sensor and simulation notes note 301 22 may 1987...

31
# Sensor and Simulation Note 301 22 May 1987 REVIEIJ OF CHARACTERISTIC Notes , IMPEDANCE OF TWO CONDUCTOR TRANSMISSION LINES by N. Ari BBC Research Center, ~aden, S~iitzerland and D.V. Giri Pro-Tech, 125 University Ave., Berkeley, CA 94710, U.S.A. Abstract The objective of this note is to revieki the impedance of two cGnductGr transmission I:nes includii:: TEII ceils with the inner septum placed symmetrically and with sutme vercic:’~ offset. The required computer programs were developed and implemented on the computer system at the BBC Research Center. as well” Some ~.,,=,-~”, a -..-., .. ~.- !-ssd?:s a“reoresented here in figu!-ss i+”ndtabular form for future reference. \

Upload: phambao

Post on 29-Apr-2018

218 views

Category:

Documents


1 download

TRANSCRIPT

#

Sensor and Simulation

Note 301

22 May 1987

REVIEIJ OF CHARACTERISTIC

Notes

,

IMPEDANCE

OF TWO CONDUCTOR TRANSMISSION LINES

by

N. Ari

BBC Research Center, ~aden, S~iitzerland

and

D.V. Giri

Pro-Tech, 125 University Ave., Berkeley, CA 94710, U.S.A.

Abstract

The objective of this note is to revieki the impedance of two cGnductGr

transmission I:nes includii:: TEII ceils with the inner septum placed

symmetrically and with sutme vercic:’~ offset. The required computer programs

were developed and implemented on the computer system at the BBC Research

Center.

as well”

Some ~.,,=,-~”,a-..-.,..~.- !-ssd?:s a“re oresented here in figu!-ss i+”ndtabular form

for future reference.

\

.

.wz-EPR-sslf-3ol

%9. .

Sensor and Simulation Notes

Note 301

22 May 1987

REVIEW OF CHARACTERISTIC IMPEDANCE

OF TWO CONDUCTOR TRANSMISSION LINES

by

N. Ari

BBC Research Center, Baden, .Switzerland

and

D.V. Giri

Pro-Tech, 125 University Ave., Berkeley, CA 94710, U.S.A.

Abstract

The objective of this note is to review the impedance of two conductor

transmission lines including TEIIceils with the inner septum placed

symmetrically and with some vertic:l offset. The required computer programs

were developed and implemented on the computer system at the BBC Research

Center. Some example results are presented here in figures and tabular form

as well for future reference.

conductors, transmission lines, THI

,

CONTENTS

Section

1.

11.

111.

IV.

Introduction

Two-Conductor Transmission Lines

Numerical Results for the Characteristic Impedance

of Symmetric and Vertically Offset TEM Cells

Summary

References

Page

3

5

13

29

30

“o2

.

.

lbI. Introduction

“ Two conductor transmission lines used in propagating

electromagnetic (EM) waves has many forms. Some examples of

such transmission lines are i) two-wire line [I], ii) conven-

tional coaxial lines with one round conductor inside another

[1], iii) parallel plate lines [2] and iv) rectangular coaxial

lines [3, 4 and 5]. The dominant mode of electromagnetic wave

propagation on such transmission line systems is the transverse

electromagnetic (TEM) mode. The TEM fields are such that the

r “–”:??f-lcs along the propagation direction are identic~lly-----

zer~ and the non-zero components are present in the transverse

plane. This fundamental property of the TEtl mode permits the

following:

a) the analysis may be carried out in a transverse

plane, usually by employing conformal mapping

techniques while recognizing that the relative

field distribution is the same in all transverse

planes’

b) in a practical situation, meas~jrement of the

axial components of the electric or the magnetic

fields results in the detection of the presence

or absence of non-TEM modes.

In addition to the field distribution, the TEM mode is also

characterized by its impedance, Zc which i: the ratio of voltage

and current corresponding to TEM fields. This impedance Zc is a

function of the cons’titutive parameters (u, E, p) of the trans-

mission medium and the geodetical parameters of the transmission

Zc = if9

(1)

line, as expressed below

3

where

.Zc ~.,characteristic impedance of the TEM mode (Q)

n s characteristic impedance of the medium (Q)

-.{-= qzometrical factor for the impedance “s

It is observed that equation (1) simplifies to

(2)

for the case of free space medium with Qo=377n.

The present interest is in the impedances of rectangular

coaxial. transmission lines (TEM cells) with vertically offset

inner conductor. Strictly speaking, the expressions used here

[3 and 5] apply to the central parallel section of a conventional

TEM cell with tapered lines on either side. However, if the

tapered lines are long (- angles of 20° or less], the same expres-

sions can be used to yield results within a few percent accuracy.

In Section 11, we have lised the two-conductor transmission

lines considered in this review, along with impedance expressions

available in the literature. Section 111 presents the numerical.results for the case of symmetric and vertically offset TEM cells.

4

,

@—

Wii)

II. Two-Conductor Transmission Lines

The object of this section is to list commonly used two-

conductor transmission lines and review their impedance

characteristics. The transmission lines. considered are:

1)

2)

3)

~)..2 ,)

6)

7)

8)

9)

10)

11)

12)

13)

14)

two wire line of equal radii [1]

two wire line of unequal radii [6]

single wire above a ground plane [1]

coaxial cable [1]

eccentrjc coaxial cable [7]

parallel strip line ~ [6]

parallel plate line [2]

single wire in a square enclosure [6]

single wire in a trough [6]

two wires enclosed by a circular shield [6]

two wires enclosed by a rectangular shield [6]

two wires in a trough [6]

symmetric TEM cell [3, 5]

vertically offset TEM cell [3, 5] “

k.)

The impedance expressions listed are for free space medium.

For other simple dielectric media with Pr = 1, the impedance

expressions sho,uld be divided by <.

5

Zc = ()120 cosh-l ~

()z 120 Rn -$Q

(if D>>d)

Figure 1. Balanced two wire line with equal radii

z. = 60 COSh ‘l(N)

N[

= 1 4D2 ‘1 ‘2“—-~-q2 ‘ld2 1

Figure 2. Balanced two wire line with unequal radii

Figure 3. Single wire above a ground plane

6

1.

c“ ●4L

Figure”4.

Figure 5.u

Coaxial Cable

@

‘1

‘2

E=E Eor

Eccentric CoaXial Cable

D‘2

‘1

E=E E (3

0 r /+-D-E\

Line Par~meters

DL! =

()

‘2~f!n—

‘1

SK

?c=:’—c

Line Parameters.—..

;

;

c’ = ()‘227fZJ?,n —

‘1

()

‘2l.n —

‘1

,

,

+

/[ (222

c’ = 211E-1 ‘l+r2-D

cosh2r1r2

)

+cosh-’(r%i_D2)“

Note: For D-~0 , .O.ll-lfi,,j ()‘2

–-— ZLn —

‘1

b----w-+

Figure 6. Parallel - strip

~> /

Note

The reader is referred to reference [2]

for the expressions for the impedance.

The accompanying table of impedances is

excerpted from [21 by Baum, Giri &

Gonzalez.

Figure 7. Parallel plate line

8

.

for (w/L) <0.1

Zc = 377(;)

rb/a

0.1667

0.4068”

0.5

0.7

0.9

1.0

1.23526

1.6

2.0

L

2.5

3.0

6.99”

Zc $2

(free space)~

50.240

99.961

115.439

143.927

167.595 ●‘ 178.058

199.896

227.859

252.848

278.407

299.593

399.722

b

.

“T A = D/d

H’-d

A= (1 + 0.405 A-4)/(1 - 0.405 A-4)

alD B= (1 + 0.163 A-8)/(1 - 0.163 A-8)

c= (1 + 0.067 A-lZ)/(l - 0.067 A-12)

.+ ~ L

h ‘~{

z s [60 ~n (A) + 6.48 - 2.34 A - 0.48 B - 0.12C]E

~;:.:y~ g. Single wire in a square enclosure

od

+w/2 —+ w/21t

h

For d << h

d <<w

Zc = 60 En[4W tanh ~h/w

nd ‘1

Figure 9. Single wire in a trough

LJ9

igure 10. !ko Wires Enclosed by a

Circular Shield

Assumption:

&

‘i<< :1,2, (r~-Di) , i.e.,

the conductors are separated

sufficiently from each other

and the shield as well,

Line Parameters

:C’ )=+itj

where

1)1

J(D1D2)2 -F r: - 2D1D2 r: COS(612)

,. ‘,.. (DID*) 2 + D: - 2D2D; Cos(elz) )

,(J24

2DlD2 r: cos(612)r2_D2

-h‘1 (D1D2) + ‘s -~

]()

h d

(DlD2)2+D~ - 2D2D~ COS(612)r; r

1

..

