sensor devices for smart and wearable electronics devices for smart and wearable electronics...

37
Sensor devices for smart and wearable electronics Nae-Eung Lee School of Advanced Materials Sci. & Eng. SAINT SKKU Advanced Institute of Nanotechnology SAIHST Samsung Advanced Institute for Health Sciences and Technology Sungkyunkwan University (SKKU) Korea

Upload: doannhan

Post on 22-Apr-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

Sensor devices for smart and wearable electronics

Nae-Eung Lee

School of Advanced Materials Sci. & Eng.

SAINT SKKU Advanced Institute of Nanotechnology

SAIHST Samsung Advanced Institute for Health Sciences and Technology

Sungkyunkwan University (SKKU) Korea

IOT in smart healthcare

2

patch

smart

watch

implants

Smartphone

IOT-enabled sensor systems for

smart healthcare

accessarydressable

skin-attachable implantable

3

Standalone Smartphone-integrated

U

N

O

B

T

R

U

S

I

V

E

m

P

O

C

T

W

e

a

r

a

b

l

e

s

4

iSTAT

Abbott LabsCoagucheck

Roche

Blood analyzer

AlereStratus troponin

analyzer

Siemens

Accu-Check

Roche

Glucometer

iHealthLFA reader

CELLMIC

Heart monitor(ECG)

AlivecorSAW biosensor

OJbio

Mobile point-of-care testing (mPOCT)

systems

Development of Tunable, Label-free and Imaging-based Quantitative aptasensor platform for Biomolecule detection

CMOS Image Sensor (CIS)

Fluorescence imaging-based high accuracy

bioassay for mPOCT

5

Fluorescence

spectrophotometerPMT

Smartphone

Agilent Hamamtsu

Development of Tunable, Label-free and Imaging-based Quantitative aptasensor platform for Biomolecule detectionFluorescence imaging-based ‘seesawed’ high-

accuracy detection of biomolecules

ZnO NR-enhanced fluorescence (FRET), Quantitative 3D quantification SNR

“Seesawed ratio” of red and green fluorescence ~ 1 during cellular ATP

Minimize false-negatives : sensitivity

ATPSGI ATPAgNC

G e m c ita b in c o n c . ( M )

AT

PS

GI/

AT

PA

gN

Cs

Co

ntr

ol

0.0

001

0.0

01

0.0

11.0

10.0

0 .0

0 .5

1 .0

1 .5

2 .0

Minimize false-positives : selectivity ↑

5 - f lu o ro u ra c il c o n c . (M )

AT

PS

GI/

AT

PA

gN

Cs

Co

ntr

ol

0.0

01

0.0

10.1 1

10

100

0 .0

0 .5

1 .0

1 .5

2 .0

Vertical

ZnO

NRs/

AlGaN

SGI-intercalated

capture-aptamer

AgNC conjugated

detection-aptamer

3D imaging by CCD camera

6S. Shrivastava et al., Biosensors and Bioelectronics, 90(2017) , 450

Development of Tunable, Label-free and Imaging-based Quantitative aptasensor platform for Biomolecule detection

Signal to noise ratio ↑

Inte

nsit

y

Concentration

Seesawed fluorescence

Smartphone imaging-based fluorescence

detection for high accuracy bioassays

W. Lee et al., Biosensors and Bioelectronics, 94(2017) , 643 7

Development of Tunable, Label-free and Imaging-based Quantitative aptasensor platform for Biomolecule detectionSmartphone imaging-based fluorescence

detection for high accuracy bioassays

8

~15 times enhanced

r2=0.9888 r2=0.9842

10-2

10-1

100

101

102

103

104

105

106

107

0.0

0.2

0.4

0.6

0.8

1.0

F/F

0

17-Estradiol concentarion (pg/mL)

10-2

10-1

100

101

102

103

104

105

106

107

0

2

4

6

8

10

12

14

16

F/F

0

17-Estradiol concentarion (pg/mL)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Sen

sit

ivit

y

1-Specificity

ELISA

Portable device

Statistical

accuracy

test of target

analyte spiked

wastewater

Area

under

ROC

curve

ELISA 0.956

Mobile biosensor

0.922

M E F ( A g ) S N R Calibration curve for 17-estradiol

with smartphone fluorescence microscope

Prototyping of

using 3D printing

ROC curve

Development of Tunable, Label-free and Imaging-based Quantitative aptasensor platform for Biomolecule detectionFluorescence imaging-based on-the-spot

detection system for food safety

9

Cartridge integrated with

MEF substrate

Bacteria

separator/concentrator

Fluorescence imaging

based biosensing

Probes forbacterial, pesticide and toxin

IOT-enabledsystem

`Why skin-attachable sensor patches?

