sfn poster 2011f - wpi-europe.com€¦ · a novel microelectrode array system for high-throughput...

1
A Novel Microelectrode Array System for High-Throughput Neurotoxic Screening Axion Biosystems, Atlanta, GA J. Ross, S. Rajaraman, E. Brown, M. McClain, E. McConnell, and T. O’Brien 761.03 1. ABSTRACT Microelectrode arrays (MEAs) are an important tool for scien<fic discovery and medical advancement. Because MEAs can ac<vely manipulate and monitor cellular ac<vity at both the singlecell and network level, these tools provide insight into complex cellular interac<ons. MEAs, however, possess two constraints that prevent their use as a high throughput instrument: (1) extracellular s<mula<on temporarily induces a s<mula<on ar<fact that disrupts the monitoring of cellular ac<vity, and (2) MEA systems typically limit sample processing to a few samples at a <me. In order to address these constraints, we developed novel chargecontrol circuitry and costeffec<ve MEMS processes to remove the s<mula<on ar<fact and implement a scalable, highthroughput MEA system. MEAs have a wide range of applica<ons and are increasingly finding a role in evalua<ng compounds for safety pharmacology or environmental monitoring. Our objec<ve is to increase the throughput for iden<fying neuroac<ve proper<es in uncharacterized compounds. To this end, in conjunc<on with the Environmental Protec<on Agency, we are tes<ng the performance of the mul<well MEA system on a number of chemicals, including established environmental contaminants and a set of control compounds with iden<fied neuroac<ve mechanisms. In this study, we present preliminary spontaneous ac<vity, characterizing ini<al results for correctly discrimina<ng known neuroac<ve compounds from inert controls. 2. CONCEPTUAL FRAMEWORK 3. DEVELOPING ANSI/SBS COMPLIANT MEA SENSOR PLATES 5. SYSTEM INTEGRATION 4. SCALABLE SIMULTANEOUS STIMULATION & RECORDING ELECTRONICS 6. SCREENING GOALS & COMPOUND SELECTION 7. SCREENING APPROACH & PRELIMINARY RESULTS 8. CONCLUSIONS & FUTURE STUDIES A B (1) Use the 768 channel, mul<well MEA system with 12well MEAs. (2) Assess the ability of a set of 27 chemicals to alter spontaneous network ac<vity in primary cultures of cor<cal neurons. (3) At 14 to 21 DIV, record 30 min. of baseline ac<vity, then 30 min. of ac<vity in presence of 50 µM (or highest soluble concentra<on) of chemical. By defini)on, unintended altera)ons in neural structure or func)on are neurotoxic: Following acute or chronic exposures, at concentra<ons that do not affect general viability, an altera<on in the structure or func<on in any part of the CNS or PNS is considered neurotoxic (Costa, 1998; Defranchi 2011) Mean Firing Rate (MFR) is a simple and effec)ve MEA metric to iden)fy neurotoxicity: In vitro neural cultures form spontaneously ac<ve func<onal neuronal networks that retain the basic processes underlying in vivo physiological behavior (Novellino 2011). Mean firing rate (ac<on poten<als per second) is a sensi<ve measure of neurotoxic effects (Defranchi 2011; Novellino 2011; Johnstone 2010). However, processing many samples simultaneously remains a challenge. Altera)on in neural func)on (neurotoxicity) is “holis)cally” captured by MEAs: Neural structure or func<on may be altered by many different mechanisms (receptor modula<on, metabolic disruptors, etc.). Independent of the mechanism, these alterna<ons induce a func<onal change that is recorded by the MEA (Johnstone 2010). Microelectrode Arrays (MEAs): A grid of microelectrodes monitors and controls electroac<ve <ssues and cultures. Each electrode or channel simultaneously records extracellular voltages, detec<ng both unitlevel ac<on poten<als and field poten<als. (1) Primary rat cor<cal neurons are cultured on the MEA (2) Spontaneous extracellular ac<vity is recorded on each electrode (3) Unit level ac<on poten<als on each channel are detected and quan<fied. Microfabrica)on across large surfaceareas presents conflic)ng requirements: Increasing the throughput of MEA experiments requires distribu<ng microscale electrodes across mul<ple, widely distributed wells. In order to address this complex problem, large area fabrica<on processes (e.g., PCB, PickandPlace) were combined with small area fabrica<on (e.g., MEMS, Nanotechnology). An<cipated performance benefits using a 48well MEA plate to capture neuroac<vity doseresponse curves for 12 compounds (1) Die