* For KD, W, h,

T [(Zo= (276/*ut)lWIO

4h trmh (TD/2A)

)—

( )1–-glog,, ~,%(1 m

r ‘ ‘

D~z.

~

+ Lk

where~ ~2 z sinh (zZ)/2h)

++ .-isinh (zD/2h)

;— ‘“= cosh(rm+%) ‘m= Sil)ll(W?@2L).

Figure 11. Two wires enclosed by a rectangular shield

For J<<D, w,h,

2,= (276/d~2) log&2u/7cl(A’]2)]

where

A= cos&(TD/w) i- cosech’ (Z5+’w)

Figure 12. Two wires enclosed by a trough

9d 11

.

.

0

2b

2a

Zc()T

2W

Figure”13. Symmetric

‘?72lb.-.

a=

K(o L

= I((a’)

where ‘m=;

K(k’)

.=a

TEM cell [3]

.Y k’= m

[K”(i3) (l.- B2AI) + 2AIE’(S)l=

4[K(f3){l + AI(2 - 6Z)I - 2A1E(13)I

where

‘1 =

f3 = sin (ww/2a)

. . ()nb ()]mh

cosh T-Costl ~

-1sihn (rob/a)

Figure 14. Vertically offset K“(B) = K(BI)

= E(BI)TEM cell [5]

E’($)

,

III. Numerical Results for the Characteristic Impedance of

Symmetric and Vertically Off;et TEM Cells

The two cases of symmetric (figure 13) and vertically offset

(figure 14) are considered in this section for numerical results.

The expressions from references [3 and 51 are programmed on the

computer system at the BBC Research Center. The required complete

elliptic integrals and elliptic functions were evaluated with

subroutines developed on the basis of equations in [8].

The results of the symmetric case are presented in figures

15 Z;! L5 with accompanying Tables 1 and 2. For the case of

vertically off,set cell, vertically offsets of h/b = 0.1; 0.3,

0.5, 0.7 and 0.9 are presented in this paper in figures 17, 18,

19, 20 and 21. For ~hese four figures, the results are also

tabulated in accompanying Tables 3, 4, 5, 6 and 7.

13

10°

..

10 -

10 “

W/a = O*Q50910

0.30

0.50

0.70

o~qo0.95

2b

(b/a)

101

Figure 15. Characteristic impedance of the dominant TEII

mode in a symmetrical rectangular coaxial line

(tabulated in the next page)

*TABLE 1. Normalized characteristic impedance (Zc/I-l) of a symmetric

%cell (plotted in Figure 15)

\

w/a

b/a

0.10000.11220.12590.14130. 15850. 177au. 1995o.2z39

0..3ss:0.44670.50120.56230.63100.70790.79430.89131.00001.12201.25B91.41251.58491.77831.95532.23972.51192.81843.16233.54813.98114.46685.0L195.62346.30967.07957.94338.912510.0000

0.05

0.26660.28350.30060.3180(3.33550.35320.37100.38890.4C169ij.~~~o

:.4s31..4512C!.4792i3.49710.51470.53180.54810.56330.57700.58900.59920.60730.61350.61810.62110.62310.62430.62490.62520.62540.62540.62550.62550.62550.62550.62550.62550.62550.62550.6255.0.6255

0.10

0.17350.18770,20240.21770.23350.24970,26620.28310.30030.3176U.3351i3.3!i2r0.37040.30800.40530.42220.43830.45330.46690.47080.48880.49690.50310.50760.51060.51260.51370.51430.51470.51480.51490.51490.51490.514$30.51490.51490.51490.51490.51490.51490.5149

0.30

0.07260.08030.08850.09750.1o710.11750. 12850.1403il.15280. lb60L).L7SJa0.15610 .20890.22390.23900.25390.2683(3.~8170.29400.30470.3L380.32110.32660.33070.33340.33520.33630.3368o.33fl0.33730.33730.33730.33730.33730.33730.33730.33730.33730.33730.33730.3373

0.50

0.04590.05100.05670.0628

~ 0.06950.07690.08480.09340. 1028o.1~~70.1?33o. 13c5O. L462O. 15830.17040, 18240.1941o.~05(30.21500.2237(3,Q31O0.23690.24140.24470.24690.24830.24910.24960.24980.24990.25000.25000.2500Q.25000.25000.25000.25000.25000.25000.25000.2500

0.70

0.03360.03?40.04170.04630.05140.05710.06320.06990.0771cl.oa480.0930C!.1016IJ.L1050.11960.12860. 13750.14600.15390. 16090.16710.17220.L763o. 17940.18160.1s310.1841o.la470.18500, 18520.18520.18530.18530.18530.1853CL.18530. la53O. 18530.18530. 18530. 18530.1853

0.90

o.o~64

0.02340.03270.03630.04020.04450.04900.05390.05900,0643O.clGGa0.07540.08100.08650.09180.096EJ0.1(3150.10570.1o940.11250.11500.L1700.11E160.11960.12040. 1201J0.12110.12>:J0.12130.12140.12140.12!.40.12140.12160.12140.12140.12140.1-2140.12140.12140.1214

0.95

0.02480.02’/50.02U50.(]3370.03710.04CIBrl.lJ4n7O.o.luuo.05310.0s7.7O.nvl+0,(16!;30.U7CIG13.074H(-).07880.08250.08590.08CJ90.0916o.053ao .0555o.09ii9i).09fj0iJ.l19H70. I’19!J2[1.[39:)5().()9:1/IJ.[)9S81).IJ!J$J!)1).[1!J,,J9t).[1:1!)[91).1)’J>)2(}.09$.)91],lJ$J!lgII.i19i)9!).[)9!)9o. [Ju:)$l1).[):).)9o .os!)90.09!19[J.~J9:JiJ

od

15

.

.

()Zc 10

T

.

I id

2b 2W.

(w/a) “’

I I I ! 10.00 >0.20 o.~o 0.6iI 0.80 1.00

Ficjure 16. TEM impedance of a symmetric cell (tabulated below)

TABLE 2. Normalized impedance of a symmetric cell (plotted above)

\

(b/a)

(w/a)

(I.I31OO0.02000.03000.04000.05000.06000.07000.00000.09000.10000.11000.12000.13000.14000.15000.16000.1700

0.125 I0.250

o.55io ‘-’0.44130.37770.33330.29950.27250.25030.23150.21540.20150.18930.17840.16880.16010.15230. 14520.13B8O. 13290.12750.1225

0.6611CI.551O‘0.48670.44130.40620.37770.35390.33330.31540.29950.28530.27250.260!30.25030.24050.231!$0.22320.21540.20820.2015

o“.500

0.77020.65990.59550.54980-51440.48550.46110.44000.42150.40500.39000.37650.36400.35260.34190.33200.32270.31400.30580.2981

1:000

0.0553”0.74500.68050.63470.59920.57010.5456

. 0.52440.50560.48860.47370.45980.44710.43530.42430.41400.40440.39530.3867.o.37i35

2.000

0.88050.77020.70560.65980.S2430.59520.57070.54940.53060.51370.49850.404(50.47100.4599

. o.44i3a0.43040.42870.41!350.41070.4025

TI

o.BEll-/ L1.tiul?0.7714 0.77140.7060 0. /otie0.6610 rJ.61jlo0.6255 0.62550.59640.571H0.5505 .0,53170.5149(7.49970.485-/0.4729().4(;100, 4!JOCI0.4396o,429f.1

0.!5964o.5718

“ 0.55050.53170,5149

“(-).49’37il.413570.4729L).4f5111

16

f’-’● ●& 4? ..

,oco~~~oooooooo 0000000000000000000000000000 oooooooooooa@o 0000000000000000000-0000. . . . . . . . . . . . . . . . . . . . . . . . . ..... ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..”” ““”.” ““””wtoamamwmof-ommm mmmmwmm~<<+~++ +~<mmmmmmmmcnm mmuim”mmmmutIQm*~m~UN*O~n~ mWbWW-OOD+UJW& cJNPOmCD*OIUIbWN. OIDCC-JChUiAWNt-

;.Lt.hb$huuwf.IU@ tJU@Q~N~~NN~NN8$;:UI

GOOooooOOOOooO 0000000000000000000000000000 00000@ooGOOCJ(3(”I GoOCIOOOOOOOOOO 000000000WJ.alJWoWmQmmb (JtiWo@M*I?)O&UN I-

00o~OOo,OOOGOoO 0000000000000000000000000000 QOOOOOOOOOOLJ<,CB 00000000000000000000000.