10

BiostampMC10

S-patchSamsung

non-invasive and unobtrusive monitoring,

high SNR due to conformal contact with skin

Patch:

Accessary : non-invasive but limit in unobtrusive monitoring

11

What can be measured by

skin-attachable sensor patches?

T.Q. Trung and N.-E. Lee,

Adv. Mater. 29 (2017), 1521;

J. Mater. Chem. C, 5 (2017), 2202

Flexible sensors for skin-attachable

patches by our group

12

Stretchable sensors for

skin-attachable patches

Materials

Device

Stretchable sensing materials, electrochemical electrodes, dry biopotential electrodes

Substrate, dry adhesives, interconnect, encapsulation

Stretchable sensors, energy harvesters,energy storage devices

Packaging

Sensor-integrated systems

Sensor array, integration of sensors, power, and MCU

Signal processing, data transmission, apps, big data

New applications,clinical evaluation, service

Integration

S/W

Clinical

Stretchable materials & devices

Ion sensor

Substrate

Stretchable interconnect

Encapsulation

Ion selective membraneDry adhesive

13

Stretchable physical sensors

for skin-attachable patches

14

Tem. & Strain sensor

Adv. Mater. 28, 502

(2016)

Pressure Sensor

Photo Sensor

Strain Sensor

Sensor-Integrated

Tem. Sensor

UV sensor

In preparation (2017)

Strain sensor

ACS Nano , 11, 6252

(2015)

Pressure sensor

In preparation (2017)

Stretchable Sensor

Monitoring

Temperature

Monitoring Strain

Self-Power Strain

sensor

ACS Nano 9, 8801

(2015)

Tem. sensor

Adv. Funct. Mater. 28,

502 (2016)

Nano Generator

In preparation (2017)

`Approaches for stretchability

Materials Strategies Designs Process methodsStretchable

direction

Intrinsically

stretchable

components

Using intrinsically

stretchable

materials

Elastomeric

nanocompositesSpin-coating, printing, spraying Omni-direction

Geometric engineering of flexible materials

In-plane, geometric

engineeringSerpentine routing Patterning Uniaxial

Out-of-plane,

geometric

engineering

Wavy structure Pre-stretching and releaseUniaxial,

Biaxial

Island-bridge Transfer printing Biaxial

ImperceptibleTransfer on pre-strained

ultrathin substrateUnixial

Out-of-plane,

3D structuring

Bio-mimicking Soft lithography

Multi-direction,

but not fully

stretchable

Microstructrured

pattern

Soft lithography

spin coating, printing, sprayingOmni-direction

Appl. Phys. Lett. 2014, 104, 021908

J. Vac. Sci. Technol. A 2009, 27, L9

IEEE Trans. Compon. Packag. Manuf. Technol.

2015, PP, 1

Adv. Mater. 2015, 27, 34

Adv. Sci. 2015, 2, n/a

ACS Nano 2015, 9, 6252

15

Approach 1: Intrinsically stretchable

elastomeric nanocomposites

Elastomer

Transparent

Stretchable

piezoelectric

pyroelectric

piezoresitive

chemresistive

thermoresistive

photoresponsive

electroactive

16

Nanomaterials

Stretchable, transparent and ultrasensitive

strain sensor for emotion detection

PU-PEDOT:PSS(top)

SWCNT

PU-PEDOT:PSS(bottom)

PDMS

400 500 600 700 8000

20

40

60

80

100

Tra

nsm

itta

nce

(%)

Wavelength(nm)

0 100 200

0

50

100

150

200

250 Bending mode

Resi

stance

change,

R/R

0(%

)

Time(sec)

1.6% 2.1% 2.5% 3.6%

10 20 30 40 50 60 70 80 90 10010

1

102

103

104

105

Stretching mode

Resi

stance

chan

ge,

R/R

0(%

)