Fabrica)on: MEA sensors are microfabricated on 300µm thick glass substrates u<lizing a twolayer surface micromachining process. (2) Packaging: Glass die are assembled on a PCB with throughholes to enable inverted microscopy. The MEA die is then wirebonded to the PCB. (3) Post Processing: A low impedance surface coa<ng of nanoporous pla<num is electrodeposited. Mul)well electronics must impart mul)ple func)ons to each electrode: Engaging 768 electrodes to perform simultaneous s<mula<on and recording requires sophis<cated, miniaturized electronics. Therefore, our goal was to capture mul<ple electrophysiological func<ons inside an integrated circuit (IC); including amplifica<on, s<mula<on, ar<fact elimina<on, and basic signal processing. Neurotoxicity Screening Objec)ves: (1) Assess the ability the mul<well MEA system to efficiently screen environmental compounds (2) Compare results to data collected using single well MEAs (3) Establish appropriate approaches and parameters Compounds selected for screening: 20 Test Compounds: Chemicals known to alter neuronal ac<vity, with a preference for compounds for which previous MEA data exists. 3 Glutamatergic compounds 4 GABA A antagonists 2 GABA A modulators 2 Nico<nic agonists 7 Nega7ve controls: Chemicals that are not neuroac<ve or neurotoxic under normal exposure condi<on, including acetaminophen, saccharin, and sorbitol) Acknowledgements: Mul<well MEA development work is supported by a phase II NIH SBIR Grant (R44 NS062477). Neurotoxicity screening research is supported by a Coopera<ve Research and Development Agreement (CRADA) between Axion Biosystems and the Environmental Protec<on Agency. The authors wish to thank Dr. Timothy Shafer for the preliminary screening results and for selec<on of the test compounds. Highlevel schema<c of a single channel within the 64channel IC Neural recordings on the s<m ula<on channel with (b) and without (a) ar<fact elimina<on The system must manage large data volumes and coordinate mul)ple func)ons simultaneously: The following systems components were developed to allow con<nuous applica<on of ‘downstream’ s<mulus commands during uninterrupted ‘upstream’ data sampling: (1) A mechanical interface, to physically interface the electrodes; (2) an analog frontend, to monitor and manipulate cellular ac<vity; (3) a data acquisi<on subsystem, to manage analogtodigital conversion; and (4) a digital control system, to provide system communica<ons and controls. Mechanics, Analog frontend, & ADC Processing Plahorm Soiware control & analysis 64 Ch. S<m & Record IC Cell Cell 2 Acetylcholinesterase Inhibitors 4 Sodium Channel Modulators 3 Neurotoxic Heavy Metals !"#$"%&' & !"#$%&'$ ()#$* !"#$%&'$ ()#$* !&,-,-%&'$ .$/0&)*&*$ 12 34 34 2353 632578 7153 621598 ().)&, :,&* 9 33 ; <952 622528 ;5; 6;8 =>?%-/"."/$ 2 91 37 945; 6145@8 13A51 6 42598 B-#,&.)% 9 99 ; 3@5A 62548 ;5; 6;8 C$0&,%$ 6(BDE8 1< 91 91 9<5< 61@518 245; 61<528 :,FG$ H%$,/I)*$# B$"' #J&K$ J$I .&'-/$ 6D(8 Spikerate ac<vity maps, illustra<ng contras<ng neuro ac<vity pajerns. The ac<vity map color codes and interpolates ac<vity for all 64 channels within a culture well. The average, wellwide spike rate is used to iden<fy neuroac<vity changes aier dosing (below). Packaged Plate Single-well MEA system (1 well/plate) Maestro Multiwell MEA system (48-wells/plate) MEA Plates Required (1) 48 12 Compounds evaluated/day 1/6 6 Days to complete Experiment (2) 72 2 (1) Assumes single-well plates are cleaned and each experiment. d reused 12 times. Assumes 48-we ell plates are discarded after (2) Single-well MEA System: Eight recordings c Multiwell MEA System: 288 recordings comp completed per day using eight sing pleted per day using six 48-well p gle-well plates. plates. In this study, a 768channel, simultaneous s<mula<on and recording mul<well MEA system was developed. As a first applica<on, the system was used to inves<gate the rela<ve change in spike rate for 5 compounds and 42 cultures. The results of the remaining compounds (panel 6) will be reported by yearend. Ongoing work will op<mize the approach and parameters used to iden<fy neuroac<vity changes. Future studies will determine the minimum channels required for a viable neurotoxicity assay and will inves<gate the use of evoked ac<vity to increase sensi<vity. In development: 48well, SBS Compliant MEA plate. Pt electrodes Pt Ground Impedance Live/Dead Stain