—-- .... .. ....—

0000000000000000000000000000 00000000000(30(3 Oooooooooooc$oo 00000000000000000000000. . . . . . . . . . . . . . . . . . . . . ..0. . . . . . . . . . . .,,.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ● $.”” ..”.Ooocoooooooo 000000000000000000000000 000000000000 WVwl--w+-r-t-w-- ---$--------- ~--$-~--~~amv.(nmmmcnmmm mcnmmmmmmm-44.44 <+uti<+timmmmffim ~mwwwawwlfloooo OCIP.FI-NNNt.)G)(JtJ w~bb(nutmmtnwumm tfJ(J<W*t..IAUIm<mOOF N(.dbDUI@<DwOWMU (JbUm*UIIOOFJ(J &LI)m.J@o~WbM-JIDONJ.m +IDI-.(.)mtiGtC&UONW meOmNUIGA@UmU~ Whobwwum+tir.o<da W*N.I-U(D<WbLJNt-0 wmmmmmm@oP N&m apbmNmoutp4hb.m +mmutmaemom-om tmwwtiawt-umuta~u N

o.

mo0

Iv.

000

.b

.000

cc. .

Z.G o GC o 000. . .-r--U-J<

o 00. .F*

(DIDu-(Jc

Ooc,...-h-l(OL9P2..JCbwu.

o =:. .

!.JWr>c ?.@LCc(iCC.

oi2. .

=:. .mlf.1Wb10*Jq to

--NmulQ

wL1mo

N

k&

12-.4

,,

.-,

e.(-~L’t.L,lJG

OLGINPJN

— - —--- ..-— —.—. ..——-

nI

1Ov

10

10

. .

-1

[..

.

I (w/a)-2 1 t I I

0.00 t3.2cJ 0.40 0.-60 0.80 1,00

Figure 17. TEM impedance of a vertically offset cell (~abula~ed

below) (h/b) = 0.1

TABLE 3. Normalized impedance of a vertically offset cell

XEE().01000.02000.03000.04000.05000.06000.07000.00000.09000.10000.11oo0.12000.13000.1400Q. 15000,16000.170001 laoo0.19000.20000.21000.22000.23000.24000.2500

0.65930.54910.48470.43900.40370.37500.35080.32990.3115

‘ 0.29520.28050.26720.25510.24390.23360.22410.21520.20690, 19910.19100.1850o.~7a50.17240.16670.1612

0.77040.66010.59570.55000.51450.48560.461.20.440L0.42160.40500.39000.37640.36390.352-40.34170.33180.32250.3137

- 0.30550.29770.29030.20330.27670.27040.2643

0.667

0.81020.69990.63540.58970.55420.52520.50080.47960.46100.44430.42920.41550.40290.39130.38040.3703 .0.36000.35190.34350.33560.32800.32000.31400.30740.3012

1.0

0.85400.74360.67910.63330.59700.56000.54430.52300.50430.48750.47230.4585c3.445B0.43400.42300.41270.40310.39400.38540.37720.36940.36200.3549 .0.34020.3418

2.0

o.aao30.76990.70540’.65960.62400.59500.57040.54910.53030.51350.49830.48430.47150.45960.44860.43820.42J340,41920.41050.402-20,39430.38680.37960.37260.3660

4.0

LI.BHL)cJ.771ao.7c)iih0.6(51110.62550.5964CJ.571ti0.5:,050.5:51.!o,5i49o .45)9j0.48570.4729O.’lfil{lu ,4$JUUU.439tj0.429HfJ.42Lll)0.411Vo.4rJ3110,3951cJ.3tiRl0,38090.37400.3673

6.0

0,B817{J,771dLJ.706h1).6610il.u?-bs1).59!)41).571H{!.s!511:,11.5311IJ.’I1.ILJ[1..l9iJ71).4rfli7IJ.,17.’”JII.ml{.,lU,1..l!jl)()Il..1.’1,1!2Il..lLJ,IH1)..l2i1l\!I..ll I.Jlj,,i~l!(;11..!J.)!,/

18

.b

b“

*

● ✎✎LJ

.

TABLE 3 (continued)

Kb/a

w/a

0.2600 .O;27Q00.28000.29000.30000.3LO00.32000.33000.34000,35000.36000.37000.30000.39000.400(30.41000.42000,43000.44000.45000.4600o.~~~~0.45CZ0.4s020.50G00.5100o.5~cJ(3

0.53000.54000.55000.56000.5700c).58#cJ

0.59000.60000.61000.62000.63000.64000.65000.66000.67000.68000.69000.70000.71003.72003.73003.74003.7500).7600J.77003.760Q3.7900>.8000).81001.0200).83001.84001,s5001.6600).8700).88001.8900).9000).9100).9200).9300).9400).9500>.96001.9700).9800

I0.99001,0000

0.2

0.15610.16120.14660.14220.13800.13400.13020.12660.12320,11990.11680.11390.11100.10830.10570.10330.10090.09860.09650.09440.09250.09060.08800.08710.Q8540.08380.08230.08090.07950,07810.07690,07560.0745

6.07330.07220.07120.07020.06920.06030.06740.06650.06570.06490.06410.06330.06260.Q6LR0.06110.06050.05980.05910.05050.05790.05720.05660.05600.05540.05400.0S420,05350.05290.05230.05160.05090.05020.04950.04070.0479 ‘0.0469”0.04590.04470,0*330.04140.03860.0177

0..5

0.25850.25300.24770.24270.23780.23310.22860.22430.22010.21610.21220.2ti850.20480.20130.19790.19460.19140.18630.18530.18240.17950.17682.174L0.17150. lbH9O. 16640.16400.16160.15930.15700.15480.15270.1505

0. 14850.14640.14440.14240. 140sO. 13860.13670.13490. 13300.13120.12940.12770.12590.12420.12240.12070.11900.11730.11560.11380.11210.11040.10860.10690.10510.10330.10140.09950.09760.09560.09350.09140.06910.08680.08420.08150.0705o.a75~0.07120.06630,05940.0211

0.667.,

0.29520.28940.28390.27860.27340.26850.26370.25910.25470.25030.24620.24210.23820.23430.23060.22700.22350.22000.21670.21340.21020.2071Q.2Q4Lo.2ClLlo.19B20.19530.19250.18980.18710.18450.18190.17930. 176%

O.I?*o.17i9O. 16950.16710.16480.16240.16020.15790.15560.15340.15120.14900.14680.L446

. 0.14250.14030.13810.13600.13380.13160.12940.12720.%250O. 12280.12050.11820.11580.11340.11100.10850.10580.30310.10030.09740.09420.09080.08710.08300.(37820.07240.06420.0217

1.0

0.33540.32940.32360.31800.31260.30730.30220.29730.29250,28790.28340.27900.27470.27050.26640.26240.25050.25470.25100.24730.24370.2402o.~3f57

o .2333CJ.23000.22670.22350.22030.2L720.2141om~lll

0.20000.2051

0.20210.19920.19640.19350.19070.18790.18510.18240.17960.17690.17420.17150.16880.16610.16340.16080.15810.15540.J5270.15000.14730.14450.14170.13900.13610.13330.13030.12740.12430.12120.11800.11470.11120.10760.10380.09970.09530.09040.08480.07800.06850.0221

2.0

0.35960.35340.34740.34160.33610,33060.32540.32020.31530.31040.30570.3o110.29660.29220.28790.28360.27950.27540.2715Q-26760.26370.25990.25620,2525~.~49~0.24540.24190.23850.23510.2317‘0.22840.22510.2218

0.21860.21540.21220.2091(3.~Q590.20280.19980.19670.19370.19060. 16760. 18460.18160. 17860. 175(3.0.17260. 16950.16650.16350. 16050.L5740.15430.15120.14810. 14490.14170.13850.13520.13180.12030.12470..12100.11720.11320.10900.10450.09570,09430.08820.08090.07080.0224

4.0

0.360Y.0.35470.34870.34290.33730.33190.32660.32150.31650..31160.30690.30230.29760.29330.28900.28480.28060.27660.27260.26860.2648o.~6~o0.2573o.~535

0.25000.24640.24290.23940.23600.23260.22930.22600.2227

0.21950.21630.21310.2C1990.20680.2G360.20050.19750.1944o.1~140.18630.18530, 18220. 17920.17620.17320.1702o.lb710.16410.161UO. 15800. 15490.1517o.14dbo. 14540.14220.13890.13560.1322o,i~870.12510.12140.11750.1135cl.10930.10480.09990.09460,08840.08100.07090.0224

6.0

U.>tat)il0.35470.34870,3429(3.33730.3319o.3~~~

0.32150.3165cl.311bo.3(Jii$l0.3(12:1u .2378i).2$I:J3o.2ti9uo.2ki48(].~~”(j0.27b60.2726o.2b87U.264E!0.261UlJ.2573U.25.!C1. .u .?5CIUo.24ti4U.2429(.1.~3:J5[“1.23[;011‘vqv~

0.2293().226U~.z2z7

cl.2195o.~l(j3

. :::::;0.2C16S0.20360.2006c).1’3750. 19440.19140. LBti.3Il.Itj.).l0. lB:’Ud. 17!12

. l-).1/{>2[).l-/:j2l).17!}2[).11,/1Il.1041II.161L3II.Ibrlll(1.lr).19,1.1517IJ.14}!(>l).14’,411.1422l).luiliJIl.13>($l).12<20. 12)170.12:,1U.12140.11/5r).11.150. lrli):jc).10480.0999CJ.09460.0884O.OH1O0.0709o.t322j

19

.

