant performance in Italy. Proceedings of the 22nd European Photovoltaic Solar Energy Conference, Milan, Italy, 2007; 2884–2888. 17. Rüther R, Knob P, Beyer HG, Dacoregio MM, Montenegro AA. High performance ratios of a double-junction a-Si BIPV grid-connected installation after five years of continuous operation in Brazil. Proceedings of the 3rd World Conference on PV Energy Conversion, Osaka, Japan, 2003; 2169–2172.

Page 34: shagufta-final review

18. Rüther R, Dacoregio M, Salamoni I, Knob P, Bussemas U. Performance of the first grid-connected, BIPV installation in Brazil over eight years of continuous operation. Proceedings of the 21st European Photovoltaic Solar Energy Conference, Dresden, Germany, 2006; 2761–2764.19. Apicella F, Giglio V, Pellegrino M, Ferlito S, Tanikawa F, Okamoto Y, Thin film modules: long term operational experience in Mediterranean climate. Proceedings of the 23rd European Photovoltaic Solar Energy Conference, Valencia, Spain, 2008;3422–3425. DOI: 10.4229/23rdEUPVSEC2008-5BV.2.21. 20. Case study of two different photovoltaic technologies; Kristopher Davis, H. Moaveni21. Quintana MA, King DL, Hosking FM, Kratochvil JA, Johnson RW, Hansen BR, Dhere NG, Pandit MB. Diagnostic analysis of silicon photovoltaic modules after 20-year field exposure. Proceedings of the 28th PV Specialists Conference, Anchorage, AK, USA, 2000; 1420–1423. DOI: 10.1109/PVSC.2000.916159 22. Reis AM, Coleman NT, Marshall MW, Lehman PA, Chamberlin, CE. Comparison of PV module performance before and after 11-years of field exposure. Proceedings of the 29th PV Specialists Conference, New Orleans, LA, USA, 2002; 1432–1435.23. Saleh IM, Abouhdima I, Gantrari MB. Performance of thirty years standalone photovoltaic system. Proceedings of the 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany, 2009; 3995–3998. DOI: 10.4229/24thEUPVSEC2009-5DO.7.6.24. Adelstein J, Sekulic B. Performance and reliability of a 1-kW amorphous silicon photovoltaic roofing system. Proceedings of the 31st PV Specialists Conference, Lake Buena Vista, FL, USA, 2005; 1627–1630. DOI: 10.1109/PVSC.2005.1488457.

Page 35: shagufta-final review

25. Pietruszko SM, Fetlinski B, Bialecki M. Analysis of the performance of grid connected photovoltaic system. Proceedings of the 34th IEEE PV Specialist Conference, Philadelphia, PA, USA, 2009; 48–51. DOI: 10.1109/PVSC.2009.5411757. 26. Vignola F, Krumsick J, Mavromatakis F, Walwyn R. Measuring degradation of photovoltaic module performance in the field.Proceedings of the 38th American Solar Energy Society Annual Solar Conference, Buffalo, NY, USA, 200927. Dhere NG, Pethe SA, Kaul A. Photovoltaic module reliability studies at the Florida Solar Energy Center. Reliability Physics Symposium (IRPS) 2010; 306–311. DOI: 10.1109/IRPS.2010.5488813. 28. Dhere NG, Pethe SA, Kaul A. PV module reliability and durability studies at the FSEC PV Materials Lab, NREL PV Module Reliability Workshop, Golden, CO, USA, February 2010,http://www1.eere.energy.gov/solar/pv_module_reliability_workshop_2010.html29. Musikowski HD, Styczynski AZ. Analysis of the operational behavior and long-term performance of a CIS PV system. Proceedings of the 25th European Photovoltaic Solar Energy Conference, Valencia, Spain, 2010; 3942–3946. DOI: 10.4229/25thEUPVSEC2010-4DO.11.4.30. Sastry O S, Sriparn S, Shil S K, Pant P C, Kumar R, Kumar A, et al. Performance analysis of the field exposed single crystalline silicon module. Solar Energy Material and Solar cells2010; 94:1463–8. 31. Sanchez-Friera P, Piliougine M, Pelaez J, Carretero J, Sidrach de Cardona M. Analysis of degradation mechanisms of crystalline silicon PV modules after 12 years of operation in Southern Europe. Progress in Photovoltaics: Research and Application 201132. Jordan DC, Kurtz SR. Thin-film reliability trends toward improved stability. Proceedings of the 37th PV Specialists Conference, Seattle, WA, USA, 2011.33. George Makrides, Bastian Zinsser, Markus Schubert, George E. Georghiou; Performance loss rate of twelve photovoltaic technologies under field conditions using statistical techniques; Department of Electrical and Computer Engineering, University of Cyprus, Institute for Photovoltaic-University of Stuttgart, Germany.

Page 36: shagufta-final review

34. Vikrant Sharma, O.S. Sastry , Arun Kumar, Birinchi Bora, S.S. Chandel; Degradation analysis of a-Si, (HIT) hetero-junction intrinsic thin layer silicon and m-C-Si solar photovoltaic technologies under outdoor conditions.35. M. Torres-Ramírez, G. Nofuentes, J.P. Silva, S. Silvestre, J.V. Munoz; Study on analytical modeling approaches to the performance of thin film PV modules in sunny inland climates.36. Yihua Hua, Bin Gao b, , Xueguan Song c, Gui Yun Tian b, Kongjing Li c, Xiangning He; Photovoltaic ⇑fault detection using a parameter based model.37. J.-P. Charles, F. Hannane, H. El-Mossaoui, A. Zegaoui, T.V. Nguyen, P. Petit, M. Aillerie; Faulty PV panel identification using the Design of Experiments (DoE) method.38. Tao Ma, Hongxing Yang, Lin Lu; Development of a model to simulate the performance characteristics of crystalline silicon photovoltaic modules/strings/arrays.39. Diego Torres Lobera, Seppo Valkealahti; Dynamic thermal model of solar PV systems under varying climatic conditions.40. L.M. Ayompe, A. Duffy, S.J. McCormack, M. Conlon; Validated real-time energy models for small-scale grid-connected PV-systems.41. Thomas Huld, Gabi Friesen, Artur Skoczek, Robert P. Kenny, Tony Sample, Michael Field a, Ewan D. Dunlop; A power-rating model for crystalline silicon PV modules.42. Manuel Va´zquez and Ignacio Rey-Stolle; Photovoltaic Module Reliability Model Based on Field Degradation Studies.43. K.H. Lam, J. Close, W. Durisch; Modeling and degradation study on a copper indium diselenide module.

Page 37: shagufta-final review

Thank You