Upload: duonghanh

Post on 21-Jul-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

A Novel Microelectrode Array System for High-Throughput Neurotoxic Screening

Axion Biosystems, Atlanta, GA J. Ross, S. Rajaraman, E. Brown, M. McClain, E. McConnell, and T. O’Brien

761.03  

1. ABSTRACT Microelectrode  arrays  (MEAs)  are  an  important  tool  for  scien<fic  discovery  and  medical  advancement.  Because  MEAs  can  ac<vely  manipulate  and  monitor  cellular  ac<vity  at  both  the  single-­‐cell  and  network  level,  these  tools  provide  insight  into  complex  cellular  interac<ons.  MEAs,  however,  possess  two  constraints  that  prevent  their  use  as  a  high-­‐throughput  instrument:  (1)  extracellular  s<mula<on  temporarily  induces  a  s<mula<on  ar<fact  that  disrupts  the  monitoring  of  cellular  ac<vity,  and  (2)  MEA  systems  typically  limit  sample  processing  to  a  few  samples  at  a  <me.  In  order  to  address  these  constraints,  we  developed  novel  charge-­‐control  circuitry  and  cost-­‐effec<ve  MEMS  processes  to  remove  the  s<mula<on  ar<fact  and  implement  a  scalable,  high-­‐throughput  MEA  system.  MEAs  have  a  wide  range  of  applica<ons  and  are  increasingly  finding  a  role  in  evalua<ng  compounds  for  safety  pharmacology  or  environmental  monitoring.  Our  objec<ve  is  to  increase  the  throughput  for  iden<fying  neuroac<ve  proper<es  in  uncharacterized  compounds.  To  this  end,  in  conjunc<on  with  the  Environmental  Protec<on  Agency,  we  are  tes<ng  the  performance  of  the  mul<well  MEA  system  on  a  number  of  chemicals,  including  established  environmental  contaminants  and  a  set  of  control  compounds  with  iden<fied  neuroac<ve  mechanisms.  In  this  study,  we  present  preliminary  spontaneous  ac<vity,  characterizing  ini<al  results  for  correctly  discrimina<ng  known  neuroac<ve  compounds  from  inert  controls.    

2. CONCEPTUAL FRAMEWORK

3. DEVELOPING ANSI/SBS COMPLIANT MEA SENSOR PLATES

5. SYSTEM INTEGRATION

4. SCALABLE SIMULTANEOUS STIMULATION & RECORDING ELECTRONICS

6. SCREENING GOALS & COMPOUND SELECTION

7. SCREENING APPROACH & PRELIMINARY RESULTS

8. CONCLUSIONS & FUTURE STUDIES

A! B!

(1) Use  the  768  channel,  mul<well  MEA  system  with  12-­‐well  MEAs.    

(2) Assess  the  ability  of  a  set  of  27  chemicals  to  alter  spontaneous  network  ac<vity  in  primary  cultures  of  cor<cal  neurons.  

(3) At  14  to  21  DIV,  record  30  min.  of  baseline  ac<vity,  then  30  min.  of  ac<vity    in  presence  of  50  µM  (or  highest  soluble  concentra<on)  of  chemical.  

By  defini)on,  unintended  altera)ons  in  neural  structure  or  func)on  are  neurotoxic:  Following  acute  or  chronic  exposures,  at  concentra<ons  that  do  not  affect  general  viability,  an  altera<on  in  the  structure  or  func<on  in  any  part  of  the  CNS  or  PNS  is  considered  neurotoxic  (Costa,  1998;  Defranchi  2011)  

Mean  Firing  Rate  (MFR)  is  a  simple  and  effec)ve  MEA  metric  to  iden)fy  neurotoxicity:  In  vitro  neural  cultures  form  spontaneously  ac<ve  func<onal  neuronal  networks  that  retain  the  basic  processes  underlying  in  vivo  physiological  behavior  (Novellino  2011).  Mean  firing  rate  (ac<on  poten<als  per  second)  is  a  sensi<ve  measure  of  neurotoxic  effects  (Defranchi  2011;  Novellino  2011;  Johnstone  2010).  However,  processing  many  samples  simultaneously  remains  a  challenge.    