10° . I I I Y i

10

10

-1 :()z c—.n

(w/a)

0.00 0.60. -.

Figure 18. TEM impedance of a vertically offset cel. .. . .

TABLE 4.

\

b/a

w/a0.01000.02000.03000.04000.05000.06000.07000.08000.09000.10000.11000.12000.1300”0.14000.15000.16000.17000.18000.1900 .0.20000.2100!3.22000.23000.24000.2500

below) (h/b) = 0.3

TEM impedance of a vertically offset

0.2

0.65180.54150.47710.43150.39620.36750.34330.32240.30410.28780.273L0.25980.24770.23660.22630.21680.20790.19960.19190.18460.17730.17140. 16!540.15970.1543

0.5

0.75650.64620.581813.!i36L0.5006o.471R0.44740:42630. 407a0.39120.37630.3627 .0.35-03o.33aa0,3202 .0.31830.30900.30030.29210.20440.277L0.27020.26360.25740.2514

0.667.

0.79!570,68540.62090.57520.5398o.s~oa0.48640.46520.44660.43000.4L500.40130.30870.37710.3663“0.35630.3469o.33ao0.32970.32180.31430.30720.30040.29390.2878

1.0

0.84220.73180.66730.62150.58600.55700.53250.5113

-0.49260.47580.46070.44690.43420.42240.41150.4013Q.39170.38260.37410.36600.35820.35090.34390.33720.3307

cell (p

2.0

0.87770.76740.7Ck2B0.65700.62150.59240.56790.54660.52780.5L090.4957o.4ala0.46900.45710.44610,4357‘0.42600.41680.40810,39980.39190.38440.37720.37020.3636

1.00

(tabu

otted

ated

hove)

4.0

0.8nlb0.771:50.7U680,66100.62540.59640.57180,55050.5317O.!ilJls)0.49960,48570.47290.46100..44990.43950.429t30.42060.411U0.60350:39560.3BBIo.38nD0.37390.3673

6.0

l],adt7i3.7714[1.YGt>u0.6610~.62.55,iI.59640.57180.55050.53170,51490.49970.48570.472s!0.46100.45000.43960.4?5s0.4206O.alluil.

w0.. i’t).:

4 TABLE 4 (continued)

w/a .

0 0.2457 0.2818 0.3245 0.3572 0.36080.1443 0.2403

d.3bti90.2762

~.~O~o 0.13970.3L86

0.2351.0.3510 0.3547 0.3547

0.2707 0.3129 0.3451 0.348-/0.2900 0.1354 0,23CIl

o.34ti70.2655 0.3073

0.3000 0.1312 0.22S30.3393 0.3429 (3.34?9

0.2605 0.3020 0.3338 0.3373 0.33730,3100 0, 1273 0.2207 0.2556 0.2969 0.3204 0.33190.3200 0.1236 0.2163

0.33)90.2510 0,2919 0.3231 0.3266 CI.321i6

0.3300 0.1200 0.2121 0.2465 0.2870 0.3180 0.32150.3400 0.1166 0.2080 0.2421 0.2823 0.3130

(J.32150..3165 0.3165

0.3500 0.1134 0.2041 0.2379 0.2778 0.3082 0.3116 0.31160.3600 0.1103 0.2003 0.2338 0.2733 0.3035 0.3069 cl.3uti90.3700 0.1074 0.1966 0.2299 0.2690 0.2989 0.30220.3800 0.1046 0.1931

0.30230.2260 0.2648 0.2944 0.2977 0.2978

0.3900 0.1020 0.1897 0.2223 0.2608 0.2900 0.2933 0.29330.4000 0.0994 0.1864 0.2187 (3,2568 Q.~~58 0.28s+0 ~.2~9(30.4100 0.0970 0.1832 0.2152 0.2529 0.2816 0.28470.4200 0.0947 0.1801

0.28480.2118 0.249L 0.2774 0.2806

0.4300 0.0925 0.17720.2806

0.2085 0.2454 0.2734 0.2765 0.27660.4400 0.0904 0, 1743 0.2053 0.2417 0.2695 0.272!5 0.27260.4500 0.0884 0.1714 0.2021 0.2382 0.2656 0.26e6 o0.4600 0.0865 0, 1687

.2b870.1991 0.2347 0.2618 0.2648 u ._’ti.l.5

0.4700 “ 0.0047 0.1661 0.1961 0.2313 0.25%0 o,~610 o.~ti~~0.4800 0.0829 0.1635 0.1932 0.2200 0.2543 0.25720.4500

0.25730.0813 0:1610 0.1903

0.50000.224? 0.2507 0.2536

0.0797u .?S36

0..1586 0.18760.51G2

0.2215 0.2471 o.~50,3 !“10.0781, 0. 1562

.25:~rlo. 1040 0.21R3 0.243[S o. 2.l(in

0.52G21).,-,<,,4

:,0767 0. 1539 0. 1822 o,~i52 “ 0.2<01 ~,~,~~:j !;0.53G3

2.1::1G.0753 5.1517 cl.1796 0.2121 c).~367 0.2J9q (J..?~>lh

0.5.4GCJ 0.0739 0. 1495 0.L77CI 0.2091 0.2333 n.23Ci(J ?~,jol).-0.5500 0.0727 0.1473 0. 1745 0.2062 0.2300 0. 2:j2h (),~~~~0.5600 0.0714 0.1453 0.1721 0.2032 0.2267 0.22930.5700

u.22:~*0.0703 O. 1432 0.1697 0.2003 0.2234 L1.22btJ

0.5800 0.0692 0.1412L).22U0

O. 1673 0.1975 0.2202 0.222’/ [).22270.5900. 0.0681 0.1393 0.1650 0.1947 0.2170 D.2194 ().21:J5

0.6000 0.0670 0.1374 0.1627 0.19190.6100

0.2130 o.~J/52 I).Zl,i30.0661 0. 13s5 0.1604 0.1892 0.2107 iJ.213u ~J.2J.~1

0,6200 . 0.06S.1 0.1337 0. 15820.6300

0.1865 0.2076 o.2(19b 0.20990.0642 0.1319 0.1560 0.1838 0.2045 o.~067 I.]2f168

0.6400 0.0633 0.1301 0.15380.6500

0.1811 0.2014 0,2113Ci ,!.2{13{>0.0625 0.1204 0.1517 0.1765 0.1983 ~.~(,o:j !1.21Jrl(,

0.6600 0.0617 0. 1266 0. 1496 0,1758 0, 1953 0 .197.10.6700 0.0609 0.1249 0. 1475 Cr.1732

Il.1:)/50.1923 0.1944

0.6800 0.0601 0.1233 0.1454 0.1707,).1:}.!4

0.6900 0.0594 0.12160. ln93 0.191:!

0.1434().l~Jld

o.16el 0. 18630.7000 “ 0.0587

0. ItlR:f0.1200

Il.ltlt!~o. 1413 0.1655 0. 1&33 0. ltjs:i

0.7100 0,0580 0.1184~1.1U!)3

0.1393 0.1630 0. 1803 0.11122 [).16x0.7200 0.0.573 0.1168 0.13730.7300 0.0567

0. 1604 0.1774 0.1/920.1152

u. 17!120.1353

0.74000.1579 0.1744 0.1762

0.0561 0.1136cJ.17(j?