Strain(%)

1.5 2.0 2.5 3.0 3.5

101

102

8.7

18.6

62.3

50.8

9.2

13.7

35.349.7

Before cyclic stretching

After cyclic stretching

Ga

ug

e F

act

or(

GF

)

Strain(%)

1000cycles, up to 20%

Roh et al., ACS Nano 11 (2015) 625217

(b) near

the mouth

(a) forehead0 5

-0.2

0.0

0.2

0.4

0.6

0.8

1.0 Laughing

Resi

stance

chan

ge,

R/R

0(%

)

Time(sec)

Start↓↓ Stop

Start↓

↓Stop

Start↓

↓Stop

0 5 10

0

100

200

300 Crying

Resi

stance

chan

ge,

R/R

0(%

)

Time(sec)

Start ↓ ↓ StopStart↓ ↓Stop

Start↓↓Stop

Start↓↓ Stop

Start↓↓Stop

Start↓↓Stop

0 5 10-40

0

40

80 Laughing

Resi

stance

chan

ge,

R/R

0(%

)

Time(sec)0 5

-0.6

-0.3

0.0

0.3

0.6 Crying

Resi

stance

chan

ge,

R/R

0(%

)Time(sec)

↓ Start

Stop↓ ↓Start↓Stop

↓Start↓Stop

Laughing Crying

(a)

(b)

Start Stop Start Stop

Start Stop Start Stop

Stretchable, transparent and ultrasensitive

strain sensor for emotion detection

18

Stretchable, transparent, ultrasensitive,

self-powered strain sensor for activity monitoring

Strain : 100 %

Strain : 0 %

Evaluation

Hwang et al., ACS Nano 9 (2015)

8801, collaboration w/ prof. S.W. Kim 19

throat

0 5 10 15-5

0

5

10

15

20

25

30

35

Re

sis

tan

ce

ch

an

ge

,

ΔR

/ R

0 (

%)

Time (s)

Index finger

0 5 10 15 20 25 30 35-2

-1

0

1

2

3

4

5

6

7

Clench one's fist

Resis

tan

ce c

han

ge,

ΔR

/ R

0 (

%)

Time (s)

0 5 10 15 20 25 30-6

-5

-4

-3

-2

-1

0

1

2

3

Turn wrist

Resis

tan

ce c

han

ge,

ΔR

/ R

0 (

%)

Time (s)0 5 10 15 20 25 30

-10

-8

-6

-4

-2

0

2

4

Move wrist

Resis

tan

ce c

han

ge,

ΔR

/ R

0 (

%)

Time (s)

0 5 10 15 20 25 30 35-2

-1

0

1

2

3

4

5

6

7

Clench one's fist

Clench

Spread

Resis

tan

ce c

han

ge,

ΔR

/ R

0 (

%)

Time (s)

forearm

throat

Stretchable, transparent, ultrasensitive,

self-powered strain sensor for activity monitoring

20

All-elastomeric transparent and stretchable

multi-sensors for activity monitoring

Trung et al., Adv. Mater., 28(2016) 502 21

Reduced graphene oxide-PU channel,

PU gate dielectric and

PEDOT:PSS-PU electrode

AgNWs/PEDOT:PSS-PU

resistor

All-elastomeric transparent and stretchable

multi-sensors for activity monitoring

Monitoring thermal distribution by FET temperature sensor array

Hot object

throat

Strain of 70 %

TS-FET array

1

2

3

4

1.0

1.1

1.2

B

C

D

E

4

2

3

Row

No

rm

ali

zed

cu

rren

t (I

DS/I

DS

0)

Column

1

1 2 3 4

1

2

3

4

Row

1

2

3

4

1.0

1.1

1.2

B

C

D

E

4

2

3

Row

No

rm

ali

zed

cu

rren

t (I

DS/I

DS

0)

Colum

n1

1 2 3 4

1

2

34

Row22

0 100 200 300 400 500

8.8x10-6

9.0x10-6

9.2x10-6

Dra

in c

urr

ent,

ID

S (

A)

Time (sec)

5.1x10-5

5.2x10-5

5.3x10-5

5.4x10-5

Tem

per

atu

re (

oC

)