Altera)on  in  neural  func)on  (neurotoxicity)  is  “holis)cally”  captured  by  MEAs:    Neural  structure  or  func<on  may  be  altered  by  many  different  mechanisms  (receptor  modula<on,  metabolic  disruptors,  etc.).  Independent  of  the  mechanism,  these  alterna<ons  induce  a  func<onal  change  that  is  recorded  by  the  MEA  (Johnstone  2010).    

Microelectrode  Arrays  (MEAs):  A  grid  of  microelectrodes  monitors  and  controls  electroac<ve  <ssues  and  cultures.  Each  electrode  or  channel  simultaneously  records  extracellular  voltages,  detec<ng  both  unit-­‐level  ac<on  poten<als  and  field  poten<als.    

(1)  Primary  rat  cor<cal  neurons  are  cultured  on  the  MEA-­‐  

(2)  Spontaneous  extracellular  ac<vity  is  recorded  on  each  electrode  

(3)  Unit  level  ac<on  poten<als  on  each  channel  are  detected  and  quan<fied.  

Microfabrica)on  across  large  surface-­‐areas  presents  conflic)ng  requirements:    Increasing  the  throughput  of  MEA  experiments  requires  distribu<ng  microscale  electrodes  across  mul<ple,  widely-­‐distributed  wells.  In  order  to  address  this  complex  problem,  large  area  fabrica<on  processes  (e.g.,  PCB,  Pick-­‐and-­‐Place)  were  combined  with  small  area  fabrica<on  (e.g.,  MEMS,  Nanotechnology).  

An<cipated  performance  benefits  using  a  48-­‐well  MEA  plate  to  capture  neuroac<vity  dose-­‐response  curves  for  12  compounds  

(1)   Die  Fabrica)on:  MEA  sensors  are  microfabricated  on  300µm  thick  glass  substrates  u<lizing  a  two-­‐layer  surface  micromachining  process.    

(2)  Packaging:  Glass  die  are  assembled  on  a  PCB  with  through-­‐holes  to  enable  inverted  microscopy.  The  MEA  die  is  then  wirebonded  to  the  PCB.    

(3)  Post  Processing:  A  low  impedance  surface  coa<ng  of  nano-­‐porous  pla<num  is  electrodeposited.    

Mul)well  electronics  must  impart  mul)ple  func)ons  to  each  electrode:    Engaging  768  electrodes  to  perform  simultaneous  s<mula<on  and  recording  requires  sophis<cated,  miniaturized  electronics.  Therefore,  our  goal  was  to  capture  mul<ple  electrophysiological  func<ons  inside  an  integrated  circuit  (IC);  including  amplifica<on,  s<mula<on,  ar<fact  elimina<on,  and  basic  signal  processing.    

Neurotoxicity  Screening  Objec)ves:    (1) Assess  the  ability  the  mul<well  MEA  system  to  efficiently  screen  

environmental  compounds  (2) Compare  results  to  data  collected  using  single  well  MEAs  (3) Establish  appropriate  approaches  and  parameters  

Compounds  selected  for  screening:    

20  Test  Compounds:  Chemicals  known  to  alter  neuronal  ac<vity,  with  a  preference  for  compounds  for  which  previous  MEA  data  exists.    

•  3  Glutamatergic  compounds    

•  4  GABAA  antagonists  •  2  GABAA    modulators  •  2  Nico<nic  agonists  

7  Nega7ve  controls:  Chemicals  that  are  not  neuroac<ve  or  neurotoxic  under  normal  exposure  condi<on,  including  acetaminophen,  saccharin,  and  sorbitol)  

Acknowledgements:  Mul<well  MEA  development  work  is  supported  by  a  phase  II  NIH  SBIR  Grant  (R44  NS062477).  Neurotoxicity  screening  research  is  supported  by  a  Coopera<ve  Research  and  Development  Agreement  (CRADA)  between  Axion  Biosystems  and  the  Environmental  Protec<on  Agency.  The  authors  wish  to  thank  Dr.  Timothy  Shafer  for  the  preliminary  screening  results  and  for  selec<on  of  the  test  compounds.    