0.1333 0,1553 0. 1714” 0.17320.7500 0.0554 0.1121

0.17320.1313 0.1520 0.1684 0.1701

0.7600 0.0548 0.11050.17(-)?

O. 1293 0.1503 0. 1655 0.16710.7700 0.0543 0.1089

0.16710. L273 0.1477 0. L625 0.1641

0.78000.1641

0.0537 0.1074 0.1253 0.1451 0.1595 0.1610 0 .16100.7900 0.0531 0-1058 0.1233 0.1426 0. 1564 0.15790.8000 0.0526 0. 1042

0.15800.1212 0.1400 0. 1534 0.1548

0.8100 0.0520 0.1026 0.1192 0.13730. L5d9

0.02000. 1503

0.05150.1517

0.1010 0.1171 0.13470.1517

0.03000.1472 0.1486

0.0509 0.0994 0.11!50L1.14tib

O. 13200.0400

0.1441 0.14540.0504 0.0977 0.1129

0.14540.1293 0. 1409 0.1422

0.6500 0.0490 0.0961 0.11070.142:,

0.1266 0. L377 0.1389 u. l.tB!j0.8600 0.0493 0.0943 (3.1005 0.1237 0.1344 0.13560.8700 0.0487 0.0926

[).lU:>OO. 1062 0.1209 0.1311 0.1321 0.1322

0.8000 0.0481 0.0900 0.1039 0.1179 0, 127(50.8900 0.0475

0.12870.0889 0.1015 0.1149

rl.12H70.1241 0.1251

0.9000 0.0469 0.0870o.~~~]

0.0990 0.1117 0. 1204 0.12140.9100 0.0462

().12140.0649 0.0964 0.1084 0.1167 0.1175

0.9200 “ 0.0456 0.0827G.ll?s

0.0936 0.1050 0.1127 0.11350.9300 0.0448 0.0804

0.11350.0907 0.1013 0.1085 0.1093 cl.lu93

0.9400 0.0440 0.0779 0.0076 0.0974 O.1O4L 0.1048 cl.lU’JB0.9500 0.0431 0.07S2 . 0.0841 0.0932 0.0993 0.09990.9600 0.0420 0.0721

i~.09990.0803 0.0805 0.0940 0.0945

0.9700 0.0407 0.06850.0946

0.0758 0.0831 0.0879 0,0884 o.L)tiB40.9800 0.0391 0.0639 0.07,03 0.0765 0.0806 O.CIEIIIJ0.9900 0.0366 0.0574

[J.U81O0.0625 0.0674 0.0706 0.0709 0.07(1%

1.0000 0.0173 0.0208 0.021S 0.0220 0,0223 0,0224 0.0224

21

10°

“()Zc

ii-I,

I1

, 4

10

10

*I

ml+,

“!0, I

I

0.20 0.40 0.60 0.80 1.00

Figure 19. TEM impedance of a vertically offset cell (tabulated ,

below) {h/b) - 0.50

TEM impedance of a vertically offset cell .(plotted above)TABLE 5.

\

b/a

wlaO.Q1OO0.02000.0300

0’.5 0.667 1.0 2.0 4.0 6.00.2

0.s1370.7034

0.63660.52640.4620

0.76420.65390.5894

0.06790.75760.69310.64730.61170.58270.55810.!5.369o.51810.50130.4B610.47220.45940.44760.43660.42620.41650.40740.39870.39U50.38260.37520.36800,36110.35460.34820,34210.33620.33050.32’50

O.Bell0.77000.70620.66040.62490.59580.57120.54990.53110.51430.49910.48520,47230.46050.44940.43900.42930.42000.41130.40300.3’351o.3Ei7Gc1.3t3Q30.37340.36680, 315030.354?o.34f120.34240.33tiJi

lJ.BEJ170,7713II./tJb8O.bblu0.62540 .!5L)f>4o,571tiU.5Si)>(J.531-O.51AU.49LIfl,4Ei5.ll,f172~1).4Ellu:0,4499 ILI.439610. f12!J840.42U6$0.4119!0.4035[CJ.J9S7+

0.72730.61700.55250.5069i3.4715!3.44260.41830.39730.37880.36230.34750.33400.32160.31030.29970, 28990.28080.27220.26410.25650.24940.24260.23620,.23010.22430.21BB0.21350.20850.2037o.i991

0.63090.59320.55770.52%70.50430.48310.46440.44700.43270,41900.40640.3947o.3a390.37370.36420.35530.3469o.33a90.33130.32410.31730.31070.30440,29840.29260.2871o.2aL70.2766

0.04000.05000.06000.07000.08000.09000.10000.11(300.1200.0.13000.1400-0.15000.16000.1700

0.4164. 0..38110.35240.32B20.3074o.2a910.27280.25820.24490.2329o.221a0,21150.20210.1933

0.54370.50830.47940.45500.43390.41540.39000:30390.37030.35780.34630.33570.32570.31640.30770.29~0.291.0.20440.2774o.270a0.26450.25850. 252a0,24730.24210.23700.2322

.] o.la51

o0,

000000

19002000210022002300240025.00

0.17740.170?O. 163S0.15710.15110.14550. 14t320.13520.13040.12590.12160.L176

2600IiJ.2700o.2aob0.29000.3000

22

. .

h

h’/a. .

0.3100 cl.1137 0.1947 0.2276 0.2716 0.3197 o.33id lJ.3.3190.3200 0.1101 0.1905 0.2231 0.2660 0.3145 0.3261 u.32660.3300 0.1066 0.1864 0,2188 0.2622 0.3095 0.3210 “1).32150.3400 0.1034 0.1825 0.2147 0.2577 0.3046 o.3tFill o.31G50.3500 0.1002 Q. 170a 0.2107 0.2534 0. 299ti rJ.3111 11.31160.3600 0.0973 0.17!52 0.2069 0.2492 0,2952 o.30ti4 IJ.306Y0.3700 0.0944 . (1.171a 0.2032 0.2451 0.2907 0.3018 ().30230+3800 0.0910 0.1685 0. L996 0.2411 o.~863 0.2973 0.2s7”10.3900 0.0892 0.1653 0.1961 0.2372 0.2820 0.2928 ,,.~9330.4000 0.0068 0.1622 0. 192s 0.2335 o.277e o. 2(+0s l).2e9cJ0.4100 0.0845 0. L593 0.1095 0.2299 0.2737 0.2t44:+ lJ.2fl.\~0.4200 0.0823 0.1564 0.1864 0.2263 0.2697 o.2~$J:) ~).2806Q.4300 0.0802 0.1536 0.1833 0.2228 0.2657 0.2161 0.27650.4400 0.0782 0.L510 0.1004 0.2195 0,2619 0.272i ().27260.4500 0.0763 ‘. O. 1484 0.1775 0.2162 0,25B1 o,~(,fj~ II.268b0.4600 0.0745 0.1459 0.1747 0.2129 “ 0.2543 0.2ii41i 11.2b4&0.4700 0.0727 0.1435 0.1720 0.2098 0.2507 0.2blIt> IJ.26100.4800 0.0711 0.1412 0.1693 0.2067 0.2471 0. 256t3 IL.25730.4900 0.0695 0.1389 0.1668 0.2037 0.2436 0.2532 ().25360.5000 . 0.0680 0. L368 0.1643 0.2008 0.2401 0.2490 u ‘5tJL10.5100 0.0666 0.1347 0.1619 0.1979 0.2367 . 0.2460 (3:;4~40.5200 . 0.0653 0. 1326 0.1595 0.1950 0.2333 o.~~~~ ~.~4?9

(3.5300 0.0640 . 0.1306 0.1572 0.1923 0.2300 0.2390 Q.~394

0.5400 0.0628 0..1287 0.1549 0.1895 0.2267 0.235($ ().23600.5530 0.0616 0.1268.569S

O. 1527 0.1669 o.~235 0.2322 ~.~3~6

o 0.0605 0.1250 0.1506 0.1842 0.2203 0.2289 [J.229.3o,=y;~ 0.0594 0.12320.53:3

0. 1484 0.1816 0.2171 ~e2~5& u.2?r>o3.0596 0.1215 0.1464 0.1791 0.2140

0.59C0 0.0574

(’JT7-)Y---- 0. 22270.1198 0.1444 0.1766 ~.~~Qg cJ.2isll LJ.?l:lb

0.60G0 0.0565 0.1181 0.14240.6100

0.1741 o.207a 0.21590.0556 0.1165 0.1404 0.1717

0.2162o.~048 0.2127 ~.~>J:

0.6200 0.0548 0.1150 0. 13s5 O. 1693 0.2018 0.2096 o.~[)g~

0.6300 0.0540 0.1134 0.1366 0.1669 0.1988 0.2064 (3.2~~B

0.6400 0.0532 0.1L19 0.1348 0.1645 0.1959 0.2033 o.z~36

0.6500 0.0525 0.1105 0.1330 0.1622 0.1929 0.2002 ~.~~~s0.6600 0.0510 0.1090 0.1312. 0. L599 0.1900 0.19720.6700 0:0511 0.1076

0.19750.1294

0.60000.1576

0.05040.1871 0.1941

0.10620. 1944

0.1277 . 0.1553 0.1842 0.1910 0.19130.6900 0.0498 0.1049 0.1260 0.1531 0.1813 (3.18800.7000 0.0492

0.18830.1035 0.1242 ‘ 0.1508 0.1785

O.?loo 0.0406 0.10220. laso I-J.1853

0.1226 0.1486 (3.1756 0.1020 0. 18220.7200 0.0481 0..1009 . 0.1209 0.1464 0.1728 ~ 0.1790 0.17920.7300 0.0476 0.0996 0.L192 0.1442 0.1699 0.1759 0.17620.?400 0.0470 0.0983 0.1175 0.1420 0.1671 0.1729 0.17320.7500 0.0465 0.0970 0.1159 0.1398 0.1642 0.16990.7600 0.0460 0.0958 0.1142 0. 1376

o.17ill0.1613 0. 1669 0.1671

0.7700 0.0456 0.0945 0.1126 0.1354 . 0.1585 0.1638 0.1641o.7Eiao 0.0451 0.0933 0.1109 0.1331 0.1556 0.16080.7900 0.0447

C1.161O0.0920 0.1093 0.1309 0.1527 0. 1577 0.1579

0.8000 0.0442 0.Q907 0.1076 0.1287 0.1498 0.1546 (i.15.$90.8100 0.0438 0.0895 0.1060 0.1264 0.1468 0.1515 0.15170.8200 0.0434 0.0882 0.1043 0.1241 0.1439 0.141.14 ().14&Jti0.8300 0.0429 0.0869 . 0.1025 0.1218 0.1409 0.1452 0. 14540.8400 0.0425 0.01356 0.1008 0.1194 0. 137a 0.1420 0.14220.8500 0.0421 o,oa43 0.09 0.1170 0.1347 0.1307 Q. 13890.8600 0.0417 0.0829 o.09*- 0.1146 0.1316 0.1354 0.13560.0700 0.0412 0.0815 0.0954 0.1121 0. L283 O. 1320 0. 1322o.8aoo 0.0400 0.0001 0.0935 0.1095 0.1250 0.1285 0.12870.8900 0.0403 o.07a6 0.0915 0.1069 0.1216 0.1249 0.12510.9000 0.0399 0.0770 0.0894 0.1041 0.1181 0.12120.9100 0.0394 0.0754 0.0073

0.1214O.1OI.2 . 0.1145 0.1174 0.1175

0.9200 0.0389 0.0737 o.oa50 0.0982 0.)107 0.1134 .0.11350.9300 o.03a3 0.0718 o.oa26 0.0950 0.1066 0.1092 0.IG930.9400 0.0377 0.0698 0.0799 0.0916 0.1023 0.,1047 cl.1U4S0.9500 0.0370 0.0676 0.0770 o.oa78 0.0977 0.0998 0.CJ9!J90.9600 0.0362 0.0651 o.073a 0.0836 . 0.0925 0.0945 0.09453.9700 0.0353 0.0621 0.07003.9000

o.078a o.oa67 o.oa03 o.lJsil-10.0340 0.0583 0.0653 0.0729 0.0795 0.0810 LJ.d81!J

3,9900 0.0321 0.0529 0.0585 0.0646 0.0697 0.0708 0. (1’/()!31.0000 . 0.0162- 0.0202 0.0210 0.0217 0.0223 0.0224

1

0.0224

23.

.—. - ---- . ..- -.. . . . . .

,

.-

10°

.

{(w/a)

1.0.20. -

I0.40 0.60,.. 0.s0 I-nfi

Figure 20. TEM ~mpedance of a vertfciil!y offset cell (ta-bii~ted’below) (h/b) -= 0.7 0 i

TAGLC 6. TEM jm~edance of a ver~ica...

b]a

‘\wia

O.o1oo

0.02000.03000.04000.05000.06000.07000.08000.09000.1000O.lioo0.12000.1300i).14000. 15G00.1600

0.19000.20000.21000.22000,23000;24000.25000.26000.27!30o. 200(30.29000.3000

0.2

0.61360.5(3340.43900.39340.35820.32!350.30530.28450.26630.25000.23550.22230.2103ct.19930.18910.17970.17100.16290. 15!53o.14a20.14160.13540.12950.1240o.l~aao.11390.10920.10490. Loo?0.0960

0.5

0.67980.56950.50510.45950.424L0.3954.0.37110.3!502o.331a0.31540.30070.2073.0.27S10,26390, 2!5350.24390,23490.22850.21870.21130.20440.19780.19160.10500. ~ao2o. 17500.17000,16520.16070.1564

24

0.667 .

0.7100 -0.59970.53530.48960.45420.42540.40110.30010.36170.34520.33040.31700..30470.29340.28290.27320,26410.25560.24760.24010.23300.22630.2200o.21ao0.2002o.202a0.19770.19270. lBao0.1335

Iy Offse

1.0

-0.64680.58240.53670.!50120.47240.4.4800.42690.40840.39180.37690.36330.35090.33940.32SBo.31a90.30960.30090.29270.28500.27770.27080.2642Q.25790.2520Q.2463o.240a0.23560.2306~,2259

cell (plotted abo\

2.0

U.B3340.7231o.65a5o.612a0.57730.54830.523t30.50260.40390.46720,45200.43030.42560.41390.40290.3920t3.3B320.37420.36570.3576o.34~90.34260.33560.32900.32260.3165O.31OG0.30490:2994o.294~

4.0

0.E!7.44

0.76400.69950.65370.6182”0.58910.56450.54330.52450.507?0.49240.47850.46570.45390.442ti0.43250-42270.41360,40490.396b0.38870.38120.3740o.3t)710.3GU!=I0.3541o.34k!ll0.3421(J.33t3:j0, 33QB

LI.77L130.70570.b5990.6244U.5953o.57cJ7U.54940.531)Ul),51J130..I9H6(1..is.ll)(1..17IB0.45.99[1..1489().43115

[1 . .;267

11.4195

iJ.411Ja

0.4025IJ.J9.J151)..3t3/l,].~y<jgu. i“/,!9[’l.J61;3l),,j!~’iIl.!Il..& I—1] . .+ ‘)

l), . .

-..

●✎L.)

TABLE

T

b/a

w/a0.31000.32(300.33000.34000.3!5000.36000.37000.30000.39000.40000. 41000.42000.43000.440!30.45000.46000.47000.4800Q. 49000.5000(3.51000.52000.!530C0.54Gt30.550Q

c).~;.;:,

d . . -.5:4Go.6ci G6(3. i31Gf20.62GL30.63000.64000.65000.66000.67000.68000.69000.7000o.71ao0.72000.73000.74000.7500 .0.76000.770(30.78000.79000.00000.81000.82000.83000.04000.85000.86000.87000.08000.09000.90000.91000.92000.93000.94000.95000.96000.97000.9,0000.99001.0000

(continu

O*2

0.09310.08960,08630.06310,00020.07730.07470.07210.06970.06750.065.30.06330.06130.05950.05770.05610.05450.05300.0.5160.05030.04900.04780.04670.04560.04460.0437G.0428G.c1419G. O-J1l0.0403 .0.03960.03%90.03530.03760.03710.03650.0360.0.03550.03500.03460.03410.03370,0333.0.0330CJ.03260; 03230.03200.03170.03140.03110.03000.03050.03030.03000.02970.02950.02920.02900.02870.02850.02820.02790.02760.0273o.o~690.02650.02600.02530.02420.0139

>d)

o.*5

0.1523

0:14840, 14470,14110. 13770.13450.13130.12840.12550, 12280.12020.11770.11530.11300.11080.10860.10660.10470.10260.10100.09920.09760.09600.09440.09290 .09150.09010.0E18BG. 08750.08620.08500.08390.08280.00170.0S060.07960.07860.07760.07670.07570.07480.07390.07310.07220.07140.07060.06970.06890.06810.06730.06650.06580.06500.06410.06330.06250.06170.06080.05990.05890.05790.05690.05580.05450.05310.05160.04970.04720.04360.0187

0.667

0.17930.17520.17120:16750.16390.16040.15710.15390.15080.14790. 14510.14230.13970.13720.13470.13240.13010.12790.12580.12380.12180.11990..11810.1163 .0.11450.1129o.l~lzo. 10s70.10810.10660.10520.10380.10240.10100.090.096.0.09720.09600.09480.09360.09240.0913000

.000000.