Dra

in c

urr

ent,

ID

S (

A)

22

24

26

28

30

32

34

36

38

252 256 260

8.8x10-6

9.0x10-6

9.2x10-6

Cu

rren

t,

I (

A)

Time (sec)

Averaged

region

Before drinking hot water

Averaged

region

After drinking hot water

0 100 200 300 400 500

8.8x10-6

9.0x10-6

9.2x10-6

Drai

n cu

rren

t, I DS

(A)

Time (sec)

5.1x10-5

5.2x10-5

5.3x10-5

5.4x10-5

Tem

pera

ture

(o C)

Dra

in c

urre

nt, I

DS (A

)

22

24

26

28

30

32

34

36

38

252 256 260

8.8x10-6

9.0x10-6

9.2x10-6

Cu

rren

t, I

(A

)

Time (sec)

Averaged

region

Before drinking hot water

Averaged

region

After drinking hot water

0 100 200 300 400 500

8.8x10-6

9.0x10-6

9.2x10-6

Dra

in cu

rren

t, I D

S (A)

Time (sec)

5.1x10-5

5.2x10-5

5.3x10-5

5.4x10-5

Tem

pera

ture

(o C)

Dra

in c

urre

nt, I

DS (A

)

22

24

26

28

30

32

34

36

38

252 256 260

8.8x10-6

9.0x10-6

9.2x10-6

Cu

rren

t, I

(A

)

Time (sec)

Averaged

region

Before drinking hot water

Averaged

region

After drinking hot water

Simultaneous monitoring skin temperature and muscle movement during drinking hot water

Drinking Stop drinkingDetaching

Attaching

Drinking Stop drinking

All-elastomeric transparent and stretchable

multi-sensors for activity monitoring

23

5.1x10-5

5.2x10-5

5.3x10-5

5.4x10-5

Dra

in c

urr

ent,

ID

S (

A)

22

24

26

28

30

32

34

36

38

Tem

per

atu

re (

o C)

0 100 200 300 400 500

8.0x10-6

9.0x10-6

1.0x10-5

1.1x10-5

Dra

in c

urr

ent,

ID

S (

A)

Time (sec)

122 124 126 128 130 132 1348.0x10

-6

9.0x10-6

1.0x10-5

Cu

rren

t I

, (A

)

Time (sec)

Averaged

region

Before work-out

Averaged

region

After work-out

WorkoutStop workout

Detaching

Lift up

Release

Attaching

All-elastomeric transparent and stretchable

multi-sensors for activity monitoring

24

Simultaneous monitoring skin temperature and muscle movement during workout

25

0 300 600 900 1200 1500

0

2

4

6

8

10

Resis

tan

ce c

han

ge %

(

R/R

0)

Time (sec)

10% 30% 40% 50% 60% 70%

60 %

Response to humidity (10 % - 70 %)

Trung et al., Nano Research, online

Stretchable transparent humidity sensor for

hydration monitoring

Humidity of breath Moisture of skin

Humidity of environment Humidity of objects

40 60 80 100 120 140 160 180

-2

0

2

4

6 Response to wet object

Res

ista

nce

ch

an

ge

% (

R/R

0)

Time (sec) Response to hydration of human skin

Stretchable transparent humidity sensor for

hydration monitoringResponse to humidity of wet object

0 20 40 60 80 100

0

2

4

6

8

10

12

Dry airDry air

Humidity of human's breath 2

Humidity of ambient air

Res

ista

nce

ch

an

ge

R/R

0(%

)

Time (sec)

Response to humidity of human breath

40 60 80 100 120 140 160 180

-2

0

2

4

6 Response to wet object

Resis

tan

ce c

han

ge,

R/R

0 (

%)

Time (sec)

220 240 260 280 300 320

-1

0

1

2

3

4 Response to humidity of human skin

after using moisturizing lotion

Resis

tan

ce c

han

ge,

R/R

0 (

)

Time (sec)

240 270 300 330 360

-1

0

1

2

3

4 Response to humidity of human skin

before using moisturizing lotion

Resis

tan

ce c

han

ge,

R/R

0 (

%)

Time (sec)

60 90 120 150 180

-1

0

1

2

3

4 Response to humidity of human skin

10 min after using moisturizing lotion

Resis

tan

ce c

han

ge,

R/R

0 (

%)