High-­‐level  schema<c  of  a  single  channel  within  the  64-­‐channel  IC  Neural  recordings  on  the    s<m-­‐ula<on  channel  with  (b)  and  without  (a)  ar<fact  elimina<on    

The  system  must  manage  large  data  volumes  and  coordinate  mul)ple  func)ons  simultaneously:  The  following  systems  components  were  developed  to  allow  con<nuous  applica<on  of    ‘down-­‐stream’  s<mulus  commands  during  uninterrupted  ‘up-­‐stream’  data  sampling:  (1)  A  mechanical  interface,  to  physically  interface  the  electrodes;  (2)  an  analog  front-­‐end,  to  monitor  and  manipulate  cellular  ac<vity;  (3)  a  data  acquisi<on  subsystem,  to  manage  analog-­‐to-­‐digital  conversion;  and  (4)  a  digital  control  system,  to  provide  system  communica<ons  and  controls.  

Mechanics,  Analog  front-­‐end,  &  ADC    

Processing  Plahorm  

Soiware  control  &  analysis  

64  Ch.  S<m  &  Record  IC  

Cell   Cell  

•  2  Acetylcholinesterase  Inhibitors  •  4  Sodium  Channel  Modulators  •  3  Neurotoxic  Heavy  Metals  

!"#$"%&'( & !"#$%&'$ ()#$* !"#$%&'$+ ()#$*

!&,-,-%&'$+.$/0&)*&*$ 12 34 34 2353+632578 +++7153+621598().)&,+:,&* 9 33 ; <952+622528 ;5;+6;8=>?%-/"."/$ 2 91 37 945;+6145@8 13A51+642598B-#,&.)% 9 99 ; 3@5A++62548 ;5;+6;8C$0&,%$+6(BDE8+ 1< 91 91 9<5<+61@518 ++245;+61<528

:,FG$+H%$,/I)*$# B$"'+#J&K$+J$I+.&'-/$+6D(8

Spike-­‐rate  ac<vity  maps,  illustra<ng  contras<ng  neuro  ac<vity  pajerns.    The  ac<vity  map  color  codes  and  interpolates  ac<vity  for  all  64  channels  within  a  culture  well.    The  average,  well-­‐wide  spike  rate  is  used  to  iden<fy  neuroac<vity  changes  aier  dosing  (below).    

Packaged  Plate  

Single-well MEA system

(1 well/plate)

Maestro Multiwell MEA system

(48-wells/plate)

MEA Plates Required (1) 48 12

Compounds evaluated/day 1/6 6

Days to complete Experiment (2) 72 2

(1) Assumes single-well plates are cleaned and reused 12 times. Assumes 48-well plates are discarded after each experiment.

(1) Assumes single-well plates are cleaned and reused 12 times. Assumes 48-well plates are discarded after each experiment.

(1) Assumes single-well plates are cleaned and reused 12 times. Assumes 48-well plates are discarded after each experiment.

(2) Single-well MEA System: Eight recordings completed per day using eight single-well plates. Multiwell MEA System: 288 recordings completed per day using six 48-well plates.

(2) Single-well MEA System: Eight recordings completed per day using eight single-well plates. Multiwell MEA System: 288 recordings completed per day using six 48-well plates.

(2) Single-well MEA System: Eight recordings completed per day using eight single-well plates. Multiwell MEA System: 288 recordings completed per day using six 48-well plates.

In  this  study,  a  768-­‐channel,  simultaneous  s<mula<on  and  recording  mul<well  MEA  system  was  developed.  As  a  first  applica<on,  the  system  was  used  to  inves<gate  the  rela<ve  change  in  spike  rate  for  5  compounds  and  42  cultures.    The  results  of  the  remaining  compounds  (panel  6)  will  be  reported  by  year-­‐end.  Ongoing  work  will  op<mize  the  approach  and  parameters  used  to  iden<fy  neuroac<vity  changes.    Future  studies  will  determine  the  minimum  channels  required  for  a  viable  neurotoxicity  assay  and  will  inves<gate  the  use  of  evoked  ac<vity  to  increase  sensi<vity.  

In  development:  48-­‐well,  SBS  Compliant  MEA  plate.  

Pt  electrodes   Pt  Ground   Impedance   Live/Dead  Stain