090108000879086808570846083508250814

0.08030.07920.07810.07690.07580.07460.07330.07210.07080.06940.06790.06630.06460.06270.06050.05790.05460.04980.0197

25

1.0

0.22130; 21690.21260.20850.20460.20080.19720.19360.19020.18690.18370.18060.17760.17470. L719O. 16920.16650.16400.16150.15900.15670.15440.15210.14990.14780.1457c. 14360.14160.13970.137$0.13590.13410.13220.13050.12870.12700.12530.12360.12200.12030.11870,11710.11550.11390.11240.11080..10920.10760.10610.10450.10290.10130.09960.09800.09630.09460.09280.0910o.oe9~o.oe72o.oe510.00290.0806o.07e~0.07s30.07220.06860,06400.05750.0208

2.0

0.28910,28410.27930.27470.27020, 2659.0.26160.25750.25350.24960.24580,24200.23840.23490.23140.22800.22470.22140.21820.21510.2120.0.20900.20600.20310.20020.19740. 1946o.191d0.16910.18640. le38o.le12O. 17860. 17600.17350.17090.16840.16600.16350.16100.15860.15610 .15370.1513o.14B8O. 14640,14390.14150.13900.13650.13400.13150.12890.12630.1237 .0.1210o.lle20.11540.11240.10940.10630.10300.09940.09s70.09160.0871o.oei80.07550.06660.0219

4.0

0.325*10.32020.31510.31020.30540.30070.29610.29170.28730.28300.2789o.274e0.2-/080,26690.26300.25920,25550,25190,24830.24470.24120.23780.23440.2311o.2~7H(3.~~4,~.~~~~o.~~~~0.21490.211J3o.2oe70.20560.20250. 19950. 19b50.19350.19050.18760.1846o.~e~70.17870 ,17580.17290.16990.16700.16410.1611(3.1581o. 15520.15220.14910.14610.14300. 139!30.13670.13340.13010.12670.12330.11970.11590.11200.1 L17LJo. 103513.09~70.09350.08750.08020.0?030.0223

6.0

().331)0o.325b

0.32050.31550.31(170.30600.30130. 2g6eo.z9240.2881o. 2&390.27970 .2757~.~7J7o.2blao. ~~~o0.26(i20.25650.25280.24920.24560.74210,23870.2353CJ.23J9{),22a GU. 22>.?u .,’~2ij---0 .:>ILIH“.~~’Jf,1).21:~4!0.209> ;().20()1 \o.~~J,) ;L).199$J1

0.1969 ~o.193fj I0.1908 Io.le78o.~e470.1 EJ17[).17F17LI.1757iJ.1/27(J.IU..J7il.]0,>/u. 11>.JO[1.1(,,1(.,LJ.15/~.Il.15-15[1.lf>la1). 141J2Il.14,,(1().1.11}{II.IJti(>i}.1:)’)2~1.l:\l{J1). 12(14.1.IJ.lB,J.1..1111.11.’<[1.I1 J.i!).II J<I1

Il. 1010”11.11 !l. )/

IJ. IJ9 .14

lJ. l}ti[i~

(J. {JH(J:)

[). U?(JLIU. fJ2/4 I

. .. -.

10°

. ‘lo

Figure

-1

-, I I

0.00 0.20 0.40 O*6O 0.80 1.00

21. TEM impedance of a vertically offset cell (tabulated

below) (h/b) = ~.?

TARIC 7 TFM imDedance of a vertically offset cell (plotted abo>e)I nULL r . .-., ,-..r–

~:ja0.0100 0.58230.0200 0.4721

n.7kIll0.4991 . 0.s131 0.5359

t).:i.l1410.6016 0.6BOH

0.0300 0.4CJ77 0.4347lJ./-Jll

0.4488 0.4745 0.5372 0.6163 1’).t)!>,i~dI0.0400 0.3622 0.3892 0.4032 0.4289 0.49150.0500 0.3270

o.51Llti ,J.,,l”FI0.3539 0.3679 0.3936 . 0.4562

0.0600 0.29830.5352 l).-,{~.j

0.3252 0.3392 0.3649 0.4274 o.50 Li20.0700 0.2742

()..)4[1s,0.3011 0.3150 0.3407 0.4030 0.4818

0.0000 0.2!535U.:12lt!

0.2803 0.2942 0.3198 0.38210.0900 0.2353

o,4blI/ II.!jCI.’l>0.2620 0.2759 0.3015 0.3636

0.1000 0.21910.442LJ lJ..1H1:)

0.245% . 0.2597 0,2052 0.3472 0.42540.1100 0.2047

lJ.01,/<! 0.2313 0.2451

0.12000.2705 0.3324

0.19160.4104 Il..!!><1

0.2181 “ 0.2319 0.25730.1300

0.31890.1796

CJ,39~7 11.431130.2061 0.2199 0,2451 0.3066 0.3842

0. 140Cl 0.1687 0.1951 0.20%8 0.2340(J.42!;G

0.2953 0,37260.1500 0.1587

IJ.41J$JO. 1850 0.1906 0.2237 0.2848 0.3618

0.1600 0.14940.40,10

0.1756 0.1892 0,2142 0.2750o.170Q

0.351!30.1408

0.39LBO .L669 ‘ 0.1805

0.18000.2054

0.13280.2659 0.3424

0.1588 0.1723 0.19710.3832

0.1900 0.12540.2574 0.3336

0.1512 0.1647 0.18940.3742

0.2000 0.11640.2494 0.3252

0.1442 0.1576 0.1021o.3b37

0.2100 0.1J190.2419

0.1376 0.15090.3L74

0.17530,35.7(>

0.22000.2348

0. 105B0.3099 0.3499

0.1313 0.1446 0.1689 0.22HL 0.30280.2300 0.1001

0.J4°O. 1255 0.13s7 Q. 1629 o,221fl 0.2961

0.2400 0.0947 @1).3”

0.1200 0.1331 0..1572 0.21580.25D0 0,0897

0.28!26 LI..JL0.1148 . 0.1279 0.1518 0.2100 0.2835

0.2600 0.08500.3

0.1099 0.1229 0.1467 0.2046 0.27760.2700 o.oao5

u,;?0.1053 ‘ 0.1182 : 0.1419

0, 28000. 1994 0.27LLI

0.0763 0,1010C1.:3)i)b

0.113B 0, 1373 0.19450.290CI 0.0723

0,26650. 09i39 O. 1096 0.1330

0.3U4CIo. l139e il.26L3

0.3000 4 0.0686 0.0930 A 0.1056 0: L289(J,2994

o. ln531

0.25G3 0.2CIA2

.

26,.. . . . . ..>_-, . . -------- o—.- ..... . .. ..------ ...

.. . .

! TfiRIF 7 [rnnt;nltod]

o

Inwbt. I \wv**-v*.uti-j

ti/a

0.3100 0.0651 0.0093 ‘ 0.1019 0.1250 0.1810 0.25150.3200 0.0618

0.28910.0058 0.0983 0.1212 0, 1769 0.2469 o.2b.Jl

0.3300 0.0586 0.00250.3400

0.09490.0557

0.1177 0.17290.0794 0.0917

0.2.$24 0.27940. 1143 0 .1692 0.238J 0.274”?