Time (sec)

40 60 80 100 120 140 160 180

-2

0

2

4

6 Response to wet object

Resis

tan

ce c

han

ge,

R/R

0 (

%)

Time (sec)

220 240 260 280 300 320

-1

0

1

2

3

4 Response to humidity of human skin

after using moisturizing lotion

Resis

tan

ce c

han

ge,

R/R

0 (

)

Time (sec)

240 270 300 330 360

-1

0

1

2

3

4 Response to humidity of human skin

before using moisturizing lotion

Resis

tan

ce c

han

ge,

R/R

0 (

%)

Time (sec)

60 90 120 150 180

-1

0

1

2

3

4 Response to humidity of human skin

10 min after using moisturizing lotion

Resis

tan

ce c

han

ge,

R/R

0 (

%)

Time (sec)26

`Approach 2: Mogul-patterned elastomeric

substrate

An omnidirectionally stretchable substrate for structural engineering

H.B. Lee et al., Adv. Mater., 28 (2016) 3086

7

27

`Approach 2: Mogul-patterned elastomeric

substrate

H.B. Lee et al., Adv. Mater., 28 (2016) 3086

7

28

Optical image depending on stretching direction

Biaxial stretching Triaxial stretching

Without stretching Uniaxial stretchingOmniaxially stretchable

Small tensile on bumps

and valleys under elongation

Omniaxially stretchable RGO gas sensor on

mogul-patterned elastomeric substrate

Bump

Valley

10μm

Bump

Valley

10μm

Stability of Au electrode (70nm)

After 1,000 cycles of

stretching in x-and y-

directions at 50% strain

H.B. Lee et al., Adv. Mater., 28 (2016) 3086

Structure

Electrode (Au)

Active Layer(R-GO)

29

0 50 100 150 200 250 300

0

10

20

30

40

50

60

70

40%

20%5%

50%

30%

R

/R0

Time (s)

Mogul, x-direction

Mogul, y-direction

Pre-strained, x-direction

Pre-strained, y-direction

10%

0 200 400 600 800 1000

0

1

2

3

4

5 Mogul, x-direction

Mogul, y-direction

Pre-strained, x-direction

Pre-strained, y-direction

R

/R0

Number of cycles

Investigatiion of electrical stability

Electrical stability of Au electrode[ Dynamic test ] [ Cyclic test ]

NO2 sesning

0 500 1000 1500 2000 2500

-20

0

20

40

60

80

No strain

30% strain

Res

po

ns

e,

I/I 0

(%

)

Time (s)

2.5ppm

gas ON

Gas OFF

5ppm 10ppm 25ppm

0 500 1000 1500 2000

0.0

0.5

1.0

Number of cycles

R

/R0

30% strain

0 20 40 60 80 100 120 140 160 180 200

0

2

4

6

8

10

R

/R0

Time (s)

5% 10% 15%30%25%20%

[ Dynamic test ] [ Cyclic test ]

Under stretched condition

Electrical stability of chemical sensor

30

Omniaxially stretchable RGO gas sensor on

mogul-patterned elastomeric substrate

Stretchable pressure sensor on

mogul-patterned elastomeric substrateOmaniaxially stretchable piezoresistive pressure

sensor on mogul-patterned substrate

31

Device Structure

Mogul-patterned

PDMS

PEDOT:PSS-

SWCNTs

Ag paste

0 1 2 3 4 5-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

Resis

tance c

hange,

R/R

0

Time (sec)

Electrode

Sensing layer

0 to 30% (uniaxial)

0.0 0.5 1.0 1.5 2.0

-0.4

-0.2

0.0

0.2

0.4

1.0 1.5

-0.05

0.00

release

Resis

tance c

hange,

R/R

0

Time (sec)

stretch to

30% (uniaxial)

Stability under stretching✓ Materials stability under

stretching

✓ Device stability under

stretching

0 1 2 3-3

-2

-1

0

1

2

3

Re

sis

tan

ce

ch

an

ge

,

R

/R0 (

%)

Time (sec)

Dynamic mode

0 1 2 3 4 5 6-15

-10

-5

0

5

10

15

20

Time (sec)

Unstretched

0 1 2 3-3

-2

-1

0

1

2

3

Re

sis

tan

ce

ch

an

ge

,

R

/R0 (

%)

Time (sec)

Dynamic mode

0 1 2 3 4 5 6-15

-10

-5

0

5

10

15

20

Time (sec)

Static mode

Pressure responsivity

✓ Unstretched state

✓ Under 30% stretching state

Roh et al., Adv. Mater., in press.