0.3!500 0.0529 0.0765 0.0887 0.1111 0.1655 ,0.2339 0.27020.3600 0.0503 0.07370.3700 0.0478

0.0850 0.10s1 0.1621 0.2299 0.26590.0710 - o.oa3L 0.1052 0. L587 0.2260 0.261b

0.3800 0.04!54 0.0605 0.00050.3900 0.0432

0.1024 0.15’55 0.2222 0.25750.0661 0.0700 0.0998 0.1525

0,4000 0.04120.21E15 0.2535

0.0639 0.0?57 0.0973 0.1495 0.2149 0.~496o. 4100 “ 0.0392 0.0618 0.0734 0.0949 0.1467 0 ,2115 o. 245a0.4200 0.0373 0.0s97 o.0713 0.0926 0.1439”0.4300 0.0356

0.2081 D. 24200.0578 0.0693 0.0904 0. 1413 0.2048 0

0.4400.~~~~

0.0340 0.0S60 0.0674 0.0FIR3 0.1387 OO~(Jl~ u .~~qgD.4500 0.0324 0.0543 0.06 0.0863 0.1363 .0.4600 0.0310 0.0527

il.1965 u. 23140’.06-- 0.0844 0. 1339 0.1955 0.22FJU

9.4700 0.0296 0.0511 0.0623 0.0826 0.1316 0.14263.4000 0.0283 0.0497 0.0607 0.0009

0.22470.1294 0.1897 11.2214

D. 4900 0.0271 0.0483 0.0592 0.0792 0.1273 0.1869 cl.21823.5000. 0.0260 0.0470 0.0578 0.0777 0.1252 0.1842 0.21519.5100 0.0250 0.0458 0.056S 0.0762 0.1233 0.1815 0.21203.5200 0.0240 0.0446 0.0553 0.0747 0.1213 0.1789 o.~oQQ

3.5300 0.0230 0.0435 0.0541 0.0733 0.1195 0.1763 0.2(3603.5400 0.0222 0.042S 0.0S29 0.0720 0. 1177 0. L-?38 , 0.20313.5500 0.0213 0.0415 0.0519 0.0708 0.1159 0 .1713 o.~~~~

3.5609’ 0.0206 0.0405 0.0500 0.0696 0.1142 0. 1689~.~;~.: ~,o~99 ?3.0397 0.0499 0.0684

0.197:0.1125 0. 1606 u. l!$.16.

2.55:5 0.0192 o.03a8 0.0489 0.0673 0.1110 0.1643 c) ‘,,,!42.53L.,J o.ola6 0.0381. . 0.0481 0.0662 0.1094 cl.lti21”1 Il.1s.’):3.6000 0.0180 0.0373 0.0472 0.0652 0.1079 0 .1591 [1.181,43.6100 0.0175 0.0366 0.0464 0.0643 0.1065 0.1575 ().lH {B7.62C0 0.0170 0.0359 0.0457 0.0633 0.1050 0.15533.6303

L1.luli’0.0165 0.03s3 0.0450 0.0624 0.1036

3.64300. 1532 I’I.I?ilC>

0.0161 0.0347 0.0443 . 0.0616 0.1023 0.1511 1),170(-19.6500 0.0156 0.0342 0.0436 0.0607 0.1009 0. L49CI {).17153.6600. 0.0153 0.0336 0.0430 0.06003.6700

0.0996 0.1469 (1.17100.0149 0.0331 0.0424 0.0592 0.0984 0.1449

3.6800 0.0146il.lt,’i4

0.0327 0.0419 0.0585 0.0971 0. 1429 II,Ifi!;[lD:6900 0.0143 0.C1322 0.0413 0.0577 0.0959 0.14090.7000

l).1(;350.0140 0.0318 0.0400 0.0571 0.0947 0.1309 ,1.Lt;ll-)

r).71t30 0.0130 0.0314 0.0403 0.0564 0.0935 0. L369D. 7200 0.0135

IJ.IS-6.0.0310 0.0399 0.0557 0.0923 0.1349 [J.L,b,,l

9.7300 0.0133 0.0307 0.0394 0.0551 0.0912 0.13309.7400 0.013L 0.0303

0.12$7- 0.0390 0.0545 0 .0901 0.1310 L).151.3

0.7500 . 0.0129 0.0300 o.03a6 0.0539 0.0889 0.1291 l).l-ltib0.7600 0.0128 0.0297 0.0382 0.0s33 0.08780.7700

0.1271 0. 14t)40.0126 0.0294 0.0378 0.0528 0.0867 0.12s2 ().1439

0.7800 . 0.0125 0.0291 0.0374 0.0522 0.0856 0.1232 0. J4L5D. 7900 0.0123 0.0288 0.0371 0.0!517 0.0845 0.1212 0. 12909.8000 0.0122 o.02a6 0.0367 0. 0511 0.0034 0.11933. aloo

o. 13LS50.0121 0.0283 0.0364 0.0506 0.0823 0.1173

0.8200 0.0120 0.02810.1340

0.0361 0.0501 0.0812 0.1153 0.1315o.a300 0.0119 0.0278 0.0357 0.0496 0.0801 0.1132D.a400 o.olla 0.0276

0. 12890.0354 0.0490 o.07a9 0.1112

o.a500 0.0117 0.02740.1263

0.0351 o.04a5 0.0770 0.1091D.a600

o. 12370.0117 0.0272 0.0348 o.04ao 0.0766 0.1069 0.1210

0.8700 0.0116 0.0269 0.0344o.a800

0.0474 0.0754 0.1o47 o.lld20.0115 0.0267 0.0341 0.0469 0.0741

0.0900 0.01140.1024 n. 1154

0.0265 0.0338 0.0463 o.072a0.0000 0.0114 0.0263 0.0334

0,1oo1 0.1125

0.91000.0457 0.0715 0.0977

o.o L13I-J.1094

0.02600.9200

0.0331 0.0451 0.0701‘ 0.0113

0.0951 0. lUti30.0258

0.93CI00.0327 0.0444 0.0686

0.01120.0924 [).1113U

0.0255 0.0323 0.0437 0.0669 0.08960.9400 0.0111

u,ll~J940.0252” 0.0319 0.0429 0.0652 0.0b65

0.9500 0’.01100.0557

0.0249 ‘ 0.0314 0.0421 0.0632 o.oa3~ ().o$llb0,9600 . 0.0110 0.0246 0.0300 0,0411 0.06100.9700 0.0109

0.07940.02.41 0.030L

11.otJ71o.039a o.05a4 0.075U

0.9800 0.0107u.oe)H

0.0235 0.0292 o,03a2 . 0.055L 0.06960.9900 0.0105

U.[J7550.0226 0.0277 o. 035a 0.0502 . 0.0620 0.0666

1.0000 0.0000 0.0133 0.0150 0.o171 0.0198 0.0214 0.0219

.

27

Illustrative Example for BBC GTEH-1509

With reference to figure 14, showing the vertically offset

TEM cell, the experimental parameters for the ~TEH-1500 are

w/a = 0.6333

b/a = 0.667

h/b = 0.5

h/a = 0.333

Frcm figure 19 and the accompanying Table 5, the valqe of (Zc/n) =

~.~~~ for the ~b~~~e set of parameters. Consequently, the

C71E-:~~~~~s~jc impsdance of air-filled GTEN - 150(I is

z= z 377 X 0.136 = 51.27 Q

and the capacitance per unit length is●

c’= Comch) = 65 pF/m

Considering the approximations involved in applying the

readily available expressions from [3, 53 to the case of GTH?-1509,

the above results are seen to be in good agreement with the

experimental values.

28

0

d

IV. Summary

The objective of this note was to review the impedance of

two conductor transmission lines including TEN cells with the

inner septum placed symmetrically and with some vertical offset.

The required computer programs were developed and implemented

on the computer system at the BBC Research Center. Some example

results are presented here in figures and tabular form as well,

for future reference.

.

29

References

1.

2.

3.

4.

5.

6.

7.

8,

S. Ramo, J.R. Whinnery and T. Van !luzer,

in Communication Electronics, John Wiley

Second Edition, 1984

Fields and Waves

and Sons,

C.E, Baum, D.V. Giri and R.11. Gonzalez, “Electromagnetic

Field Distribution of the TEM Mode in a Symmetrical Two-

Parallel-Plate Transmission Line”, Sensor and Simulation

Note 219, 1 April 1976

J.C. Tippet, “Modal Characteristics of Rectangular Coaxial

Transmission Line”, Ph.D. dissertation, University of

Colorado, Boulder, 1978

M.L. Crawford, “Generation of,Standard EM Fields Using TEil

Transmission Cells”, IEEE Transactions on Electromagnetic

Compatibility, Vol. EMC-16, pp 189-195, N“ovember 1974

J.C. Tippet and D.C. Chang, “Characteristic Impedance of a

Rectangular Coaxial Line with Offset Inner Conductor’i,

IEEE Transactions on Microwave Theory and Techniques,

Vol . MTT-26, pp 876-883, November 1978

Reference Data for Radio Engineers, Published by Howard W.

Sams & Co., Inc., New ‘fork, 6th Edition, Chapter 24, 1975

EMP Handbook, Principles, Tectiniques & Reference Data,

Edited by K.S.H. Lee, AFNL~TR-80-402, December 1980, also

published by the Dept. of Electrical and Computer

Engineering, University of New Mexico, July 1983

,.Handbook of Mathematical Functions, Edited by .M. Abramowitz

and I.A. Stegun, Dover Publ~cations, New York, 1965 ‘

30