Stretchable pressure sensor on

mogul-patterned elastomeric substrateOmniaxially stretchable piezoresistive pressure

sensor on mogul-patterned substrate

Demonstration : Tremor detection

✓ Skin area

✓ Demonstration setup

Experimental

mixer for vibration

ArmForearm

8 9 10 11 12 13 14

0.0

0.5

1.0

1.5

Am

plit

ud

e

8 9 10 11 12 13 14

0.00

0.05

0.10

0.15

Frequency (Hz)

✓ Vibration detection using

the device

-6

-4

-2

0

2

4

6

Re

sis

tan

ce

ch

an

ge

,

R

/R0 (

%)

0 1 2 3

-1.6

-0.8

0.0

0.8

1.6

Time (sec)

Arm

Forearm

✓ FFT (fast Fourier transform)

✓ Vibration detection using the accelerometer in smartphone

0 2 4 6 8 10

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Accele

ration m

/s2

Time (sec)

8 9 10 11 12 13 14

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Am

plit

ud

e

Frequency

FFT

32

Self-powered Sensor for Smart ShoesOmniaxially stretchable self-powered

piezoelectric device

3D micro-patterned

Substrate

Graphite electrodesStacked piezoelectric

nanofibersStretchable self-powered

sensor

-12

-9

-6

-3

0

3

6

9

12

Op

en

Cir

cu

it V

olt

ag

e-V

oc

(V

)

Time (sec)

BT-PU

3 layers

6 layers

BT-PU 3 Layers 6 layers 9 layers0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8P

ow

er

Den

sit

y (

W.c

m-2)

Piezoelectric Layer

Stacked mat of BT NPs-PU nanocomposite and P9VDF-TrFE) nanofibers on stress-

relieving mogul-patterned elastomeric substrate

Output during stretchingOutput power at 40% stretching

33S. Siddiqui et al., Adv. Energy. Mater. In press

Self-powered Sensor for Smart ShoesOmniaxially stretchable self-powered

piezoelectric device

34

-150

-100

-50

0

50

100

150

200

250

Sh

ort

Cir

cu

it C

urr

en

t-Is

c (

nA

)

Time (sec)

1000 Cycles

3000 Cycles

5000 Cycles

7000 Cycles

9000 Cycles

Stability at 30% stretching strain

-15

-12

-9

-6

-3

0

3

6

9

12

15

Fast Movement

Op

en

Cir

cu

it V

olt

ag

e-V

oc

(V

)

Slow Movement

Walk

ing P

att

ern

Dete

ctio

nCharg

e S

tora

ge d

uring

walk

ing

0 700 1400 2100 2800 3500

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Vo

ltag

e (

V)

Time (sec)

Perspectives

35

▪ Efforts toward the improvement of stability and reliability of

the sensing nano-materials are required for real applications.

▪ Sensor-integrated systems by combining MCU,

communication, energy and sample handling devices need

to be developed by considering the specific service needs.

▪ Collaborative research is essential for success.

Circuits/tele-comm.

materials & devices

biomedical

Sensor-integrated wearable/smart

electronics

software

Acknowledgments

▪ Group members :

Dr. Tien Thanh Ngyuen, Dr. Tran Quang Trung, Dr. Sajal Shrivastava, Dr. Le

Thai Duy, Do Il Kim, Il-Young Sohn, Bo-Yeong Kim, Byung-Ung Hwang, Dang

Vinh Quang, Young-Min Son, Eun Roh, Nguyen Minh Triet, Muhammad Saqib,

Jin-Soo Kim, Han-Byeol Lee, Se-Chan Kim, Kyu-Hyun Choi, Won-il Lee, Ari

Kim, Ju-Hyun Kim

▪Sponsors :

National Research Foundation of Korea (NCRC, WCU, Basic Science

Research programs), Samsung Advanced Institute of Technology (SAIT)